TheBloke commited on
Commit
e362523
1 Parent(s): 29275b2

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +317 -0
README.md ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: SciPhi/SciPhi-Mistral-7B-32k
3
+ inference: false
4
+ model_creator: SciPhi
5
+ model_name: SciPhi Mistral 7B 32K
6
+ model_type: mistral
7
+ prompt_template: '{prompt}
8
+
9
+ '
10
+ quantized_by: TheBloke
11
+ ---
12
+ <!-- markdownlint-disable MD041 -->
13
+
14
+ <!-- header start -->
15
+ <!-- 200823 -->
16
+ <div style="width: auto; margin-left: auto; margin-right: auto">
17
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
18
+ </div>
19
+ <div style="display: flex; justify-content: space-between; width: 100%;">
20
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
21
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
22
+ </div>
23
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
25
+ </div>
26
+ </div>
27
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
28
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
29
+ <!-- header end -->
30
+
31
+ # SciPhi Mistral 7B 32K - GGUF
32
+ - Model creator: [SciPhi](https://huggingface.co/SciPhi)
33
+ - Original model: [SciPhi Mistral 7B 32K](https://huggingface.co/SciPhi/SciPhi-Mistral-7B-32k)
34
+
35
+ <!-- description start -->
36
+ ## Description
37
+
38
+ This repo contains GGUF format model files for [SciPhi's SciPhi Mistral 7B 32K](https://huggingface.co/SciPhi/SciPhi-Mistral-7B-32k).
39
+
40
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
41
+
42
+ <!-- description end -->
43
+ <!-- README_GGUF.md-about-gguf start -->
44
+ ### About GGUF
45
+
46
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
47
+
48
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
49
+
50
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
51
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
52
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
53
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
54
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
55
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
56
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
57
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
58
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
59
+
60
+ <!-- README_GGUF.md-about-gguf end -->
61
+ <!-- repositories-available start -->
62
+ ## Repositories available
63
+
64
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-AWQ)
65
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GPTQ)
66
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF)
67
+ * [SciPhi's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/SciPhi/SciPhi-Mistral-7B-32k)
68
+ <!-- repositories-available end -->
69
+
70
+ <!-- prompt-template start -->
71
+ ## Prompt template: Unknown
72
+
73
+ ```
74
+ {prompt}
75
+
76
+ ```
77
+
78
+ <!-- prompt-template end -->
79
+
80
+
81
+ <!-- compatibility_gguf start -->
82
+ ## Compatibility
83
+
84
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
85
+
86
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
87
+
88
+ ## Explanation of quantisation methods
89
+
90
+ <details>
91
+ <summary>Click to see details</summary>
92
+
93
+ The new methods available are:
94
+
95
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
96
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
97
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
98
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
99
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
100
+
101
+ Refer to the Provided Files table below to see what files use which methods, and how.
102
+ </details>
103
+ <!-- compatibility_gguf end -->
104
+
105
+ <!-- README_GGUF.md-provided-files start -->
106
+ ## Provided files
107
+
108
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
109
+ | ---- | ---- | ---- | ---- | ---- | ----- |
110
+ | [sciphi-mistral-7b-32k.Q2_K.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes |
111
+ | [sciphi-mistral-7b-32k.Q3_K_S.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss |
112
+ | [sciphi-mistral-7b-32k.Q3_K_M.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss |
113
+ | [sciphi-mistral-7b-32k.Q3_K_L.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss |
114
+ | [sciphi-mistral-7b-32k.Q4_0.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
115
+ | [sciphi-mistral-7b-32k.Q4_K_S.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss |
116
+ | [sciphi-mistral-7b-32k.Q4_K_M.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended |
117
+ | [sciphi-mistral-7b-32k.Q5_0.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
118
+ | [sciphi-mistral-7b-32k.Q5_K_S.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended |
119
+ | [sciphi-mistral-7b-32k.Q5_K_M.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended |
120
+ | [sciphi-mistral-7b-32k.Q6_K.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss |
121
+ | [sciphi-mistral-7b-32k.Q8_0.gguf](https://huggingface.co/TheBloke/SciPhi-Mistral-7B-32k-GGUF/blob/main/sciphi-mistral-7b-32k.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended |
122
+
123
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
124
+
125
+
126
+
127
+ <!-- README_GGUF.md-provided-files end -->
128
+
129
+ <!-- README_GGUF.md-how-to-download start -->
130
+ ## How to download GGUF files
131
+
132
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
133
+
134
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
135
+
136
+ * LM Studio
137
+ * LoLLMS Web UI
138
+ * Faraday.dev
139
+
140
+ ### In `text-generation-webui`
141
+
142
+ Under Download Model, you can enter the model repo: TheBloke/SciPhi-Mistral-7B-32k-GGUF and below it, a specific filename to download, such as: sciphi-mistral-7b-32k.Q4_K_M.gguf.
143
+
144
+ Then click Download.
145
+
146
+ ### On the command line, including multiple files at once
147
+
148
+ I recommend using the `huggingface-hub` Python library:
149
+
150
+ ```shell
151
+ pip3 install huggingface-hub
152
+ ```
153
+
154
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
155
+
156
+ ```shell
157
+ huggingface-cli download TheBloke/SciPhi-Mistral-7B-32k-GGUF sciphi-mistral-7b-32k.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
158
+ ```
159
+
160
+ <details>
161
+ <summary>More advanced huggingface-cli download usage</summary>
162
+
163
+ You can also download multiple files at once with a pattern:
164
+
165
+ ```shell
166
+ huggingface-cli download TheBloke/SciPhi-Mistral-7B-32k-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
167
+ ```
168
+
169
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
170
+
171
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
172
+
173
+ ```shell
174
+ pip3 install hf_transfer
175
+ ```
176
+
177
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
178
+
179
+ ```shell
180
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/SciPhi-Mistral-7B-32k-GGUF sciphi-mistral-7b-32k.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
181
+ ```
182
+
183
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
184
+ </details>
185
+ <!-- README_GGUF.md-how-to-download end -->
186
+
187
+ <!-- README_GGUF.md-how-to-run start -->
188
+ ## Example `llama.cpp` command
189
+
190
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
191
+
192
+ ```shell
193
+ ./main -ngl 32 -m sciphi-mistral-7b-32k.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"
194
+ ```
195
+
196
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
197
+
198
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
199
+
200
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
201
+
202
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
203
+
204
+ ## How to run in `text-generation-webui`
205
+
206
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
207
+
208
+ ## How to run from Python code
209
+
210
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
211
+
212
+ ### How to load this model in Python code, using ctransformers
213
+
214
+ #### First install the package
215
+
216
+ Run one of the following commands, according to your system:
217
+
218
+ ```shell
219
+ # Base ctransformers with no GPU acceleration
220
+ pip install ctransformers
221
+ # Or with CUDA GPU acceleration
222
+ pip install ctransformers[cuda]
223
+ # Or with AMD ROCm GPU acceleration (Linux only)
224
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
225
+ # Or with Metal GPU acceleration for macOS systems only
226
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
227
+ ```
228
+
229
+ #### Simple ctransformers example code
230
+
231
+ ```python
232
+ from ctransformers import AutoModelForCausalLM
233
+
234
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
235
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/SciPhi-Mistral-7B-32k-GGUF", model_file="sciphi-mistral-7b-32k.Q4_K_M.gguf", model_type="mistral", gpu_layers=50)
236
+
237
+ print(llm("AI is going to"))
238
+ ```
239
+
240
+ ## How to use with LangChain
241
+
242
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
243
+
244
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
245
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
246
+
247
+ <!-- README_GGUF.md-how-to-run end -->
248
+
249
+ <!-- footer start -->
250
+ <!-- 200823 -->
251
+ ## Discord
252
+
253
+ For further support, and discussions on these models and AI in general, join us at:
254
+
255
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
256
+
257
+ ## Thanks, and how to contribute
258
+
259
+ Thanks to the [chirper.ai](https://chirper.ai) team!
260
+
261
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
262
+
263
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
264
+
265
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
266
+
267
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
268
+
269
+ * Patreon: https://patreon.com/TheBlokeAI
270
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
271
+
272
+ **Special thanks to**: Aemon Algiz.
273
+
274
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
275
+
276
+
277
+ Thank you to all my generous patrons and donaters!
278
+
279
+ And thank you again to a16z for their generous grant.
280
+
281
+ <!-- footer end -->
282
+
283
+ <!-- original-model-card start -->
284
+ # Original model card: SciPhi's SciPhi Mistral 7B 32K
285
+
286
+
287
+ # SciPhi-Mistral-7B-32k Model Card
288
+
289
+ **License:** llama2
290
+
291
+ The SciPhi-Mistral-7B-32k is a Large Language Model (LLM) fine-tuned from Mistral-7B-v0.1. This model underwent a fine-tuning process over four epochs using more than 1 billion tokens, which include regular instruction tuning data and synthetic textbooks. The objective of this work was to increase the model's scientific reasoning and educational abilities.
292
+
293
+ ## Model Architecture
294
+
295
+ Base Model: Mistral-7B-v0.1
296
+
297
+ **Architecture Features:**
298
+ - Transformer-based model
299
+ - Grouped-Query Attention
300
+ - Sliding-Window Attention
301
+ - Byte-fallback BPE tokenizer
302
+
303
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
304
+
305
+ ## References
306
+
307
+ 1. Lian, W., Goodson, B., Wang, G., Pentland, E., Cook, A., Vong, C., & Teknium. (2023). MistralOrca: Mistral-7B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset. *HuggingFace repository*. [Link](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca)
308
+ 2. Mukherjee, S., Mitra, A., Jawahar, G., Agarwal, S., Palangi, H., & Awadallah, A. (2023). Orca: Progressive Learning from Complex Explanation Traces of GPT-4. *arXiv preprint arXiv:2306.02707*.
309
+ 3. Longpre, S., Hou, L., Vu, T., Webson, A., Chung, H. W., Tay, Y., Zhou, D., Le, Q. V., Zoph, B., Wei, J., & Roberts, A. (2023). The Flan Collection: Designing Data and Methods for Effective Instruction Tuning. *arXiv preprint arXiv:2301.13688*.
310
+ 4. Mistral AI. (2023). Model Card for Mistral-7B-v0.1. The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks tested. For full details, please refer to the paper and release blog post. Model Architecture: Transformer with Grouped-Query Attention, Sliding-Window Attention, and Byte-fallback BPE tokenizer. [Link](https://huggingface.co/mistralai/Mistral-7B-v0.1)
311
+
312
+
313
+ ## Acknowledgements
314
+
315
+ Thank you to the [AI Alignment Lab](https://huggingface.co/Alignment-Lab-AI), [vikp](https://huggingface.co/vikp), [jph00](https://huggingface.co/jph00) and others who contributed to this work.
316
+
317
+ <!-- original-model-card end -->