TheBloke commited on
Commit
c9c63d2
1 Parent(s): d37b62d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -18
README.md CHANGED
@@ -52,7 +52,7 @@ This repo contains GGUF format model files for [Gryphe's MythoBoros 13B](https:/
52
  <!-- README_GGUF.md-about-gguf start -->
53
  ### About GGUF
54
 
55
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
56
 
57
  Here is an incomplate list of clients and libraries that are known to support GGUF:
58
 
@@ -95,7 +95,7 @@ Below is an instruction that describes a task. Write a response that appropriate
95
  <!-- compatibility_gguf start -->
96
  ## Compatibility
97
 
98
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
99
 
100
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
101
 
@@ -159,7 +159,7 @@ Then click Download.
159
  I recommend using the `huggingface-hub` Python library:
160
 
161
  ```shell
162
- pip3 install huggingface-hub>=0.17.1
163
  ```
164
 
165
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
@@ -188,25 +188,25 @@ pip3 install hf_transfer
188
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
189
 
190
  ```shell
191
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/MythoBoros-13B-GGUF mythoboros-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
192
  ```
193
 
194
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
195
  </details>
196
  <!-- README_GGUF.md-how-to-download end -->
197
 
198
  <!-- README_GGUF.md-how-to-run start -->
199
  ## Example `llama.cpp` command
200
 
201
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
202
 
203
  ```shell
204
- ./main -ngl 32 -m mythoboros-13b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
205
  ```
206
 
207
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
208
 
209
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
210
 
211
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
212
 
@@ -220,22 +220,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
220
 
221
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
222
 
223
- ### How to load this model from Python using ctransformers
224
 
225
  #### First install the package
226
 
227
- ```bash
 
 
228
  # Base ctransformers with no GPU acceleration
229
- pip install ctransformers>=0.2.24
230
  # Or with CUDA GPU acceleration
231
- pip install ctransformers[cuda]>=0.2.24
232
- # Or with ROCm GPU acceleration
233
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
234
- # Or with Metal GPU acceleration for macOS systems
235
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
236
  ```
237
 
238
- #### Simple example code to load one of these GGUF models
239
 
240
  ```python
241
  from ctransformers import AutoModelForCausalLM
@@ -248,7 +250,7 @@ print(llm("AI is going to"))
248
 
249
  ## How to use with LangChain
250
 
251
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
252
 
253
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
254
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
52
  <!-- README_GGUF.md-about-gguf start -->
53
  ### About GGUF
54
 
55
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
56
 
57
  Here is an incomplate list of clients and libraries that are known to support GGUF:
58
 
 
95
  <!-- compatibility_gguf start -->
96
  ## Compatibility
97
 
98
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
99
 
100
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
101
 
 
159
  I recommend using the `huggingface-hub` Python library:
160
 
161
  ```shell
162
+ pip3 install huggingface-hub
163
  ```
164
 
165
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
 
188
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
189
 
190
  ```shell
191
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/MythoBoros-13B-GGUF mythoboros-13b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
192
  ```
193
 
194
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
195
  </details>
196
  <!-- README_GGUF.md-how-to-download end -->
197
 
198
  <!-- README_GGUF.md-how-to-run start -->
199
  ## Example `llama.cpp` command
200
 
201
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
202
 
203
  ```shell
204
+ ./main -ngl 32 -m mythoboros-13b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
205
  ```
206
 
207
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
208
 
209
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
210
 
211
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
212
 
 
220
 
221
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
222
 
223
+ ### How to load this model in Python code, using ctransformers
224
 
225
  #### First install the package
226
 
227
+ Run one of the following commands, according to your system:
228
+
229
+ ```shell
230
  # Base ctransformers with no GPU acceleration
231
+ pip install ctransformers
232
  # Or with CUDA GPU acceleration
233
+ pip install ctransformers[cuda]
234
+ # Or with AMD ROCm GPU acceleration (Linux only)
235
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
236
+ # Or with Metal GPU acceleration for macOS systems only
237
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
238
  ```
239
 
240
+ #### Simple ctransformers example code
241
 
242
  ```python
243
  from ctransformers import AutoModelForCausalLM
 
250
 
251
  ## How to use with LangChain
252
 
253
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
254
 
255
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
256
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)