Transformers
GGUF
llama
TheBloke commited on
Commit
e924f7a
1 Parent(s): 648c66f

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -17
README.md CHANGED
@@ -1,4 +1,8 @@
1
  ---
 
 
 
 
2
  inference: false
3
  license: llama2
4
  model_creator: Kai Howard
@@ -40,17 +44,17 @@ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is
40
 
41
  The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
42
 
43
- As of August 23rd 2023, only llama.cpp supports GGUF. However, third-party clients and libraries are expected to add support very soon.
 
 
 
 
 
 
 
 
44
 
45
- Here is a list of clients and libraries, along with their expected timeline for GGUF support. Where possible a link to the relevant issue or PR is provided:
46
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), awaiting llama-cpp-python support.
47
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp), [in active development](https://github.com/LostRuins/koboldcpp/issues/387). Test builds are working, but GPU acceleration remains to be tested.
48
- * [LM Studio](https://lmstudio.ai/), in active development - hoped to be ready by August 25th-26th.
49
- * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), will work as soon as ctransformers or llama-cpp-python is updated.
50
- * [ctransformers](https://github.com/marella/ctransformers), [development will start soon](https://github.com/marella/ctransformers/issues/102).
51
- * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), [in active development](https://github.com/abetlen/llama-cpp-python/issues/628).
52
  <!-- README_GGUF.md-about-gguf end -->
53
-
54
  <!-- repositories-available start -->
55
  ## Repositories available
56
 
@@ -68,6 +72,7 @@ You are a helpful AI assistant.
68
 
69
  USER: {prompt}
70
  ASSISTANT:
 
71
  ```
72
 
73
  <!-- prompt-template end -->
@@ -76,7 +81,7 @@ ASSISTANT:
76
 
77
  These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
78
 
79
- As of August 23rd 2023 they are not yet compatible with any third-party UIS, libraries or utilities but this is expected to change very soon.
80
 
81
  ## Explanation of quantisation methods
82
  <details>
@@ -88,7 +93,6 @@ The new methods available are:
88
  * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
89
  * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
90
  * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
91
- * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
92
 
93
  Refer to the Provided Files table below to see what files use which methods, and how.
94
  </details>
@@ -99,36 +103,53 @@ Refer to the Provided Files table below to see what files use which methods, and
99
 
100
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
101
  | ---- | ---- | ---- | ---- | ---- | ----- |
 
 
102
  | [puddlejumper-13b.q2_K.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q2_K.gguf) | q2_K | 2 | 5.66 GB| 8.16 GB | smallest, significant quality loss - not recommended for most purposes |
103
  | [puddlejumper-13b.q3_K_S.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q3_K_S.gguf) | q3_K_S | 3 | 5.87 GB| 8.37 GB | very small, high quality loss |
 
104
  | [puddlejumper-13b.q3_K_M.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q3_K_M.gguf) | q3_K_M | 3 | 6.55 GB| 9.05 GB | very small, high quality loss |
 
105
  | [puddlejumper-13b.q3_K_L.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q3_K_L.gguf) | q3_K_L | 3 | 7.14 GB| 9.64 GB | small, substantial quality loss |
 
 
106
  | [puddlejumper-13b.q4_K_S.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q4_K_S.gguf) | q4_K_S | 4 | 7.61 GB| 10.11 GB | small, greater quality loss |
 
107
  | [puddlejumper-13b.q4_K_M.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q4_K_M.gguf) | q4_K_M | 4 | 8.06 GB| 10.56 GB | medium, balanced quality - recommended |
 
108
  | [puddlejumper-13b.q5_0.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q5_0.gguf) | q5_0 | 5 | 8.95 GB| 11.45 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
 
 
109
  | [puddlejumper-13b.q5_K_S.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q5_K_S.gguf) | q5_K_S | 5 | 9.15 GB| 11.65 GB | large, low quality loss - recommended |
 
110
  | [puddlejumper-13b.q5_K_M.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q5_K_M.gguf) | q5_K_M | 5 | 9.40 GB| 11.90 GB | large, very low quality loss - recommended |
 
 
111
  | [puddlejumper-13b.q6_K.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q6_K.gguf) | q6_K | 6 | 10.83 GB| 13.33 GB | very large, extremely low quality loss |
112
  | [puddlejumper-13b.q8_0.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q8_0.gguf) | q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
 
113
 
114
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
 
 
 
115
  <!-- README_GGUF.md-provided-files end -->
116
 
117
  <!-- README_GGUF.md-how-to-run start -->
118
- ## How to run in `llama.cpp`
119
 
120
  Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
121
 
122
- For compatibility with older versions of llama.cpp, or for use with third-party clients and libaries, please use GGML files instead.
123
 
124
  ```
125
- ./main -t 10 -ngl 32 -m puddlejumper-13b.q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
126
  ```
127
- Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
128
 
129
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
130
 
131
- Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters should be set by llama.cpp automatically. If they are not, or if you need to change them manually, you can use `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
132
 
133
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
134
 
@@ -137,6 +158,44 @@ For other parameters and how to use them, please refer to [the llama.cpp documen
137
  ## How to run in `text-generation-webui`
138
 
139
  Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
  <!-- README_GGUF.md-how-to-run end -->
141
 
142
  <!-- footer start -->
@@ -162,7 +221,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
162
 
163
  **Special thanks to**: Aemon Algiz.
164
 
165
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
166
 
167
 
168
  Thank you to all my generous patrons and donaters!
@@ -177,6 +236,14 @@ And thank you again to a16z for their generous grant.
177
 
178
  Merge of EverythingLM-V2-13b QLoRa and OpenOrca-Platypus2-13B.
179
 
 
 
 
 
 
 
 
 
180
  ### Prompt format:
181
 
182
  Many options:
 
1
  ---
2
+ datasets:
3
+ - totally-not-an-llm/EverythingLM-data-V2
4
+ - garage-bAInd/Open-Platypus
5
+ - Open-Orca/OpenOrca
6
  inference: false
7
  license: llama2
8
  model_creator: Kai Howard
 
44
 
45
  The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
46
 
47
+ Here are a list of clients and libraries that are known to support GGUF:
48
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp).
49
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
50
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
51
+ * [LM Studio](https://lmstudio.ai/), version 0.2.2 and later support GGUF. A fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
52
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), should now work, choose the `c_transformers` backend. A great web UI with many interesting features. Supports CUDA GPU acceleration.
53
+ * [ctransformers](https://github.com/marella/ctransformers), now supports GGUF as of version 0.2.24! A Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
54
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
55
+ * [candle](https://github.com/huggingface/candle), added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.
56
 
 
 
 
 
 
 
 
57
  <!-- README_GGUF.md-about-gguf end -->
 
58
  <!-- repositories-available start -->
59
  ## Repositories available
60
 
 
72
 
73
  USER: {prompt}
74
  ASSISTANT:
75
+
76
  ```
77
 
78
  <!-- prompt-template end -->
 
81
 
82
  These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
83
 
84
+ They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
85
 
86
  ## Explanation of quantisation methods
87
  <details>
 
93
  * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
94
  * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
95
  * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
 
96
 
97
  Refer to the Provided Files table below to see what files use which methods, and how.
98
  </details>
 
103
 
104
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
105
  | ---- | ---- | ---- | ---- | ---- | ----- |
106
+ | [puddlejumper-13b.Q2_K.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
107
+ | [puddlejumper-13b.Q3_K_S.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
108
  | [puddlejumper-13b.q2_K.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q2_K.gguf) | q2_K | 2 | 5.66 GB| 8.16 GB | smallest, significant quality loss - not recommended for most purposes |
109
  | [puddlejumper-13b.q3_K_S.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q3_K_S.gguf) | q3_K_S | 3 | 5.87 GB| 8.37 GB | very small, high quality loss |
110
+ | [puddlejumper-13b.Q3_K_M.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
111
  | [puddlejumper-13b.q3_K_M.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q3_K_M.gguf) | q3_K_M | 3 | 6.55 GB| 9.05 GB | very small, high quality loss |
112
+ | [puddlejumper-13b.Q3_K_L.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
113
  | [puddlejumper-13b.q3_K_L.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q3_K_L.gguf) | q3_K_L | 3 | 7.14 GB| 9.64 GB | small, substantial quality loss |
114
+ | [puddlejumper-13b.Q4_0.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
115
+ | [puddlejumper-13b.Q4_K_S.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
116
  | [puddlejumper-13b.q4_K_S.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q4_K_S.gguf) | q4_K_S | 4 | 7.61 GB| 10.11 GB | small, greater quality loss |
117
+ | [puddlejumper-13b.Q4_K_M.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
118
  | [puddlejumper-13b.q4_K_M.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q4_K_M.gguf) | q4_K_M | 4 | 8.06 GB| 10.56 GB | medium, balanced quality - recommended |
119
+ | [puddlejumper-13b.Q4_1.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q4_1.gguf) | Q4_1 | 4 | 8.17 GB| 10.67 GB | legacy; small, substantial quality loss - lprefer using Q3_K_L |
120
  | [puddlejumper-13b.q5_0.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q5_0.gguf) | q5_0 | 5 | 8.95 GB| 11.45 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
121
+ | [puddlejumper-13b.Q5_0.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
122
+ | [puddlejumper-13b.Q5_K_S.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
123
  | [puddlejumper-13b.q5_K_S.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q5_K_S.gguf) | q5_K_S | 5 | 9.15 GB| 11.65 GB | large, low quality loss - recommended |
124
+ | [puddlejumper-13b.Q5_K_M.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
125
  | [puddlejumper-13b.q5_K_M.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q5_K_M.gguf) | q5_K_M | 5 | 9.40 GB| 11.90 GB | large, very low quality loss - recommended |
126
+ | [puddlejumper-13b.Q5_1.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q5_1.gguf) | Q5_1 | 5 | 9.78 GB| 12.28 GB | legacy; medium, low quality loss - prefer using Q5_K_M |
127
+ | [puddlejumper-13b.Q6_K.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
128
  | [puddlejumper-13b.q6_K.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q6_K.gguf) | q6_K | 6 | 10.83 GB| 13.33 GB | very large, extremely low quality loss |
129
  | [puddlejumper-13b.q8_0.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.q8_0.gguf) | q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
130
+ | [puddlejumper-13b.Q8_0.gguf](https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF/blob/main/puddlejumper-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
131
 
132
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
133
+
134
+
135
+
136
  <!-- README_GGUF.md-provided-files end -->
137
 
138
  <!-- README_GGUF.md-how-to-run start -->
139
+ ## Example `llama.cpp` command
140
 
141
  Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
142
 
143
+ For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
144
 
145
  ```
146
+ ./main -t 10 -ngl 32 -m puddlejumper-13b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "You are a helpful AI assistant.\n\nUSER: Write a story about llamas\nASSISTANT:"
147
  ```
148
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
149
 
150
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
151
 
152
+ Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
153
 
154
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
155
 
 
158
  ## How to run in `text-generation-webui`
159
 
160
  Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
161
+
162
+ ## How to run from Python code
163
+
164
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
165
+
166
+ ### How to load this model from Python using ctransformers
167
+
168
+ #### First install the package
169
+
170
+ ```bash
171
+ # Base ctransformers with no GPU acceleration
172
+ pip install ctransformers>=0.2.24
173
+ # Or with CUDA GPU acceleration
174
+ pip install ctransformers[cuda]>=0.2.24
175
+ # Or with ROCm GPU acceleration
176
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
177
+ # Or with Metal GPU acceleration for macOS systems
178
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
179
+ ```
180
+
181
+ #### Simple example code to load one of these GGUF models
182
+
183
+ ```python
184
+ from ctransformers import AutoModelForCausalLM
185
+
186
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
187
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/PuddleJumper-13B-GGML", model_file="puddlejumper-13b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
188
+
189
+ print(llm("AI is going to"))
190
+ ```
191
+
192
+ ## How to use with LangChain
193
+
194
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
195
+
196
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
197
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
198
+
199
  <!-- README_GGUF.md-how-to-run end -->
200
 
201
  <!-- footer start -->
 
221
 
222
  **Special thanks to**: Aemon Algiz.
223
 
224
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
225
 
226
 
227
  Thank you to all my generous patrons and donaters!
 
236
 
237
  Merge of EverythingLM-V2-13b QLoRa and OpenOrca-Platypus2-13B.
238
 
239
+ Quants (Thanks TheBloke)
240
+
241
+ https://huggingface.co/TheBloke/PuddleJumper-13B-GPTQ
242
+
243
+ https://huggingface.co/TheBloke/PuddleJumper-13B-GGML
244
+
245
+ https://huggingface.co/TheBloke/PuddleJumper-13B-GGUF
246
+
247
  ### Prompt format:
248
 
249
  Many options: