TheBloke commited on
Commit
30b0d1d
1 Parent(s): 5a9adb3

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +449 -0
README.md ADDED
@@ -0,0 +1,449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
3
+ inference: false
4
+ language:
5
+ - fr
6
+ - it
7
+ - de
8
+ - es
9
+ - en
10
+ license: apache-2.0
11
+ model_creator: Mistral AI_
12
+ model_name: Mixtral 8X7B Instruct v0.1
13
+ model_type: mixtral
14
+ prompt_template: '<s>[INST] {prompt} [/INST]
15
+
16
+ '
17
+ quantized_by: TheBloke
18
+ ---
19
+ <!-- markdownlint-disable MD041 -->
20
+
21
+ <!-- header start -->
22
+ <!-- 200823 -->
23
+ <div style="width: auto; margin-left: auto; margin-right: auto">
24
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
25
+ </div>
26
+ <div style="display: flex; justify-content: space-between; width: 100%;">
27
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
28
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
29
+ </div>
30
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
31
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
32
+ </div>
33
+ </div>
34
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
35
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
36
+ <!-- header end -->
37
+
38
+ # Mixtral 8X7B Instruct v0.1 - GGUF
39
+ - Model creator: [Mistral AI_](https://huggingface.co/mistralai)
40
+ - Original model: [Mixtral 8X7B Instruct v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
41
+
42
+ <!-- description start -->
43
+ ## Description
44
+
45
+ This repo contains GGUF format model files for [Mistral AI_'s Mixtral 8X7B Instruct v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1).
46
+
47
+ <!-- description end -->
48
+ <!-- README_GGUF.md-about-gguf start -->
49
+ ### About GGUF
50
+
51
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
52
+
53
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
54
+
55
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
56
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
57
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
58
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
59
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
60
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
61
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
62
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
63
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
64
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
65
+
66
+ <!-- README_GGUF.md-about-gguf end -->
67
+ <!-- repositories-available start -->
68
+ ## Repositories available
69
+
70
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF)
71
+ * [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1)
72
+ <!-- repositories-available end -->
73
+
74
+ <!-- prompt-template start -->
75
+ ## Prompt template: Mistral
76
+
77
+ ```
78
+ <s>[INST] {prompt} [/INST]
79
+
80
+ ```
81
+
82
+ <!-- prompt-template end -->
83
+
84
+
85
+ <!-- compatibility_gguf start -->
86
+ ## Compatibility
87
+
88
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
89
+
90
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
91
+
92
+ ## Explanation of quantisation methods
93
+
94
+ <details>
95
+ <summary>Click to see details</summary>
96
+
97
+ The new methods available are:
98
+
99
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
100
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
101
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
102
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
103
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
104
+
105
+ Refer to the Provided Files table below to see what files use which methods, and how.
106
+ </details>
107
+ <!-- compatibility_gguf end -->
108
+
109
+ <!-- README_GGUF.md-provided-files start -->
110
+ ## Provided files
111
+
112
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
113
+ | ---- | ---- | ---- | ---- | ---- | ----- |
114
+ | [mixtral-8x7b-instruct-v0.1.Q2_K.gguf](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/blob/main/mixtral-8x7b-instruct-v0.1.Q2_K.gguf) | Q2_K | 2 | 15.64 GB| 18.14 GB | smallest, significant quality loss - not recommended for most purposes |
115
+ | [mixtral-8x7b-instruct-v0.1.Q3_K_M.gguf](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/blob/main/mixtral-8x7b-instruct-v0.1.Q3_K_M.gguf) | Q3_K_M | 3 | 20.36 GB| 22.86 GB | very small, high quality loss |
116
+ | [mixtral-8x7b-instruct-v0.1.Q4_0.gguf](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/blob/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf) | Q4_0 | 4 | 26.44 GB| 28.94 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
117
+ | [mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/blob/main/mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf) | Q4_K_M | 4 | 26.44 GB| 28.94 GB | medium, balanced quality - recommended |
118
+ | [mixtral-8x7b-instruct-v0.1.Q5_0.gguf](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/blob/main/mixtral-8x7b-instruct-v0.1.Q5_0.gguf) | Q5_0 | 5 | 32.23 GB| 34.73 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
119
+ | [mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/blob/main/mixtral-8x7b-instruct-v0.1.Q5_K_M.gguf) | Q5_K_M | 5 | 32.23 GB| 34.73 GB | large, very low quality loss - recommended |
120
+ | [mixtral-8x7b-instruct-v0.1.Q6_K.gguf](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/blob/main/mixtral-8x7b-instruct-v0.1.Q6_K.gguf) | Q6_K | 6 | 38.38 GB| 40.88 GB | very large, extremely low quality loss |
121
+ | [mixtral-8x7b-instruct-v0.1.Q8_0.gguf](https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/blob/main/mixtral-8x7b-instruct-v0.1.Q8_0.gguf) | Q8_0 | 8 | 49.62 GB| 52.12 GB | very large, extremely low quality loss - not recommended |
122
+
123
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
124
+
125
+
126
+
127
+ <!-- README_GGUF.md-provided-files end -->
128
+
129
+ <!-- README_GGUF.md-how-to-download start -->
130
+ ## How to download GGUF files
131
+
132
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
133
+
134
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
135
+
136
+ * LM Studio
137
+ * LoLLMS Web UI
138
+ * Faraday.dev
139
+
140
+ ### In `text-generation-webui`
141
+
142
+ Under Download Model, you can enter the model repo: TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF and below it, a specific filename to download, such as: mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf.
143
+
144
+ Then click Download.
145
+
146
+ ### On the command line, including multiple files at once
147
+
148
+ I recommend using the `huggingface-hub` Python library:
149
+
150
+ ```shell
151
+ pip3 install huggingface-hub
152
+ ```
153
+
154
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
155
+
156
+ ```shell
157
+ huggingface-cli download TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
158
+ ```
159
+
160
+ <details>
161
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
162
+
163
+ You can also download multiple files at once with a pattern:
164
+
165
+ ```shell
166
+ huggingface-cli download TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
167
+ ```
168
+
169
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
170
+
171
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
172
+
173
+ ```shell
174
+ pip3 install hf_transfer
175
+ ```
176
+
177
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
178
+
179
+ ```shell
180
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
181
+ ```
182
+
183
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
184
+ </details>
185
+ <!-- README_GGUF.md-how-to-download end -->
186
+
187
+ <!-- README_GGUF.md-how-to-run start -->
188
+ ## Example `llama.cpp` command
189
+
190
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
191
+
192
+ ```shell
193
+ ./main -ngl 35 -m mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] {prompt} [/INST]"
194
+ ```
195
+
196
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
197
+
198
+ Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
199
+
200
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
201
+
202
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
203
+
204
+ ## How to run in `text-generation-webui`
205
+
206
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
207
+
208
+ ## How to run from Python code
209
+
210
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
211
+
212
+ ### How to load this model in Python code, using llama-cpp-python
213
+
214
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
215
+
216
+ #### First install the package
217
+
218
+ Run one of the following commands, according to your system:
219
+
220
+ ```shell
221
+ # Base ctransformers with no GPU acceleration
222
+ pip install llama-cpp-python
223
+ # With NVidia CUDA acceleration
224
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
225
+ # Or with OpenBLAS acceleration
226
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
227
+ # Or with CLBLast acceleration
228
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
229
+ # Or with AMD ROCm GPU acceleration (Linux only)
230
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
231
+ # Or with Metal GPU acceleration for macOS systems only
232
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
233
+
234
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
235
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
236
+ pip install llama-cpp-python
237
+ ```
238
+
239
+ #### Simple llama-cpp-python example code
240
+
241
+ ```python
242
+ from llama_cpp import Llama
243
+
244
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
245
+ llm = Llama(
246
+ model_path="./mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf", # Download the model file first
247
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
248
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
249
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
250
+ )
251
+
252
+ # Simple inference example
253
+ output = llm(
254
+ "<s>[INST] {prompt} [/INST]", # Prompt
255
+ max_tokens=512, # Generate up to 512 tokens
256
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
257
+ echo=True # Whether to echo the prompt
258
+ )
259
+
260
+ # Chat Completion API
261
+
262
+ llm = Llama(model_path="./mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
263
+ llm.create_chat_completion(
264
+ messages = [
265
+ {"role": "system", "content": "You are a story writing assistant."},
266
+ {
267
+ "role": "user",
268
+ "content": "Write a story about llamas."
269
+ }
270
+ ]
271
+ )
272
+ ```
273
+
274
+ ## How to use with LangChain
275
+
276
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
277
+
278
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
279
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
280
+
281
+ <!-- README_GGUF.md-how-to-run end -->
282
+
283
+ <!-- footer start -->
284
+ <!-- 200823 -->
285
+ ## Discord
286
+
287
+ For further support, and discussions on these models and AI in general, join us at:
288
+
289
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
290
+
291
+ ## Thanks, and how to contribute
292
+
293
+ Thanks to the [chirper.ai](https://chirper.ai) team!
294
+
295
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
296
+
297
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
298
+
299
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
300
+
301
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
302
+
303
+ * Patreon: https://patreon.com/TheBlokeAI
304
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
305
+
306
+ **Special thanks to**: Aemon Algiz.
307
+
308
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
309
+
310
+
311
+ Thank you to all my generous patrons and donaters!
312
+
313
+ And thank you again to a16z for their generous grant.
314
+
315
+ <!-- footer end -->
316
+
317
+ <!-- original-model-card start -->
318
+ # Original model card: Mistral AI_'s Mixtral 8X7B Instruct v0.1
319
+
320
+ # Model Card for Mixtral-8x7B
321
+ The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mixtral-8x7B outperforms Llama 2 70B on most benchmarks we tested.
322
+
323
+ For full details of this model please read our [release blog post](https://mistral.ai/news/mixtral-of-experts/).
324
+
325
+ ## Warning
326
+ This repo contains weights that are compatible with [vLLM](https://github.com/vllm-project/vllm) serving of the model as well as Hugging Face [transformers](https://github.com/huggingface/transformers) library. It is based on the original Mixtral [torrent release](magnet:?xt=urn:btih:5546272da9065eddeb6fcd7ffddeef5b75be79a7&dn=mixtral-8x7b-32kseqlen&tr=udp%3A%2F%http://2Fopentracker.i2p.rocks%3A6969%2Fannounce&tr=http%3A%2F%http://2Ftracker.openbittorrent.com%3A80%2Fannounce), but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.
327
+
328
+ ## Instruction format
329
+
330
+ This format must be strictly respected, otherwise the model will generate sub-optimal outputs.
331
+
332
+ The template used to build a prompt for the Instruct model is defined as follows:
333
+ ```
334
+ <s> [INST] Instruction [/INST] Model answer</s> [INST] Follow-up instruction [/INST]
335
+ ```
336
+ Note that `<s>` and `</s>` are special tokens for beginning of string (BOS) and end of string (EOS) while [INST] and [/INST] are regular strings.
337
+
338
+ As reference, here is the pseudo-code used to tokenize instructions during fine-tuning:
339
+ ```python
340
+ def tokenize(text):
341
+ return tok.encode(text, add_special_tokens=False)
342
+
343
+ [BOS_ID] +
344
+ tokenize("[INST]") + tokenize(USER_MESSAGE_1) + tokenize("[/INST]") +
345
+ tokenize(BOT_MESSAGE_1) + [EOS_ID] +
346
+
347
+ tokenize("[INST]") + tokenize(USER_MESSAGE_N) + tokenize("[/INST]") +
348
+ tokenize(BOT_MESSAGE_N) + [EOS_ID]
349
+ ```
350
+
351
+ In the pseudo-code above, note that the `tokenize` method should not add a BOS or EOS token automatically, but should add a prefix space.
352
+
353
+ ## Run the model
354
+
355
+ ```python
356
+ from transformers import AutoModelForCausalLM, AutoTokenizer
357
+
358
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
359
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
360
+
361
+ model = AutoModelForCausalLM.from_pretrained(model_id)
362
+
363
+ text = "Hello my name is"
364
+ inputs = tokenizer(text, return_tensors="pt")
365
+
366
+ outputs = model.generate(**inputs, max_new_tokens=20)
367
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
368
+ ```
369
+
370
+ By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:
371
+
372
+ ### In half-precision
373
+
374
+ Note `float16` precision only works on GPU devices
375
+
376
+ <details>
377
+ <summary> Click to expand </summary>
378
+
379
+ ```diff
380
+ + import torch
381
+ from transformers import AutoModelForCausalLM, AutoTokenizer
382
+
383
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
384
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
385
+
386
+ + model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0)
387
+
388
+ text = "Hello my name is"
389
+ + inputs = tokenizer(text, return_tensors="pt").to(0)
390
+
391
+ outputs = model.generate(**inputs, max_new_tokens=20)
392
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
393
+ ```
394
+ </details>
395
+
396
+ ### Lower precision using (8-bit & 4-bit) using `bitsandbytes`
397
+
398
+ <details>
399
+ <summary> Click to expand </summary>
400
+
401
+ ```diff
402
+ + import torch
403
+ from transformers import AutoModelForCausalLM, AutoTokenizer
404
+
405
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
406
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
407
+
408
+ + model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
409
+
410
+ text = "Hello my name is"
411
+ + inputs = tokenizer(text, return_tensors="pt").to(0)
412
+
413
+ outputs = model.generate(**inputs, max_new_tokens=20)
414
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
415
+ ```
416
+ </details>
417
+
418
+ ### Load the model with Flash Attention 2
419
+
420
+ <details>
421
+ <summary> Click to expand </summary>
422
+
423
+ ```diff
424
+ + import torch
425
+ from transformers import AutoModelForCausalLM, AutoTokenizer
426
+
427
+ model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
428
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
429
+
430
+ + model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True)
431
+
432
+ text = "Hello my name is"
433
+ + inputs = tokenizer(text, return_tensors="pt").to(0)
434
+
435
+ outputs = model.generate(**inputs, max_new_tokens=20)
436
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
437
+ ```
438
+ </details>
439
+
440
+ ## Limitations
441
+
442
+ The Mixtral-8x7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance.
443
+ It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
444
+ make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
445
+
446
+ # The Mistral AI Team
447
+ Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.
448
+
449
+ <!-- original-model-card end -->