TheBloke commited on
Commit
12f51f7
1 Parent(s): 9844522

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -13
README.md CHANGED
@@ -97,15 +97,8 @@ Below is an instruction that describes a task. Write a response that appropriate
97
  ```
98
 
99
  <!-- prompt-template end -->
100
- <!-- licensing start -->
101
- ## Licensing
102
 
103
- The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license.
104
 
105
- As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
106
-
107
- In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Lilloukas' Platypus 30B](https://huggingface.co/lilloukas/Platypus-30B).
108
- <!-- licensing end -->
109
  <!-- compatibility_gguf start -->
110
  ## Compatibility
111
 
@@ -164,7 +157,7 @@ The following clients/libraries will automatically download models for you, prov
164
 
165
  ### In `text-generation-webui`
166
 
167
- Under Download Model, you can enter the model repo: TheBloke/Platypus-30B-GGUF and below it, a specific filename to download, such as: platypus-30b.q4_K_M.gguf.
168
 
169
  Then click Download.
170
 
@@ -173,13 +166,13 @@ Then click Download.
173
  I recommend using the `huggingface-hub` Python library:
174
 
175
  ```shell
176
- pip3 install huggingface-hub>=0.17.1
177
  ```
178
 
179
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
180
 
181
  ```shell
182
- huggingface-cli download TheBloke/Platypus-30B-GGUF platypus-30b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
183
  ```
184
 
185
  <details>
@@ -202,7 +195,7 @@ pip3 install hf_transfer
202
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
203
 
204
  ```shell
205
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Platypus-30B-GGUF platypus-30b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
206
  ```
207
 
208
  Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
@@ -215,7 +208,7 @@ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running
215
  Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
216
 
217
  ```shell
218
- ./main -ngl 32 -m platypus-30b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
219
  ```
220
 
221
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
@@ -255,7 +248,7 @@ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
255
  from ctransformers import AutoModelForCausalLM
256
 
257
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
258
- llm = AutoModelForCausalLM.from_pretrained("TheBloke/Platypus-30B-GGUF", model_file="platypus-30b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
259
 
260
  print(llm("AI is going to"))
261
  ```
 
97
  ```
98
 
99
  <!-- prompt-template end -->
 
 
100
 
 
101
 
 
 
 
 
102
  <!-- compatibility_gguf start -->
103
  ## Compatibility
104
 
 
157
 
158
  ### In `text-generation-webui`
159
 
160
+ Under Download Model, you can enter the model repo: TheBloke/Platypus-30B-GGUF and below it, a specific filename to download, such as: platypus-30b.Q4_K_M.gguf.
161
 
162
  Then click Download.
163
 
 
166
  I recommend using the `huggingface-hub` Python library:
167
 
168
  ```shell
169
+ pip3 install huggingface-hub
170
  ```
171
 
172
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
173
 
174
  ```shell
175
+ huggingface-cli download TheBloke/Platypus-30B-GGUF platypus-30b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
176
  ```
177
 
178
  <details>
 
195
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
196
 
197
  ```shell
198
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Platypus-30B-GGUF platypus-30b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
199
  ```
200
 
201
  Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
 
208
  Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
209
 
210
  ```shell
211
+ ./main -ngl 32 -m platypus-30b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
212
  ```
213
 
214
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
 
248
  from ctransformers import AutoModelForCausalLM
249
 
250
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
251
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/Platypus-30B-GGUF", model_file="platypus-30b.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
252
 
253
  print(llm("AI is going to"))
254
  ```