TheBloke commited on
Commit
73da28e
1 Parent(s): b291a72

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -19
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  datasets:
3
  - PeanutJar/PeanutButter-Train
4
  inference: false
@@ -6,9 +7,20 @@ language:
6
  - en
7
  license: llama2
8
  model_creator: PeanutJar
9
- model_link: https://huggingface.co/PeanutJar/LLaMa-2-PeanutButter_v19_R8-7B
10
  model_name: Llama 2 PeanutButter v19 R8 7B
11
  model_type: llama
 
 
 
 
 
 
 
 
 
 
 
 
12
  quantized_by: TheBloke
13
  ---
14
 
@@ -33,23 +45,25 @@ quantized_by: TheBloke
33
  - Model creator: [PeanutJar](https://huggingface.co/PeanutJar)
34
  - Original model: [Llama 2 PeanutButter v19 R8 7B](https://huggingface.co/PeanutJar/LLaMa-2-PeanutButter_v19_R8-7B)
35
 
 
36
  ## Description
37
 
38
  This repo contains GGUF format model files for [PeanutJar's Llama 2 PeanutButter v19 R8 7B](https://huggingface.co/PeanutJar/LLaMa-2-PeanutButter_v19_R8-7B).
39
 
 
40
  <!-- README_GGUF.md-about-gguf start -->
41
  ### About GGUF
42
 
43
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
44
 
45
- The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
46
 
47
- Here are a list of clients and libraries that are known to support GGUF:
48
- * [llama.cpp](https://github.com/ggerganov/llama.cpp).
49
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions.
50
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with full GPU accel across multiple platforms and GPU architectures. Especially good for story telling.
51
- * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
52
  * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
 
53
  * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
54
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
55
  * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
@@ -58,6 +72,7 @@ Here are a list of clients and libraries that are known to support GGUF:
58
  <!-- repositories-available start -->
59
  ## Repositories available
60
 
 
61
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-PeanutButter_v19_R8-7B-GPTQ)
62
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-PeanutButter_v19_R8-7B-GGUF)
63
  * [PeanutJar's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/PeanutJar/LLaMa-2-PeanutButter_v19_R8-7B)
@@ -77,12 +92,14 @@ Below is an instruction that describes a task. Write a response that appropriate
77
  ```
78
 
79
  <!-- prompt-template end -->
 
 
80
  <!-- compatibility_gguf start -->
81
  ## Compatibility
82
 
83
- These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
84
 
85
- They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
86
 
87
  ## Explanation of quantisation methods
88
  <details>
@@ -123,21 +140,75 @@ Refer to the Provided Files table below to see what files use which methods, and
123
 
124
  <!-- README_GGUF.md-provided-files end -->
125
 
126
- <!-- README_GGUF.md-how-to-run start -->
127
- ## Example `llama.cpp` command
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
- Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
130
 
131
- For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
 
 
133
  ```
134
- ./main -t 10 -ngl 32 -m peanutbutter_v19_r8-7b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  ```
136
- Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
137
 
138
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
139
 
140
- Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
141
 
142
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
143
 
@@ -194,10 +265,12 @@ For further support, and discussions on these models and AI in general, join us
194
 
195
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
196
 
197
- ## Thanks, and how to contribute.
198
 
199
  Thanks to the [chirper.ai](https://chirper.ai) team!
200
 
 
 
201
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
202
 
203
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -209,7 +282,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
209
 
210
  **Special thanks to**: Aemon Algiz.
211
 
212
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
213
 
214
 
215
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/PeanutJar/LLaMa-2-PeanutButter_v19_R8-7B
3
  datasets:
4
  - PeanutJar/PeanutButter-Train
5
  inference: false
 
7
  - en
8
  license: llama2
9
  model_creator: PeanutJar
 
10
  model_name: Llama 2 PeanutButter v19 R8 7B
11
  model_type: llama
12
+ prompt_template: 'Below is an instruction that describes a task. Write a response
13
+ that appropriately completes the request.
14
+
15
+
16
+ ### Instruction:
17
+
18
+ {prompt}
19
+
20
+
21
+ ### Response:
22
+
23
+ '
24
  quantized_by: TheBloke
25
  ---
26
 
 
45
  - Model creator: [PeanutJar](https://huggingface.co/PeanutJar)
46
  - Original model: [Llama 2 PeanutButter v19 R8 7B](https://huggingface.co/PeanutJar/LLaMa-2-PeanutButter_v19_R8-7B)
47
 
48
+ <!-- description start -->
49
  ## Description
50
 
51
  This repo contains GGUF format model files for [PeanutJar's Llama 2 PeanutButter v19 R8 7B](https://huggingface.co/PeanutJar/LLaMa-2-PeanutButter_v19_R8-7B).
52
 
53
+ <!-- description end -->
54
  <!-- README_GGUF.md-about-gguf start -->
55
  ### About GGUF
56
 
57
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
58
 
59
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
60
 
61
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
62
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
63
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
64
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
 
65
  * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
66
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
67
  * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
68
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
69
  * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
 
72
  <!-- repositories-available start -->
73
  ## Repositories available
74
 
75
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Llama-2-PeanutButter_v19_R8-7B-AWQ)
76
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-PeanutButter_v19_R8-7B-GPTQ)
77
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-PeanutButter_v19_R8-7B-GGUF)
78
  * [PeanutJar's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/PeanutJar/LLaMa-2-PeanutButter_v19_R8-7B)
 
92
  ```
93
 
94
  <!-- prompt-template end -->
95
+
96
+
97
  <!-- compatibility_gguf start -->
98
  ## Compatibility
99
 
100
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
101
 
102
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
103
 
104
  ## Explanation of quantisation methods
105
  <details>
 
140
 
141
  <!-- README_GGUF.md-provided-files end -->
142
 
143
+ <!-- README_GGUF.md-how-to-download start -->
144
+ ## How to download GGUF files
145
+
146
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
147
+
148
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
149
+ - LM Studio
150
+ - LoLLMS Web UI
151
+ - Faraday.dev
152
+
153
+ ### In `text-generation-webui`
154
+
155
+ Under Download Model, you can enter the model repo: TheBloke/Llama-2-PeanutButter_v19_R8-7B-GGUF and below it, a specific filename to download, such as: peanutbutter_v19_r8-7b.q4_K_M.gguf.
156
+
157
+ Then click Download.
158
+
159
+ ### On the command line, including multiple files at once
160
+
161
+ I recommend using the `huggingface-hub` Python library:
162
+
163
+ ```shell
164
+ pip3 install huggingface-hub>=0.17.1
165
+ ```
166
 
167
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
168
 
169
+ ```shell
170
+ huggingface-cli download TheBloke/Llama-2-PeanutButter_v19_R8-7B-GGUF peanutbutter_v19_r8-7b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
171
+ ```
172
+
173
+ <details>
174
+ <summary>More advanced huggingface-cli download usage</summary>
175
+
176
+ You can also download multiple files at once with a pattern:
177
+
178
+ ```shell
179
+ huggingface-cli download TheBloke/Llama-2-PeanutButter_v19_R8-7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
180
+ ```
181
+
182
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
183
+
184
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
185
 
186
+ ```shell
187
+ pip3 install hf_transfer
188
  ```
189
+
190
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
191
+
192
+ ```shell
193
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Llama-2-PeanutButter_v19_R8-7B-GGUF peanutbutter_v19_r8-7b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
194
+ ```
195
+
196
+ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
197
+ </details>
198
+ <!-- README_GGUF.md-how-to-download end -->
199
+
200
+ <!-- README_GGUF.md-how-to-run start -->
201
+ ## Example `llama.cpp` command
202
+
203
+ Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
204
+
205
+ ```shell
206
+ ./main -ngl 32 -m peanutbutter_v19_r8-7b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
207
  ```
 
208
 
209
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
210
 
211
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
212
 
213
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
214
 
 
265
 
266
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
267
 
268
+ ## Thanks, and how to contribute
269
 
270
  Thanks to the [chirper.ai](https://chirper.ai) team!
271
 
272
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
273
+
274
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
275
 
276
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
282
 
283
  **Special thanks to**: Aemon Algiz.
284
 
285
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
286
 
287
 
288
  Thank you to all my generous patrons and donaters!