TheBloke commited on
Commit
88257f1
1 Parent(s): 91e53af

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -32
README.md CHANGED
@@ -1,12 +1,13 @@
1
  ---
 
2
  datasets:
3
  - jondurbin/airoboros-2.1
4
  inference: false
5
  license: llama2
6
  model_creator: bhenrym14
7
- model_link: https://huggingface.co/bhenrym14/airoboros-l2-13b-2.1-YaRN-64k
8
  model_name: Airoboros L2 13B 2.1 YaRN 64K
9
  model_type: llama
 
10
  quantized_by: TheBloke
11
  ---
12
 
@@ -31,23 +32,25 @@ quantized_by: TheBloke
31
  - Model creator: [bhenrym14](https://huggingface.co/bhenrym14)
32
  - Original model: [Airoboros L2 13B 2.1 YaRN 64K](https://huggingface.co/bhenrym14/airoboros-l2-13b-2.1-YaRN-64k)
33
 
 
34
  ## Description
35
 
36
  This repo contains GGUF format model files for [bhenrym14's Airoboros L2 13B 2.1 YaRN 64K](https://huggingface.co/bhenrym14/airoboros-l2-13b-2.1-YaRN-64k).
37
 
 
38
  <!-- README_GGUF.md-about-gguf start -->
39
  ### About GGUF
40
 
41
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
42
 
43
- The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.
44
 
45
- Here are a list of clients and libraries that are known to support GGUF:
46
- * [llama.cpp](https://github.com/ggerganov/llama.cpp).
47
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions.
48
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with full GPU accel across multiple platforms and GPU architectures. Especially good for story telling.
49
- * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
50
  * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
 
51
  * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
52
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
53
  * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
@@ -56,6 +59,7 @@ Here are a list of clients and libraries that are known to support GGUF:
56
  <!-- repositories-available start -->
57
  ## Repositories available
58
 
 
59
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GPTQ)
60
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF)
61
  * [bhenrym14's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/bhenrym14/airoboros-l2-13b-2.1-YaRN-64k)
@@ -72,12 +76,14 @@ ASSISTANT:
72
  ```
73
 
74
  <!-- prompt-template end -->
 
 
75
  <!-- compatibility_gguf start -->
76
  ## Compatibility
77
 
78
- These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)
79
 
80
- They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.
81
 
82
  ## Explanation of quantisation methods
83
  <details>
@@ -99,18 +105,18 @@ Refer to the Provided Files table below to see what files use which methods, and
99
 
100
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
101
  | ---- | ---- | ---- | ---- | ---- | ----- |
102
- | [airoboros-l2-13b-2.1-yarn-64k.Q2_K.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
103
- | [airoboros-l2-13b-2.1-yarn-64k.Q3_K_S.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
104
- | [airoboros-l2-13b-2.1-yarn-64k.Q3_K_M.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
105
- | [airoboros-l2-13b-2.1-yarn-64k.Q3_K_L.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
106
- | [airoboros-l2-13b-2.1-yarn-64k.Q4_0.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
107
- | [airoboros-l2-13b-2.1-yarn-64k.Q4_K_S.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
108
- | [airoboros-l2-13b-2.1-yarn-64k.Q4_K_M.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
109
- | [airoboros-l2-13b-2.1-yarn-64k.Q5_0.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
110
- | [airoboros-l2-13b-2.1-yarn-64k.Q5_K_S.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
111
- | [airoboros-l2-13b-2.1-yarn-64k.Q5_K_M.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
112
- | [airoboros-l2-13b-2.1-yarn-64k.Q6_K.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
113
- | [airoboros-l2-13b-2.1-yarn-64k.Q8_0.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
114
 
115
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
116
 
@@ -118,21 +124,75 @@ Refer to the Provided Files table below to see what files use which methods, and
118
 
119
  <!-- README_GGUF.md-provided-files end -->
120
 
121
- <!-- README_GGUF.md-how-to-run start -->
122
- ## Example `llama.cpp` command
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
- Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.
125
 
126
- For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.
127
 
 
 
128
  ```
129
- ./main -t 10 -ngl 32 -m airoboros-l2-13b-2.1-yarn-64k.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat.\nUSER: {prompt}\nASSISTANT:"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  ```
131
- Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.
132
 
133
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
134
 
135
- Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
136
 
137
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
138
 
@@ -167,7 +227,7 @@ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
167
  from ctransformers import AutoModelForCausalLM
168
 
169
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
170
- llm = AutoModelForCausalLM.from_pretrained("TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF", model_file="airoboros-l2-13b-2.1-yarn-64k.q4_K_M.gguf", model_type="llama", gpu_layers=50)
171
 
172
  print(llm("AI is going to"))
173
  ```
@@ -189,10 +249,12 @@ For further support, and discussions on these models and AI in general, join us
189
 
190
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
191
 
192
- ## Thanks, and how to contribute.
193
 
194
  Thanks to the [chirper.ai](https://chirper.ai) team!
195
 
 
 
196
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
197
 
198
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -204,7 +266,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
204
 
205
  **Special thanks to**: Aemon Algiz.
206
 
207
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
208
 
209
 
210
  Thank you to all my generous patrons and donaters!
@@ -219,6 +281,8 @@ And thank you again to a16z for their generous grant.
219
 
220
  # Extended Context (via YaRN) Finetune of Llama-2-13b with airoboros-2.1 (fp16)
221
 
 
 
222
 
223
  ## Overview
224
 
 
1
  ---
2
+ base_model: https://huggingface.co/bhenrym14/airoboros-l2-13b-2.1-YaRN-64k
3
  datasets:
4
  - jondurbin/airoboros-2.1
5
  inference: false
6
  license: llama2
7
  model_creator: bhenrym14
 
8
  model_name: Airoboros L2 13B 2.1 YaRN 64K
9
  model_type: llama
10
+ prompt_template: "A chat.\nUSER: {prompt}\nASSISTANT: \n"
11
  quantized_by: TheBloke
12
  ---
13
 
 
32
  - Model creator: [bhenrym14](https://huggingface.co/bhenrym14)
33
  - Original model: [Airoboros L2 13B 2.1 YaRN 64K](https://huggingface.co/bhenrym14/airoboros-l2-13b-2.1-YaRN-64k)
34
 
35
+ <!-- description start -->
36
  ## Description
37
 
38
  This repo contains GGUF format model files for [bhenrym14's Airoboros L2 13B 2.1 YaRN 64K](https://huggingface.co/bhenrym14/airoboros-l2-13b-2.1-YaRN-64k).
39
 
40
+ <!-- description end -->
41
  <!-- README_GGUF.md-about-gguf start -->
42
  ### About GGUF
43
 
44
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
45
 
46
+ Here is an incomplate list of clients and libraries that are known to support GGUF:
47
 
48
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
49
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
50
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
51
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration.
 
52
  * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
53
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
54
  * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
55
  * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
56
  * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
 
59
  <!-- repositories-available start -->
60
  ## Repositories available
61
 
62
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-AWQ)
63
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GPTQ)
64
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF)
65
  * [bhenrym14's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/bhenrym14/airoboros-l2-13b-2.1-YaRN-64k)
 
76
  ```
77
 
78
  <!-- prompt-template end -->
79
+
80
+
81
  <!-- compatibility_gguf start -->
82
  ## Compatibility
83
 
84
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
85
 
86
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
87
 
88
  ## Explanation of quantisation methods
89
  <details>
 
105
 
106
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
107
  | ---- | ---- | ---- | ---- | ---- | ----- |
108
+ | [airoboros-l2-13b-2.1-yarn-64k.Q2_K.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
109
+ | [airoboros-l2-13b-2.1-yarn-64k.Q3_K_S.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
110
+ | [airoboros-l2-13b-2.1-yarn-64k.Q3_K_M.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
111
+ | [airoboros-l2-13b-2.1-yarn-64k.Q3_K_L.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
112
+ | [airoboros-l2-13b-2.1-yarn-64k.Q4_0.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
113
+ | [airoboros-l2-13b-2.1-yarn-64k.Q4_K_S.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
114
+ | [airoboros-l2-13b-2.1-yarn-64k.Q4_K_M.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
115
+ | [airoboros-l2-13b-2.1-yarn-64k.Q5_0.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
116
+ | [airoboros-l2-13b-2.1-yarn-64k.Q5_K_S.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
117
+ | [airoboros-l2-13b-2.1-yarn-64k.Q5_K_M.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
118
+ | [airoboros-l2-13b-2.1-yarn-64k.Q6_K.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
119
+ | [airoboros-l2-13b-2.1-yarn-64k.Q8_0.gguf](https://huggingface.co/TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF/blob/main/airoboros-l2-13b-2.1-yarn-64k.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
120
 
121
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
122
 
 
124
 
125
  <!-- README_GGUF.md-provided-files end -->
126
 
127
+ <!-- README_GGUF.md-how-to-download start -->
128
+ ## How to download GGUF files
129
+
130
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
131
+
132
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
133
+ - LM Studio
134
+ - LoLLMS Web UI
135
+ - Faraday.dev
136
+
137
+ ### In `text-generation-webui`
138
+
139
+ Under Download Model, you can enter the model repo: TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF and below it, a specific filename to download, such as: airoboros-l2-13b-2.1-yarn-64k.q4_K_M.gguf.
140
+
141
+ Then click Download.
142
 
143
+ ### On the command line, including multiple files at once
144
 
145
+ I recommend using the `huggingface-hub` Python library:
146
 
147
+ ```shell
148
+ pip3 install huggingface-hub>=0.17.1
149
  ```
150
+
151
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
152
+
153
+ ```shell
154
+ huggingface-cli download TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF airoboros-l2-13b-2.1-yarn-64k.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
155
+ ```
156
+
157
+ <details>
158
+ <summary>More advanced huggingface-cli download usage</summary>
159
+
160
+ You can also download multiple files at once with a pattern:
161
+
162
+ ```shell
163
+ huggingface-cli download TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
164
+ ```
165
+
166
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
167
+
168
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
169
+
170
+ ```shell
171
+ pip3 install hf_transfer
172
+ ```
173
+
174
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
175
+
176
+ ```shell
177
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF airoboros-l2-13b-2.1-yarn-64k.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
178
+ ```
179
+
180
+ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
181
+ </details>
182
+ <!-- README_GGUF.md-how-to-download end -->
183
+
184
+ <!-- README_GGUF.md-how-to-run start -->
185
+ ## Example `llama.cpp` command
186
+
187
+ Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
188
+
189
+ ```shell
190
+ ./main -ngl 32 -m airoboros-l2-13b-2.1-yarn-64k.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat.\nUSER: {prompt}\nASSISTANT:"
191
  ```
 
192
 
193
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
194
 
195
+ Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
196
 
197
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
198
 
 
227
  from ctransformers import AutoModelForCausalLM
228
 
229
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
230
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/Airoboros-L2-13B-2_1-YaRN-64K-GGUF", model_file="airoboros-l2-13b-2.1-yarn-64k.q4_K_M.gguf", model_type="llama", gpu_layers=50)
231
 
232
  print(llm("AI is going to"))
233
  ```
 
249
 
250
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
251
 
252
+ ## Thanks, and how to contribute
253
 
254
  Thanks to the [chirper.ai](https://chirper.ai) team!
255
 
256
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
257
+
258
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
259
 
260
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
266
 
267
  **Special thanks to**: Aemon Algiz.
268
 
269
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
270
 
271
 
272
  Thank you to all my generous patrons and donaters!
 
281
 
282
  # Extended Context (via YaRN) Finetune of Llama-2-13b with airoboros-2.1 (fp16)
283
 
284
+ [TheBloke](https://huggingface.co/TheBloke) has kindly quantized this model to [GGUF](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GGUF) and [GPTQ](https://huggingface.co/TheBloke/Airoboros-L2-13B-2.1-YaRN-64K-GPTQ).
285
+
286
 
287
  ## Overview
288