Update README.md
Browse files
README.md
CHANGED
@@ -95,3 +95,32 @@ Thank you to all my generous patrons and donaters.
|
|
95 |
<!-- footer end -->
|
96 |
|
97 |
# Original model card: Chaoyi Wi's PMC_LLAMA 7B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
<!-- footer end -->
|
96 |
|
97 |
# Original model card: Chaoyi Wi's PMC_LLAMA 7B
|
98 |
+
|
99 |
+
This repo contains PMC_LLaMA_7B, which is LLaMA-7b finetuned on the PMC papers in S2ORC dataset.
|
100 |
+
|
101 |
+
The model was trained with the following hyperparameters:
|
102 |
+
|
103 |
+
* Epochs: 5
|
104 |
+
* Batch size: 128
|
105 |
+
* Cutoff length: 512
|
106 |
+
* Learning rate: 2e-5
|
107 |
+
|
108 |
+
Each epoch we sample 512 tokens per paper for training.
|
109 |
+
|
110 |
+
The model can be loaded as following:
|
111 |
+
|
112 |
+
```
|
113 |
+
import transformers
|
114 |
+
import torch
|
115 |
+
tokenizer = transformers.LlamaTokenizer.from_pretrained('chaoyi-wu/PMC_LLAMA_7B')
|
116 |
+
model = transformers.LlamaForCausalLM.from_pretrained('chaoyi-wu/PMC_LLAMA_7B')
|
117 |
+
sentence = 'Hello, doctor'
|
118 |
+
batch = tokenizer(
|
119 |
+
sentence,
|
120 |
+
return_tensors="pt",
|
121 |
+
add_special_tokens=False
|
122 |
+
)
|
123 |
+
with torch.no_grad():
|
124 |
+
generated = model.generate(inputs = batch["input_ids"], max_length=200, do_sample=True, top_k=50)
|
125 |
+
print('model predict: ',tokenizer.decode(generated[0]))
|
126 |
+
```
|