Transformers
GGUF
English
llama
TheBloke commited on
Commit
50e8593
·
1 Parent(s): bdc3681

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +366 -0
README.md ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ license: llama2
7
+ model_creator: fangloveskari
8
+ model_link: https://huggingface.co/fangloveskari/ORCA_LLaMA_70B_QLoRA
9
+ model_name: ORCA LLaMA 70B QLoRA
10
+ model_type: llama
11
+ quantized_by: TheBloke
12
+ ---
13
+
14
+ <!-- header start -->
15
+ <!-- 200823 -->
16
+ <div style="width: auto; margin-left: auto; margin-right: auto">
17
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
18
+ </div>
19
+ <div style="display: flex; justify-content: space-between; width: 100%;">
20
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
21
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
22
+ </div>
23
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
25
+ </div>
26
+ </div>
27
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
28
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
29
+ <!-- header end -->
30
+
31
+ # ORCA LLaMA 70B QLoRA - GGUF
32
+ - Model creator: [fangloveskari](https://huggingface.co/fangloveskari)
33
+ - Original model: [ORCA LLaMA 70B QLoRA](https://huggingface.co/fangloveskari/ORCA_LLaMA_70B_QLoRA)
34
+
35
+ ## Description
36
+
37
+ This repo contains GGUF format model files for [fangloveskari's ORCA LLaMA 70B QLoRA](https://huggingface.co/fangloveskari/ORCA_LLaMA_70B_QLoRA).
38
+
39
+ <!-- README_GGUF.md-about-gguf start -->
40
+ ### About GGUF
41
+
42
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
43
+
44
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
45
+
46
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
47
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
48
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
49
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
50
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
51
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
52
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
53
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
54
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
55
+
56
+ <!-- README_GGUF.md-about-gguf end -->
57
+ <!-- repositories-available start -->
58
+ ## Repositories available
59
+
60
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ)
61
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF)
62
+ * [fangloveskari's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/fangloveskari/ORCA_LLaMA_70B_QLoRA)
63
+ <!-- repositories-available end -->
64
+
65
+ <!-- prompt-template start -->
66
+ ## Prompt template: TBC
67
+
68
+ ```
69
+ Info on prompt template will be added shortly.
70
+
71
+ ```
72
+
73
+ <!-- prompt-template end -->
74
+ <!-- compatibility_gguf start -->
75
+ ## Compatibility
76
+
77
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
78
+
79
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
80
+
81
+ ## Explanation of quantisation methods
82
+ <details>
83
+ <summary>Click to see details</summary>
84
+
85
+ The new methods available are:
86
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
87
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
88
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
89
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
90
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
91
+
92
+ Refer to the Provided Files table below to see what files use which methods, and how.
93
+ </details>
94
+ <!-- compatibility_gguf end -->
95
+
96
+ <!-- README_GGUF.md-provided-files start -->
97
+ ## Provided files
98
+
99
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
100
+ | ---- | ---- | ---- | ---- | ---- | ----- |
101
+ | [orca_llama_70b_qlora.Q2_K.gguf](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF/blob/main/orca_llama_70b_qlora.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
102
+ | [orca_llama_70b_qlora.Q3_K_S.gguf](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF/blob/main/orca_llama_70b_qlora.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
103
+ | [orca_llama_70b_qlora.Q3_K_M.gguf](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF/blob/main/orca_llama_70b_qlora.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
104
+ | [orca_llama_70b_qlora.Q3_K_L.gguf](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF/blob/main/orca_llama_70b_qlora.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
105
+ | [orca_llama_70b_qlora.Q4_0.gguf](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF/blob/main/orca_llama_70b_qlora.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
106
+ | [orca_llama_70b_qlora.Q4_K_S.gguf](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF/blob/main/orca_llama_70b_qlora.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
107
+ | [orca_llama_70b_qlora.Q4_K_M.gguf](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF/blob/main/orca_llama_70b_qlora.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
108
+ | [orca_llama_70b_qlora.Q5_0.gguf](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF/blob/main/orca_llama_70b_qlora.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
109
+ | [orca_llama_70b_qlora.Q5_K_S.gguf](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF/blob/main/orca_llama_70b_qlora.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
110
+ | [orca_llama_70b_qlora.Q5_K_M.gguf](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF/blob/main/orca_llama_70b_qlora.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
111
+ | orca_llama_70b_qlora.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
112
+ | orca_llama_70b_qlora.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |
113
+
114
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
115
+
116
+ ### Q6_K and Q8_0 files are split and require joining
117
+
118
+ **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.
119
+
120
+ <details>
121
+ <summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
122
+
123
+ ### q6_K
124
+ Please download:
125
+ * `orca_llama_70b_qlora.Q6_K.gguf-split-a`
126
+ * `orca_llama_70b_qlora.Q6_K.gguf-split-b`
127
+
128
+ ### q8_0
129
+ Please download:
130
+ * `orca_llama_70b_qlora.Q8_0.gguf-split-a`
131
+ * `orca_llama_70b_qlora.Q8_0.gguf-split-b`
132
+
133
+ To join the files, do the following:
134
+
135
+ Linux and macOS:
136
+ ```
137
+ cat orca_llama_70b_qlora.Q6_K.gguf-split-* > orca_llama_70b_qlora.Q6_K.gguf && rm orca_llama_70b_qlora.Q6_K.gguf-split-*
138
+ cat orca_llama_70b_qlora.Q8_0.gguf-split-* > orca_llama_70b_qlora.Q8_0.gguf && rm orca_llama_70b_qlora.Q8_0.gguf-split-*
139
+ ```
140
+ Windows command line:
141
+ ```
142
+ COPY /B orca_llama_70b_qlora.Q6_K.gguf-split-a + orca_llama_70b_qlora.Q6_K.gguf-split-b orca_llama_70b_qlora.Q6_K.gguf
143
+ del orca_llama_70b_qlora.Q6_K.gguf-split-a orca_llama_70b_qlora.Q6_K.gguf-split-b
144
+
145
+ COPY /B orca_llama_70b_qlora.Q8_0.gguf-split-a + orca_llama_70b_qlora.Q8_0.gguf-split-b orca_llama_70b_qlora.Q8_0.gguf
146
+ del orca_llama_70b_qlora.Q8_0.gguf-split-a orca_llama_70b_qlora.Q8_0.gguf-split-b
147
+ ```
148
+
149
+ </details>
150
+ <!-- README_GGUF.md-provided-files end -->
151
+
152
+ <!-- README_GGUF.md-how-to-run start -->
153
+ ## Example `llama.cpp` command
154
+
155
+ Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
156
+
157
+ ```shell
158
+ ./main -ngl 32 -m orca_llama_70b_qlora.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Info on prompt template will be added shortly."
159
+ ```
160
+
161
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
162
+
163
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
164
+
165
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
166
+
167
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
168
+
169
+ ## How to run in `text-generation-webui`
170
+
171
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
172
+
173
+ ## How to run from Python code
174
+
175
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
176
+
177
+ ### How to load this model from Python using ctransformers
178
+
179
+ #### First install the package
180
+
181
+ ```bash
182
+ # Base ctransformers with no GPU acceleration
183
+ pip install ctransformers>=0.2.24
184
+ # Or with CUDA GPU acceleration
185
+ pip install ctransformers[cuda]>=0.2.24
186
+ # Or with ROCm GPU acceleration
187
+ CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
188
+ # Or with Metal GPU acceleration for macOS systems
189
+ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
190
+ ```
191
+
192
+ #### Simple example code to load one of these GGUF models
193
+
194
+ ```python
195
+ from ctransformers import AutoModelForCausalLM
196
+
197
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
198
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF", model_file="orca_llama_70b_qlora.q4_K_M.gguf", model_type="llama", gpu_layers=50)
199
+
200
+ print(llm("AI is going to"))
201
+ ```
202
+
203
+ ## How to use with LangChain
204
+
205
+ Here's guides on using llama-cpp-python or ctransformers with LangChain:
206
+
207
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
208
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
209
+
210
+ <!-- README_GGUF.md-how-to-run end -->
211
+
212
+ <!-- footer start -->
213
+ <!-- 200823 -->
214
+ ## Discord
215
+
216
+ For further support, and discussions on these models and AI in general, join us at:
217
+
218
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
219
+
220
+ ## Thanks, and how to contribute
221
+
222
+ Thanks to the [chirper.ai](https://chirper.ai) team!
223
+
224
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
225
+
226
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
227
+
228
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
229
+
230
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
231
+
232
+ * Patreon: https://patreon.com/TheBlokeAI
233
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
234
+
235
+ **Special thanks to**: Aemon Algiz.
236
+
237
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
238
+
239
+
240
+ Thank you to all my generous patrons and donaters!
241
+
242
+ And thank you again to a16z for their generous grant.
243
+
244
+ <!-- footer end -->
245
+
246
+ <!-- original-model-card start -->
247
+ # Original model card: fangloveskari's ORCA LLaMA 70B QLoRA
248
+
249
+
250
+
251
+ # Dolphin_ORCA_PlatyPus_LLaMA_70b
252
+
253
+ ### Dataset
254
+ Here is the list of datasets used:
255
+ * Dolphin
256
+ * Open-Platypus
257
+ * OpenOrca
258
+
259
+ **mixed strategy: 100%Open-Platypus + ~1%Dolphin(GPT-4) + ~1%OpenOrca(GPT-4)**
260
+ <br>
261
+
262
+ **Model Finetuned By fangloveskari.**
263
+
264
+ <br>
265
+
266
+ ### Training FrameWork and Parameters
267
+
268
+ #### FrameWork
269
+ https://github.com/hiyouga/LLaMA-Efficient-Tuning
270
+ We add flash_attention_2 and ORCA dataset support, with some minor modifications.
271
+
272
+ <br>
273
+
274
+ #### Parameters
275
+ We list some training parameters here:
276
+ | Parameter | Value |
277
+ |-----------------------|-------------|
278
+ | Finetune_Type | QLoRA(NF4) |
279
+ | LoRA_Rank | 16 |
280
+ | LoRA_Alpha | 16 |
281
+ | Batch_Size | 14 |
282
+ | GPUs | 8xA100(80G) |
283
+ | LR_Scheduler | cosine |
284
+ | LR | 3e-4 |
285
+ | Epoch | 1 |
286
+ | DeepSpeed | ZERO-2 |
287
+
288
+ <br>
289
+
290
+ ### Model Export
291
+ We tried two methods to fuse the adapter back to the base model:
292
+ * https://github.com/hiyouga/LLaMA-Efficient-Tuning/blob/main/src/export_model.py
293
+ * https://github.com/jondurbin/qlora/blob/main/qmerge.py
294
+
295
+ Generally, the second will get better ARC(+0.15) and Truthful_QA(+0.3) scores but the other two(MMLU(-0.2) and HelloSwag(-0.2)) seems to degenerate (Just for my model).
296
+
297
+ <br>
298
+
299
+ ### Evaluation
300
+
301
+ | Metric | Value |
302
+ |-----------------------|-------|
303
+ | ARC (25-shot) | 72.27 |
304
+ | HellaSwag (10-shot) | 87.74 |
305
+ | MMLU (5-shot) | 70.23 |
306
+ | TruthfulQA (0-shot) | 63.37 |
307
+ | Avg. | 73.40 |
308
+
309
+ <br>
310
+
311
+ ### license disclaimer:
312
+
313
+ This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.
314
+
315
+ <br>
316
+
317
+
318
+
319
+
320
+ ### Limitations & Biases:
321
+
322
+ Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.
323
+
324
+ Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/
325
+
326
+ <br>
327
+
328
+ ### Citiation:
329
+
330
+ Please kindly cite using the following BibTeX:
331
+
332
+ ```bibtex
333
+ @article{platypus2023,
334
+ title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs},
335
+ author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
336
+ booktitle={arXiv preprint arxiv:2308.07317},
337
+ year={2023}
338
+ }
339
+ ```
340
+
341
+ ```
342
+ @misc{mukherjee2023orca,
343
+ title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
344
+ author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
345
+ year={2023},
346
+ eprint={2306.02707},
347
+ archivePrefix={arXiv},
348
+ primaryClass={cs.CL}
349
+ }
350
+ ```
351
+
352
+ ```
353
+ @software{touvron2023llama2,
354
+ title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
355
+ author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
356
+ Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
357
+ Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann,
358
+ Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
359
+ Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
360
+ Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
361
+ Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom},
362
+ year={2023}
363
+ }
364
+ ```
365
+
366
+ <!-- original-model-card end -->