TheBloke commited on
Commit
e22e9d4
1 Parent(s): 43e6614

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -43
README.md CHANGED
@@ -2,8 +2,12 @@
2
  inference: false
3
  language:
4
  - en
5
- license: other
 
 
 
6
  model_type: llama
 
7
  tags:
8
  - llama-2
9
  - self-instruct
@@ -12,60 +16,74 @@ tags:
12
  ---
13
 
14
  <!-- header start -->
15
- <div style="width: 100%;">
16
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
17
  </div>
18
  <div style="display: flex; justify-content: space-between; width: 100%;">
19
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
20
- <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
21
  </div>
22
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
23
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
24
  </div>
25
  </div>
 
 
26
  <!-- header end -->
27
 
28
- # Nous Research's Nous Hermes Llama 2 13B GGML
 
 
29
 
30
- These files are GGML format model files for [Nous Research's Nous Hermes Llama 2 13B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b).
31
 
32
- GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
33
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with full GPU acceleration out of the box. Especially good for story telling.
34
- * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with GPU acceleration via the c_transformers backend.
35
- * [LM Studio](https://lmstudio.ai/), a fully featured local GUI. Supports full GPU accel on macOS. Also supports Windows, without GPU accel.
36
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Requires extra steps to enable GPU accel via llama.cpp backend.
37
- * [ctransformers](https://github.com/marella/ctransformers), a Python library with LangChain support and OpenAI-compatible AI server.
38
- * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with OpenAI-compatible API server.
 
39
 
 
 
 
 
 
 
 
40
 
41
  ## Repositories available
42
 
43
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GPTQ)
44
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML)
45
- * [Original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b)
 
46
 
47
  ## Prompt template: Alpaca
48
 
49
  ```
50
  Below is an instruction that describes a task. Write a response that appropriately completes the request.
51
 
52
- ### Instruction: {prompt}
 
53
 
54
  ### Response:
 
55
  ```
56
 
57
  <!-- compatibility_ggml start -->
58
  ## Compatibility
59
 
60
- ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
61
-
62
- These are guaranteed to be compatible with any UIs, tools and libraries released since late May. They may be phased out soon, as they are largely superseded by the new k-quant methods.
63
 
64
- ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
65
 
66
- These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`.
67
 
68
- They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python, ctransformers, rustformers and most others. For compatibility with other tools and libraries, please check their documentation.
69
 
70
  ## Explanation of the new k-quant methods
71
  <details>
@@ -84,43 +102,51 @@ Refer to the Provided Files table below to see what files use which methods, and
84
  <!-- compatibility_ggml end -->
85
 
86
  ## Provided files
 
87
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
88
  | ---- | ---- | ---- | ---- | ---- | ----- |
89
- | nous-hermes-llama2-13b.ggmlv3.q2_K.bin | q2_K | 2 | 5.74 GB| 8.24 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
90
- | nous-hermes-llama2-13b.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 7.14 GB| 9.64 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
91
- | nous-hermes-llama2-13b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.53 GB| 9.03 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
92
- | nous-hermes-llama2-13b.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.87 GB| 8.37 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
93
- | nous-hermes-llama2-13b.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB| 9.82 GB | Original quant method, 4-bit. |
94
- | nous-hermes-llama2-13b.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB| 10.64 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
95
- | nous-hermes-llama2-13b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 8.06 GB| 10.56 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
96
- | nous-hermes-llama2-13b.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.56 GB| 10.06 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
97
- | nous-hermes-llama2-13b.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB| 11.45 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
98
- | nous-hermes-llama2-13b.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB| 12.26 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
99
- | nous-hermes-llama2-13b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.40 GB| 11.90 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
100
- | nous-hermes-llama2-13b.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 9.15 GB| 11.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
101
- | nous-hermes-llama2-13b.ggmlv3.q6_K.bin | q6_K | 6 | 10.83 GB| 13.33 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
102
- | nous-hermes-llama2-13b.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB| 16.33 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
103
 
104
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
105
 
106
  ## How to run in `llama.cpp`
107
 
108
- I use the following command line; adjust for your tastes and needs:
 
 
109
 
110
  ```
111
- ./main -t 10 -ngl 32 -m nous-hermes-llama2-13b.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
112
  ```
113
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
114
 
115
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
116
 
 
 
117
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
118
 
 
 
119
  ## How to run in `text-generation-webui`
120
 
121
- Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
122
 
123
  <!-- footer start -->
 
124
  ## Discord
125
 
126
  For further support, and discussions on these models and AI in general, join us at:
@@ -140,13 +166,15 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
140
  * Patreon: https://patreon.com/TheBlokeAI
141
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
142
 
143
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
144
 
145
- **Patreon special mentions**: Slarti, Chadd, John Detwiler, Pieter, zynix, K, Mano Prime, ReadyPlayerEmma, Ai Maven, Leonard Tan, Edmond Seymore, Joseph William Delisle, Luke @flexchar, Fred von Graf, Viktor Bowallius, Rishabh Srivastava, Nikolai Manek, Matthew Berman, Johann-Peter Hartmann, ya boyyy, Greatston Gnanesh, Femi Adebogun, Talal Aujan, Jonathan Leane, terasurfer, David Flickinger, William Sang, Ajan Kanaga, Vadim, Artur Olbinski, Raven Klaugh, Michael Levine, Oscar Rangel, Randy H, Cory Kujawski, RoA, Dave, Alex, Alexandros Triantafyllidis, Fen Risland, Eugene Pentland, vamX, Elle, Nathan LeClaire, Khalefa Al-Ahmad, Rainer Wilmers, subjectnull, Junyu Yang, Daniel P. Andersen, SuperWojo, LangChain4j, Mandus, Kalila, Illia Dulskyi, Trenton Dambrowitz, Asp the Wyvern, Derek Yates, Jeffrey Morgan, Deep Realms, Imad Khwaja, Pyrater, Preetika Verma, biorpg, Gabriel Tamborski, Stephen Murray, Spiking Neurons AB, Iucharbius, Chris Smitley, Willem Michiel, Luke Pendergrass, Sebastain Graf, senxiiz, Will Dee, Space Cruiser, Karl Bernard, Clay Pascal, Lone Striker, transmissions 11, webtim, WelcomeToTheClub, Sam, theTransient, Pierre Kircher, chris gileta, John Villwock, Sean Connelly, Willian Hasse
146
 
147
 
148
  Thank you to all my generous patrons and donaters!
149
 
 
 
150
  <!-- footer end -->
151
 
152
  # Original model card: Nous Research's Nous Hermes Llama 2 13B
@@ -290,6 +318,7 @@ These are the highest benchmarks Hermes has seen on every metric, achieving the
290
  These benchmarks currently have us at #1 on ARC-c, ARC-e, Hellaswag, and OpenBookQA, and 2nd place on Winogrande, comparing to GPT4all's benchmarking list, supplanting Hermes 1 for the new top position.
291
 
292
  ## Resources for Applied Use Cases:
 
293
  For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord
294
  For an example of a roleplaying discord chatbot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot
295
 
@@ -298,4 +327,5 @@ We plan to continue to iterate on both more high quality data, and new data filt
298
 
299
  ## Model Usage
300
  The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions.
301
-
 
 
2
  inference: false
3
  language:
4
  - en
5
+ license: llama2
6
+ model_creator: NousResearch
7
+ model_link: https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b
8
+ model_name: Nous Hermes Llama 2 13B
9
  model_type: llama
10
+ quantized_by: TheBloke
11
  tags:
12
  - llama-2
13
  - self-instruct
 
16
  ---
17
 
18
  <!-- header start -->
19
+ <!-- 200823 -->
20
+ <div style="width: auto; margin-left: auto; margin-right: auto">
21
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
22
  </div>
23
  <div style="display: flex; justify-content: space-between; width: 100%;">
24
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
26
  </div>
27
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
28
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
29
  </div>
30
  </div>
31
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
32
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
33
  <!-- header end -->
34
 
35
+ # Nous Hermes Llama 2 13B - GGML
36
+ - Model creator: [NousResearch](https://huggingface.co/NousResearch)
37
+ - Original model: [Nous Hermes Llama 2 13B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b)
38
 
39
+ ## Description
40
 
41
+ This repo contains GGML format model files for [Nous Research's Nous Hermes Llama 2 13B](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b).
42
+
43
+ ### Important note regarding GGML files.
44
+
45
+ The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
46
+
47
+ Please use the GGUF models instead.
48
+ ### About GGML
49
 
50
+ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
51
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
52
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
53
+ * [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
54
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with CUDA GPU acceleration via the c_transformers backend.
55
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
56
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
57
 
58
  ## Repositories available
59
 
60
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GPTQ)
61
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGUF)
62
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML)
63
+ * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b)
64
 
65
  ## Prompt template: Alpaca
66
 
67
  ```
68
  Below is an instruction that describes a task. Write a response that appropriately completes the request.
69
 
70
+ ### Instruction:
71
+ {prompt}
72
 
73
  ### Response:
74
+
75
  ```
76
 
77
  <!-- compatibility_ggml start -->
78
  ## Compatibility
79
 
80
+ These quantised GGML files are compatible with llama.cpp between June 6th (commit `2d43387`) and August 21st 2023.
 
 
81
 
82
+ For support with latest llama.cpp, please use GGUF files instead.
83
 
84
+ The final llama.cpp commit with support for GGML was: [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
85
 
86
+ As of August 23rd 2023 they are still compatible with all UIs, libraries and utilities which use GGML. This may change in the future.
87
 
88
  ## Explanation of the new k-quant methods
89
  <details>
 
102
  <!-- compatibility_ggml end -->
103
 
104
  ## Provided files
105
+
106
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
107
  | ---- | ---- | ---- | ---- | ---- | ----- |
108
+ | [nous-hermes-llama2-13b.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q2_K.bin) | q2_K | 2 | 5.74 GB| 8.24 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
109
+ | [nous-hermes-llama2-13b.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 5.87 GB| 8.37 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
110
+ | [nous-hermes-llama2-13b.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 6.53 GB| 9.03 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
111
+ | [nous-hermes-llama2-13b.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 7.14 GB| 9.64 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
112
+ | [nous-hermes-llama2-13b.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q4_0.bin) | q4_0 | 4 | 7.32 GB| 9.82 GB | Original quant method, 4-bit. |
113
+ | [nous-hermes-llama2-13b.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 7.56 GB| 10.06 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
114
+ | [nous-hermes-llama2-13b.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 8.06 GB| 10.56 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
115
+ | [nous-hermes-llama2-13b.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q4_1.bin) | q4_1 | 4 | 8.14 GB| 10.64 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
116
+ | [nous-hermes-llama2-13b.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q5_0.bin) | q5_0 | 5 | 8.95 GB| 11.45 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
117
+ | [nous-hermes-llama2-13b.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 9.15 GB| 11.65 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
118
+ | [nous-hermes-llama2-13b.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 9.40 GB| 11.90 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
119
+ | [nous-hermes-llama2-13b.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q5_1.bin) | q5_1 | 5 | 9.76 GB| 12.26 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
120
+ | [nous-hermes-llama2-13b.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q6_K.bin) | q6_K | 6 | 10.83 GB| 13.33 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
121
+ | [nous-hermes-llama2-13b.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/Nous-Hermes-Llama2-GGML/blob/main/nous-hermes-llama2-13b.ggmlv3.q8_0.bin) | q8_0 | 8 | 13.83 GB| 16.33 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
122
 
123
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
124
 
125
  ## How to run in `llama.cpp`
126
 
127
+ Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
128
+
129
+ For compatibility with latest llama.cpp, please use GGUF files instead.
130
 
131
  ```
132
+ ./main -t 10 -ngl 32 -m nous-hermes-llama2-13b.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
133
  ```
134
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
135
 
136
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
137
 
138
+ Change `-c 2048` to the desired sequence length for this model. For example, `-c 4096` for a Llama 2 model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
139
+
140
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
141
 
142
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
143
+
144
  ## How to run in `text-generation-webui`
145
 
146
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
147
 
148
  <!-- footer start -->
149
+ <!-- 200823 -->
150
  ## Discord
151
 
152
  For further support, and discussions on these models and AI in general, join us at:
 
166
  * Patreon: https://patreon.com/TheBlokeAI
167
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
168
 
169
+ **Special thanks to**: Aemon Algiz.
170
 
171
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
172
 
173
 
174
  Thank you to all my generous patrons and donaters!
175
 
176
+ And thank you again to a16z for their generous grant.
177
+
178
  <!-- footer end -->
179
 
180
  # Original model card: Nous Research's Nous Hermes Llama 2 13B
 
318
  These benchmarks currently have us at #1 on ARC-c, ARC-e, Hellaswag, and OpenBookQA, and 2nd place on Winogrande, comparing to GPT4all's benchmarking list, supplanting Hermes 1 for the new top position.
319
 
320
  ## Resources for Applied Use Cases:
321
+ Check out LM Studio for a nice chatgpt style interface here: https://lmstudio.ai/
322
  For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord
323
  For an example of a roleplaying discord chatbot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot
324
 
 
327
 
328
  ## Model Usage
329
  The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions.
330
+
331
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)