TheBloke commited on
Commit
60534b9
1 Parent(s): 014b4f2

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -18
README.md CHANGED
@@ -62,7 +62,7 @@ This repo contains GGUF format model files for [digitous' 13B HyperMantis](https
62
  <!-- README_GGUF.md-about-gguf start -->
63
  ### About GGUF
64
 
65
- GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible.
66
 
67
  Here is an incomplate list of clients and libraries that are known to support GGUF:
68
 
@@ -105,7 +105,7 @@ Below is an instruction that describes a task. Write a response that appropriate
105
  <!-- compatibility_gguf start -->
106
  ## Compatibility
107
 
108
- These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
109
 
110
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
111
 
@@ -169,7 +169,7 @@ Then click Download.
169
  I recommend using the `huggingface-hub` Python library:
170
 
171
  ```shell
172
- pip3 install huggingface-hub>=0.17.1
173
  ```
174
 
175
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
@@ -198,25 +198,25 @@ pip3 install hf_transfer
198
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
199
 
200
  ```shell
201
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/13B-HyperMantis-GGUF 13B-HyperMantis.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
202
  ```
203
 
204
- Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
205
  </details>
206
  <!-- README_GGUF.md-how-to-download end -->
207
 
208
  <!-- README_GGUF.md-how-to-run start -->
209
  ## Example `llama.cpp` command
210
 
211
- Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
212
 
213
  ```shell
214
- ./main -ngl 32 -m 13B-HyperMantis.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
215
  ```
216
 
217
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
218
 
219
- Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
220
 
221
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
222
 
@@ -230,22 +230,24 @@ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://git
230
 
231
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
232
 
233
- ### How to load this model from Python using ctransformers
234
 
235
  #### First install the package
236
 
237
- ```bash
 
 
238
  # Base ctransformers with no GPU acceleration
239
- pip install ctransformers>=0.2.24
240
  # Or with CUDA GPU acceleration
241
- pip install ctransformers[cuda]>=0.2.24
242
- # Or with ROCm GPU acceleration
243
- CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
244
- # Or with Metal GPU acceleration for macOS systems
245
- CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
246
  ```
247
 
248
- #### Simple example code to load one of these GGUF models
249
 
250
  ```python
251
  from ctransformers import AutoModelForCausalLM
@@ -258,7 +260,7 @@ print(llm("AI is going to"))
258
 
259
  ## How to use with LangChain
260
 
261
- Here's guides on using llama-cpp-python or ctransformers with LangChain:
262
 
263
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
264
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
 
62
  <!-- README_GGUF.md-about-gguf start -->
63
  ### About GGUF
64
 
65
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
66
 
67
  Here is an incomplate list of clients and libraries that are known to support GGUF:
68
 
 
105
  <!-- compatibility_gguf start -->
106
  ## Compatibility
107
 
108
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
109
 
110
  They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
111
 
 
169
  I recommend using the `huggingface-hub` Python library:
170
 
171
  ```shell
172
+ pip3 install huggingface-hub
173
  ```
174
 
175
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
 
198
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
199
 
200
  ```shell
201
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/13B-HyperMantis-GGUF 13B-HyperMantis.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
202
  ```
203
 
204
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
205
  </details>
206
  <!-- README_GGUF.md-how-to-download end -->
207
 
208
  <!-- README_GGUF.md-how-to-run start -->
209
  ## Example `llama.cpp` command
210
 
211
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
212
 
213
  ```shell
214
+ ./main -ngl 32 -m 13B-HyperMantis.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
215
  ```
216
 
217
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
218
 
219
+ Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
220
 
221
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
222
 
 
230
 
231
  You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.
232
 
233
+ ### How to load this model in Python code, using ctransformers
234
 
235
  #### First install the package
236
 
237
+ Run one of the following commands, according to your system:
238
+
239
+ ```shell
240
  # Base ctransformers with no GPU acceleration
241
+ pip install ctransformers
242
  # Or with CUDA GPU acceleration
243
+ pip install ctransformers[cuda]
244
+ # Or with AMD ROCm GPU acceleration (Linux only)
245
+ CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers
246
+ # Or with Metal GPU acceleration for macOS systems only
247
+ CT_METAL=1 pip install ctransformers --no-binary ctransformers
248
  ```
249
 
250
+ #### Simple ctransformers example code
251
 
252
  ```python
253
  from ctransformers import AutoModelForCausalLM
 
260
 
261
  ## How to use with LangChain
262
 
263
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
264
 
265
  * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
266
  * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)