TheBloke commited on
Commit
9be9b7d
1 Parent(s): 24fd7dd

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +172 -63
README.md CHANGED
@@ -1,81 +1,86 @@
1
  ---
 
 
2
  inference: false
3
  language:
4
  - eng
5
- license: other
 
 
 
6
  model_type: llama
 
7
  tags:
8
  - llama-2
9
  - sft
10
  ---
11
 
12
  <!-- header start -->
13
- <div style="width: 100%;">
14
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
15
  </div>
16
  <div style="display: flex; justify-content: space-between; width: 100%;">
17
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
18
- <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
19
  </div>
20
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
21
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
22
  </div>
23
  </div>
 
 
24
  <!-- header end -->
25
 
26
- # NousResearch's Redmond Puffin 13B V1.3 GGML
 
 
27
 
28
- These files are GGML format model files for [NousResearch's Redmond Puffin 13B V1.3](https://huggingface.co/NousResearch/Redmond-Puffin-13B).
29
 
30
- GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
31
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with full GPU acceleration out of the box. Especially good for story telling.
32
- * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with GPU acceleration via the c_transformers backend.
33
- * [LM Studio](https://lmstudio.ai/), a fully featured local GUI. Supports full GPU accel on macOS. Also supports Windows, without GPU accel.
34
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Requires extra steps to enable GPU accel via llama.cpp backend.
35
- * [ctransformers](https://github.com/marella/ctransformers), a Python library with LangChain support and OpenAI-compatible AI server.
36
- * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with OpenAI-compatible API server.
37
 
38
- Many thanks to William Beauchamp from [Chai](https://chai-research.com/) for providing the hardware used to make and upload these files!
 
39
 
40
- **Note**: The files in this repo were updated on July 20th to reflect the [V1.3 release of NousResearch's Redmond Puffin 13B](https://huggingface.co/NousResearch/Redmond-Puffin-13B).
 
 
 
 
 
 
41
 
42
  ## Repositories available
43
 
44
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ)
45
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML)
46
- * [Original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Redmond-Puffin-13B)
 
47
 
48
- ## Prompt template: Human-Gpt
49
 
50
  ```
51
  ### human: {prompt}
52
 
53
  ### response:
54
- ```
55
- Optional reccomended pre-prompt / system prompt:
56
-
57
- ```
58
- ### human: Interact in conversation to the best of your ability, please be concise, logical, intelligent and coherent.
59
-
60
- ### response: Sure! sounds good.
61
 
62
- ### human: {prompt}
63
-
64
- ### response:
65
  ```
66
 
67
  <!-- compatibility_ggml start -->
68
  ## Compatibility
69
 
70
- ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
71
 
72
- These are guaranteed to be compatible with any UIs, tools and libraries released since late May. They may be phased out soon, as they are largely superseded by the new k-quant methods.
73
 
74
- ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
75
 
76
- These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`.
77
-
78
- They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python, ctransformers, rustformers and most others. For compatibility with other tools and libraries, please check their documentation.
79
 
80
  ## Explanation of the new k-quant methods
81
  <details>
@@ -94,43 +99,51 @@ Refer to the Provided Files table below to see what files use which methods, and
94
  <!-- compatibility_ggml end -->
95
 
96
  ## Provided files
 
97
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
98
  | ---- | ---- | ---- | ---- | ---- | ----- |
99
- | redmond-puffin-13b.ggmlv3.q2_K.bin | q2_K | 2 | 5.74 GB| 8.24 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
100
- | redmond-puffin-13b.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 7.14 GB| 9.64 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
101
- | redmond-puffin-13b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.53 GB| 9.03 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
102
- | redmond-puffin-13b.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.87 GB| 8.37 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
103
- | redmond-puffin-13b.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB| 9.82 GB | Original quant method, 4-bit. |
104
- | redmond-puffin-13b.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB| 10.64 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
105
- | redmond-puffin-13b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 8.06 GB| 10.56 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
106
- | redmond-puffin-13b.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.56 GB| 10.06 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
107
- | redmond-puffin-13b.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB| 11.45 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
108
- | redmond-puffin-13b.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB| 12.26 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
109
- | redmond-puffin-13b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.40 GB| 11.90 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
110
- | redmond-puffin-13b.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 9.15 GB| 11.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
111
- | redmond-puffin-13b.ggmlv3.q6_K.bin | q6_K | 6 | 10.83 GB| 13.33 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
112
- | redmond-puffin-13b.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB| 16.33 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
113
 
114
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
115
 
116
  ## How to run in `llama.cpp`
117
 
118
- I use the following command line; adjust for your tastes and needs:
 
 
119
 
120
  ```
121
- ./main -t 10 -ngl 32 -m redmond-puffin-13b.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
122
  ```
123
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
124
 
125
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
126
 
 
 
127
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
128
 
 
 
129
  ## How to run in `text-generation-webui`
130
 
131
- Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
132
 
133
  <!-- footer start -->
 
134
  ## Discord
135
 
136
  For further support, and discussions on these models and AI in general, join us at:
@@ -150,13 +163,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
150
  * Patreon: https://patreon.com/TheBlokeAI
151
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
152
 
153
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
154
 
155
- **Patreon special mentions**: Slarti, Chadd, John Detwiler, Pieter, zynix, K, Mano Prime, ReadyPlayerEmma, Ai Maven, Leonard Tan, Edmond Seymore, Joseph William Delisle, Luke @flexchar, Fred von Graf, Viktor Bowallius, Rishabh Srivastava, Nikolai Manek, Matthew Berman, Johann-Peter Hartmann, ya boyyy, Greatston Gnanesh, Femi Adebogun, Talal Aujan, Jonathan Leane, terasurfer, David Flickinger, William Sang, Ajan Kanaga, Vadim, Artur Olbinski, Raven Klaugh, Michael Levine, Oscar Rangel, Randy H, Cory Kujawski, RoA, Dave, Alex, Alexandros Triantafyllidis, Fen Risland, Eugene Pentland, vamX, Elle, Nathan LeClaire, Khalefa Al-Ahmad, Rainer Wilmers, subjectnull, Junyu Yang, Daniel P. Andersen, SuperWojo, LangChain4j, Mandus, Kalila, Illia Dulskyi, Trenton Dambrowitz, Asp the Wyvern, Derek Yates, Jeffrey Morgan, Deep Realms, Imad Khwaja, Pyrater, Preetika Verma, biorpg, Gabriel Tamborski, Stephen Murray, Spiking Neurons AB, Iucharbius, Chris Smitley, Willem Michiel, Luke Pendergrass, Sebastain Graf, senxiiz, Will Dee, Space Cruiser, Karl Bernard, Clay Pascal, Lone Striker, transmissions 11, webtim, WelcomeToTheClub, Sam, theTransient, Pierre Kircher, chris gileta, John Villwock, Sean Connelly, Willian Hasse
156
 
157
 
158
  Thank you to all my generous patrons and donaters!
159
 
 
 
160
  <!-- footer end -->
161
 
162
  # Original model card: NousResearch's Redmond Puffin 13B V1.3
@@ -168,7 +183,7 @@ Thank you to all my generous patrons and donaters!
168
 
169
  **The first commercially available language model released by Nous Research!**
170
 
171
- Redmond-Puffin-13B is one of the worlds first llama-2 based, fine-tuned language models, leveraging a hand curated set of 3K high quality examples, many of which take full advantage of the 4096 context length of Llama 2. This model was fine-tuned by Nous Research, with LDJ leading the training and dataset curation, along with significant dataset formation contributions by J-Supha.
172
 
173
  Special thank you to Redmond AI for sponsoring the compute.
174
 
@@ -178,7 +193,7 @@ Notable mentions for assisting in some of the training issues goes to: Caseus an
178
 
179
  ## Model Training
180
 
181
- Redmond-Puffin-13B-V1.3 is a new model trained for multiple epochs on a dataset of 3,000 carefully curated GPT-4 examples, most of which are long context conversations between a real human and GPT-4.
182
 
183
  Additional data came from carefully curated sub sections of datasets such as CamelAI's Physics, Chemistry, Biology and Math.
184
 
@@ -190,7 +205,6 @@ The reccomended model usage is:
190
  ### human:
191
 
192
  ### response:
193
-
194
  ```
195
  Optional reccomended pre-prompt / system prompt:
196
 
@@ -200,11 +214,27 @@ Optional reccomended pre-prompt / system prompt:
200
  ### response: Sure! sounds good.
201
  ```
202
 
203
- ## Improvements over previous version:
 
 
204
 
205
- The original Puffin model was loved by many, however it was quickly discovered to have dataset errors in a significant amount of the conversations.
206
- Puffin-V1.3 dataset solves this issue and the resulting fixed model has now fully finished training!
207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
208
 
209
  ## Notable Features:
210
 
@@ -234,8 +264,87 @@ Current limitations: Some token mismatch problems have been identified, these ma
234
 
235
  In the near future we plan on leveraging the help of domain specific expert volunteers to eliminate any mathematically/verifiably incorrect answers from our training curations.
236
 
237
- If you have at-least a bachelors in mathematics, physics, biology or chemistry and would like to volunteer even just 30 minutes of your expertise time, please contact ldj on discord!
 
 
 
 
 
 
 
 
 
 
 
238
 
239
- ## Benchmarks coming soon
240
 
241
- benchmarks coming soon!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ datasets:
3
+ - LDJnr/Puffin
4
  inference: false
5
  language:
6
  - eng
7
+ license: llama2
8
+ model_creator: NousResearch
9
+ model_link: https://huggingface.co/NousResearch/Redmond-Puffin-13B
10
+ model_name: Redmond Puffin 13B V1.3
11
  model_type: llama
12
+ quantized_by: TheBloke
13
  tags:
14
  - llama-2
15
  - sft
16
  ---
17
 
18
  <!-- header start -->
19
+ <!-- 200823 -->
20
+ <div style="width: auto; margin-left: auto; margin-right: auto">
21
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
22
  </div>
23
  <div style="display: flex; justify-content: space-between; width: 100%;">
24
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
26
  </div>
27
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
  </div>
30
  </div>
31
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
32
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
33
  <!-- header end -->
34
 
35
+ # Redmond Puffin 13B V1.3 - GGML
36
+ - Model creator: [NousResearch](https://huggingface.co/NousResearch)
37
+ - Original model: [Redmond Puffin 13B V1.3](https://huggingface.co/NousResearch/Redmond-Puffin-13B)
38
 
39
+ ## Description
40
 
41
+ This repo contains GGML format model files for [NousResearch's Redmond Puffin 13B V1.3](https://huggingface.co/NousResearch/Redmond-Puffin-13B).
42
+
43
+ ### Important note regarding GGML files.
44
+
45
+ The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
 
 
46
 
47
+ Please use the GGUF models instead.
48
+ ### About GGML
49
 
50
+ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
51
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
52
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
53
+ * [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
54
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with CUDA GPU acceleration via the c_transformers backend.
55
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
56
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
57
 
58
  ## Repositories available
59
 
60
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GPTQ)
61
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGUF)
62
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML)
63
+ * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Redmond-Puffin-13B)
64
 
65
+ ## Prompt template: Human-Response2
66
 
67
  ```
68
  ### human: {prompt}
69
 
70
  ### response:
 
 
 
 
 
 
 
71
 
 
 
 
72
  ```
73
 
74
  <!-- compatibility_ggml start -->
75
  ## Compatibility
76
 
77
+ These quantised GGML files are compatible with llama.cpp between June 6th (commit `2d43387`) and August 21st 2023.
78
 
79
+ For support with latest llama.cpp, please use GGUF files instead.
80
 
81
+ The final llama.cpp commit with support for GGML was: [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
82
 
83
+ As of August 23rd 2023 they are still compatible with all UIs, libraries and utilities which use GGML. This may change in the future.
 
 
84
 
85
  ## Explanation of the new k-quant methods
86
  <details>
 
99
  <!-- compatibility_ggml end -->
100
 
101
  ## Provided files
102
+
103
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
104
  | ---- | ---- | ---- | ---- | ---- | ----- |
105
+ | [redmond-puffin-13b.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q2_K.bin) | q2_K | 2 | 5.74 GB| 8.24 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
106
+ | [redmond-puffin-13b.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 5.87 GB| 8.37 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
107
+ | [redmond-puffin-13b.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 6.53 GB| 9.03 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
108
+ | [redmond-puffin-13b.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 7.14 GB| 9.64 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
109
+ | [redmond-puffin-13b.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q4_0.bin) | q4_0 | 4 | 7.32 GB| 9.82 GB | Original quant method, 4-bit. |
110
+ | [redmond-puffin-13b.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 7.56 GB| 10.06 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
111
+ | [redmond-puffin-13b.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 8.06 GB| 10.56 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
112
+ | [redmond-puffin-13b.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q4_1.bin) | q4_1 | 4 | 8.14 GB| 10.64 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
113
+ | [redmond-puffin-13b.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q5_0.bin) | q5_0 | 5 | 8.95 GB| 11.45 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
114
+ | [redmond-puffin-13b.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 9.15 GB| 11.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
115
+ | [redmond-puffin-13b.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 9.40 GB| 11.90 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
116
+ | [redmond-puffin-13b.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q5_1.bin) | q5_1 | 5 | 9.76 GB| 12.26 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
117
+ | [redmond-puffin-13b.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q6_K.bin) | q6_K | 6 | 10.83 GB| 13.33 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
118
+ | [redmond-puffin-13b.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/Redmond-Puffin-13B-GGML/blob/main/redmond-puffin-13b.ggmlv3.q8_0.bin) | q8_0 | 8 | 13.83 GB| 16.33 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
119
 
120
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
121
 
122
  ## How to run in `llama.cpp`
123
 
124
+ Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
125
+
126
+ For compatibility with latest llama.cpp, please use GGUF files instead.
127
 
128
  ```
129
+ ./main -t 10 -ngl 32 -m redmond-puffin-13b.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### human: Write a story about llamas\n\n### response:"
130
  ```
131
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
132
 
133
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
134
 
135
+ Change `-c 2048` to the desired sequence length for this model. For example, `-c 4096` for a Llama 2 model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
136
+
137
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
138
 
139
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
140
+
141
  ## How to run in `text-generation-webui`
142
 
143
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
144
 
145
  <!-- footer start -->
146
+ <!-- 200823 -->
147
  ## Discord
148
 
149
  For further support, and discussions on these models and AI in general, join us at:
 
163
  * Patreon: https://patreon.com/TheBlokeAI
164
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
165
 
166
+ **Special thanks to**: Aemon Algiz.
167
 
168
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
169
 
170
 
171
  Thank you to all my generous patrons and donaters!
172
 
173
+ And thank you again to a16z for their generous grant.
174
+
175
  <!-- footer end -->
176
 
177
  # Original model card: NousResearch's Redmond Puffin 13B V1.3
 
183
 
184
  **The first commercially available language model released by Nous Research!**
185
 
186
+ Redmond-Puffin-13B is likely the worlds first llama-2 based, fine-tuned language models, leveraging a hand curated set of 3K high quality examples, many of which take full advantage of the 4096 context length of Llama 2. This model was fine-tuned by Nous Research, with LDJ leading the training and dataset curation, along with significant dataset formation contributions by J-Supha.
187
 
188
  Special thank you to Redmond AI for sponsoring the compute.
189
 
 
193
 
194
  ## Model Training
195
 
196
+ Redmond-Puffin 13B-V1.3 is a new model trained for multiple epochs on a dataset of 3,000 carefully curated GPT-4 examples, most of which are long context conversations between a real human and GPT-4.
197
 
198
  Additional data came from carefully curated sub sections of datasets such as CamelAI's Physics, Chemistry, Biology and Math.
199
 
 
205
  ### human:
206
 
207
  ### response:
 
208
  ```
209
  Optional reccomended pre-prompt / system prompt:
210
 
 
214
  ### response: Sure! sounds good.
215
  ```
216
 
217
+ ## When should I use Puffin or Hermes 2?
218
+
219
+ Puffin and Hermes-2 both beat previous SOTA for GPT4ALL benchmarks, with Hermes-2 winning by a 0.1% margin over Puffin.
220
 
221
+ - Hermes 2 is trained on purely single turn instruction examples.
 
222
 
223
+ - Puffin is trained mostly on multi-turn, long context, highly curated and cleaned GPT-4 conversations with real humans, as well as curated single-turn examples relating to Physics, Bio, Math and Chem.
224
+
225
+ For these reasons, it's reccomended to give Puffin a try if you want to have multi-turn conversations and/or long context communication.
226
+
227
+ ## Example Outputs!:
228
+
229
+ ![puffin](https://i.imgur.com/P0MsN8B.png)
230
+
231
+ ![puffin](https://i.imgur.com/8EO3ThV.png)
232
+
233
+ ![puffin](https://i.imgur.com/5IWolFw.png)
234
+
235
+ ![puffin](https://i.imgur.com/TQui8m7.png)
236
+
237
+ ![puffin](https://i.imgur.com/tderIfl.png)
238
 
239
  ## Notable Features:
240
 
 
264
 
265
  In the near future we plan on leveraging the help of domain specific expert volunteers to eliminate any mathematically/verifiably incorrect answers from our training curations.
266
 
267
+ If you have at-least a bachelors in mathematics, physics, biology or chemistry and would like to volunteer even just 30 minutes of your expertise time, please contact LDJ on discord!
268
+
269
+ ## Benchmarks!
270
+
271
+ As of Puffins release, it achieves a new SOTA for the GPT4All benchmarks! Supplanting Hermes for the #1 position!
272
+ (Rounded to nearest tenth)
273
+
274
+ Previous Sota: Hermes - 68.8
275
+ New Sota: Puffin - 69.9 (+1.1)
276
+
277
+ note: After release, Puffin has since had its average GPT4All score beaten by 0.1%, by Nous' very own Model Hermes-2!
278
+ Latest SOTA w/ Hermes 2- 70.0 (+0.1 over Puffins 69.9 score)
279
 
280
+ That being said, Puffin supplants Hermes-2 for the #1 spot in Arc-E, HellaSwag and Winogrande!
281
 
282
+ Puffin also perfectly ties with Hermes in PIQA, however Hermes-2 still excels in much of Big Bench and AGIEval, so it's highly reccomended you give it a try as well!
283
+
284
+ GPT4all :
285
+
286
+ ```
287
+ | Task |Version| Metric |Value | |Stderr|
288
+ |-------------|------:|--------|-----:|---|-----:|
289
+ |arc_challenge| 0|acc |0.4983|± |0.0146|
290
+ | | |acc_norm|0.5068|± |0.0146|
291
+ |arc_easy | 0|acc |0.7980|± |0.0082|
292
+ | | |acc_norm|0.7757|± |0.0086|
293
+ |boolq | 1|acc |0.8150|± |0.0068|
294
+ |hellaswag | 0|acc |0.6132|± |0.0049|
295
+ | | |acc_norm|0.8043|± |0.0040|
296
+ |openbookqa | 0|acc |0.3560|± |0.0214|
297
+ | | |acc_norm|0.4560|± |0.0223|
298
+ |piqa | 0|acc |0.7954|± |0.0094|
299
+ | | |acc_norm|0.8069|± |0.0092|
300
+ |winogrande | 0|acc |0.7245|± |0.0126|
301
+ ```
302
+
303
+
304
+
305
+ ```
306
+ | Task |Version| Metric |Value | |Stderr|
307
+ |------------------------------------------------|------:|---------------------|-----:|---|-----:|
308
+ |bigbench_causal_judgement | 0|multiple_choice_grade|0.5368|± |0.0363|
309
+ |bigbench_date_understanding | 0|multiple_choice_grade|0.7127|± |0.0236|
310
+ |bigbench_disambiguation_qa | 0|multiple_choice_grade|0.3023|± |0.0286|
311
+ |bigbench_geometric_shapes | 0|multiple_choice_grade|0.1003|± |0.0159|
312
+ | | |exact_str_match |0.0000|± |0.0000|
313
+ |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|0.2520|± |0.0194|
314
+ |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|0.1743|± |0.0143|
315
+ |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|0.4200|± |0.0285|
316
+ |bigbench_movie_recommendation | 0|multiple_choice_grade|0.2900|± |0.0203|
317
+ |bigbench_navigate | 0|multiple_choice_grade|0.5000|± |0.0158|
318
+ |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|0.5430|± |0.0111|
319
+ |bigbench_ruin_names | 0|multiple_choice_grade|0.4442|± |0.0235|
320
+ |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|0.2074|± |0.0128|
321
+ |bigbench_snarks | 0|multiple_choice_grade|0.5083|± |0.0373|
322
+ |bigbench_sports_understanding | 0|multiple_choice_grade|0.4970|± |0.0159|
323
+ |bigbench_temporal_sequences | 0|multiple_choice_grade|0.3260|± |0.0148|
324
+ |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|0.2136|± |0.0116|
325
+ |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|0.1326|± |0.0081|
326
+ |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|0.4200|± |0.0285|
327
+ ```
328
+
329
+ AGI Eval:
330
+
331
+ ```
332
+ | Task |Version| Metric |Value | |Stderr|
333
+ |------------------------------|------:|--------|-----:|---|-----:|
334
+ |agieval_aqua_rat | 0|acc |0.2283|± |0.0264|
335
+ | | |acc_norm|0.2244|± |0.0262|
336
+ |agieval_logiqa_en | 0|acc |0.2780|± |0.0176|
337
+ | | |acc_norm|0.3164|± |0.0182|
338
+ |agieval_lsat_ar | 0|acc |0.2348|± |0.0280|
339
+ | | |acc_norm|0.2043|± |0.0266|
340
+ |agieval_lsat_lr | 0|acc |0.3392|± |0.0210|
341
+ | | |acc_norm|0.2961|± |0.0202|
342
+ |agieval_lsat_rc | 0|acc |0.4387|± |0.0303|
343
+ | | |acc_norm|0.3569|± |0.0293|
344
+ |agieval_sat_en | 0|acc |0.5874|± |0.0344|
345
+ | | |acc_norm|0.5194|± |0.0349|
346
+ |agieval_sat_en_without_passage| 0|acc |0.4223|± |0.0345|
347
+ | | |acc_norm|0.3447|± |0.0332|
348
+ |agieval_sat_math | 0|acc |0.3364|± |0.0319|
349
+ | | |acc_norm|0.2773|± |0.0302|
350
+ ```