|  | import os | 
					
						
						|  | import sys | 
					
						
						|  | import gc | 
					
						
						|  | import traceback | 
					
						
						|  | import logging | 
					
						
						|  |  | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  | from functools import lru_cache | 
					
						
						|  | from time import time as ttime | 
					
						
						|  | from torch import Tensor | 
					
						
						|  | import faiss | 
					
						
						|  | import librosa | 
					
						
						|  | import numpy as np | 
					
						
						|  | import parselmouth | 
					
						
						|  | import pyworld | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from scipy import signal | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  |  | 
					
						
						|  | import random | 
					
						
						|  | now_dir = os.getcwd() | 
					
						
						|  | sys.path.append(now_dir) | 
					
						
						|  | import re | 
					
						
						|  | from functools import partial | 
					
						
						|  | bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000) | 
					
						
						|  |  | 
					
						
						|  | input_audio_path2wav = {} | 
					
						
						|  | import torchcrepe | 
					
						
						|  | from torchfcpe import spawn_bundled_infer_model | 
					
						
						|  | import torch | 
					
						
						|  | from lib.infer_libs.rmvpe import RMVPE | 
					
						
						|  | from lib.infer_libs.fcpe import FCPE | 
					
						
						|  |  | 
					
						
						|  | @lru_cache | 
					
						
						|  | def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period): | 
					
						
						|  | audio = input_audio_path2wav[input_audio_path] | 
					
						
						|  | f0, t = pyworld.harvest( | 
					
						
						|  | audio, | 
					
						
						|  | fs=fs, | 
					
						
						|  | f0_ceil=f0max, | 
					
						
						|  | f0_floor=f0min, | 
					
						
						|  | frame_period=frame_period, | 
					
						
						|  | ) | 
					
						
						|  | f0 = pyworld.stonemask(audio, f0, t, fs) | 
					
						
						|  | return f0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def change_rms(data1, sr1, data2, sr2, rate): | 
					
						
						|  |  | 
					
						
						|  | rms1 = librosa.feature.rms( | 
					
						
						|  | y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2 | 
					
						
						|  | ) | 
					
						
						|  | rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2) | 
					
						
						|  | rms1 = torch.from_numpy(rms1) | 
					
						
						|  | rms1 = F.interpolate( | 
					
						
						|  | rms1.unsqueeze(0), size=data2.shape[0], mode="linear" | 
					
						
						|  | ).squeeze() | 
					
						
						|  | rms2 = torch.from_numpy(rms2) | 
					
						
						|  | rms2 = F.interpolate( | 
					
						
						|  | rms2.unsqueeze(0), size=data2.shape[0], mode="linear" | 
					
						
						|  | ).squeeze() | 
					
						
						|  | rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6) | 
					
						
						|  | data2 *= ( | 
					
						
						|  | torch.pow(rms1, torch.tensor(1 - rate)) | 
					
						
						|  | * torch.pow(rms2, torch.tensor(rate - 1)) | 
					
						
						|  | ).numpy() | 
					
						
						|  | return data2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Pipeline(object): | 
					
						
						|  | def __init__(self, tgt_sr, config): | 
					
						
						|  | self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = ( | 
					
						
						|  | config.x_pad, | 
					
						
						|  | config.x_query, | 
					
						
						|  | config.x_center, | 
					
						
						|  | config.x_max, | 
					
						
						|  | config.is_half, | 
					
						
						|  | ) | 
					
						
						|  | self.sr = 16000 | 
					
						
						|  | self.window = 160 | 
					
						
						|  | self.t_pad = self.sr * self.x_pad | 
					
						
						|  | self.t_pad_tgt = tgt_sr * self.x_pad | 
					
						
						|  | self.t_pad2 = self.t_pad * 2 | 
					
						
						|  | self.t_query = self.sr * self.x_query | 
					
						
						|  | self.t_center = self.sr * self.x_center | 
					
						
						|  | self.t_max = self.sr * self.x_max | 
					
						
						|  | self.device = config.device | 
					
						
						|  | self.model_rmvpe = RMVPE(os.environ["rmvpe_model_path"], is_half=self.is_half, device=self.device) | 
					
						
						|  |  | 
					
						
						|  | self.note_dict = [ | 
					
						
						|  | 65.41, 69.30, 73.42, 77.78, 82.41, 87.31, | 
					
						
						|  | 92.50, 98.00, 103.83, 110.00, 116.54, 123.47, | 
					
						
						|  | 130.81, 138.59, 146.83, 155.56, 164.81, 174.61, | 
					
						
						|  | 185.00, 196.00, 207.65, 220.00, 233.08, 246.94, | 
					
						
						|  | 261.63, 277.18, 293.66, 311.13, 329.63, 349.23, | 
					
						
						|  | 369.99, 392.00, 415.30, 440.00, 466.16, 493.88, | 
					
						
						|  | 523.25, 554.37, 587.33, 622.25, 659.25, 698.46, | 
					
						
						|  | 739.99, 783.99, 830.61, 880.00, 932.33, 987.77, | 
					
						
						|  | 1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91, | 
					
						
						|  | 1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53, | 
					
						
						|  | 2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83, | 
					
						
						|  | 2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07 | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_optimal_torch_device(self, index: int = 0) -> torch.device: | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | return torch.device( | 
					
						
						|  | f"cuda:{index % torch.cuda.device_count()}" | 
					
						
						|  | ) | 
					
						
						|  | elif torch.backends.mps.is_available(): | 
					
						
						|  | return torch.device("mps") | 
					
						
						|  | return torch.device("cpu") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_f0_crepe_computation( | 
					
						
						|  | self, | 
					
						
						|  | x, | 
					
						
						|  | f0_min, | 
					
						
						|  | f0_max, | 
					
						
						|  | p_len, | 
					
						
						|  | *args, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | x = x.astype( | 
					
						
						|  | np.float32 | 
					
						
						|  | ) | 
					
						
						|  | x /= np.quantile(np.abs(x), 0.999) | 
					
						
						|  | torch_device = self.get_optimal_torch_device() | 
					
						
						|  | audio = torch.from_numpy(x).to(torch_device, copy=True) | 
					
						
						|  | audio = torch.unsqueeze(audio, dim=0) | 
					
						
						|  | if audio.ndim == 2 and audio.shape[0] > 1: | 
					
						
						|  | audio = torch.mean(audio, dim=0, keepdim=True).detach() | 
					
						
						|  | audio = audio.detach() | 
					
						
						|  | hop_length = kwargs.get('crepe_hop_length', 160) | 
					
						
						|  | model = kwargs.get('model', 'full') | 
					
						
						|  | print("Initiating prediction with a crepe_hop_length of: " + str(hop_length)) | 
					
						
						|  | pitch: Tensor = torchcrepe.predict( | 
					
						
						|  | audio, | 
					
						
						|  | self.sr, | 
					
						
						|  | hop_length, | 
					
						
						|  | f0_min, | 
					
						
						|  | f0_max, | 
					
						
						|  | model, | 
					
						
						|  | batch_size=hop_length * 2, | 
					
						
						|  | device=torch_device, | 
					
						
						|  | pad=True, | 
					
						
						|  | ) | 
					
						
						|  | p_len = p_len or x.shape[0] // hop_length | 
					
						
						|  |  | 
					
						
						|  | source = np.array(pitch.squeeze(0).cpu().float().numpy()) | 
					
						
						|  | source[source < 0.001] = np.nan | 
					
						
						|  | target = np.interp( | 
					
						
						|  | np.arange(0, len(source) * p_len, len(source)) / p_len, | 
					
						
						|  | np.arange(0, len(source)), | 
					
						
						|  | source, | 
					
						
						|  | ) | 
					
						
						|  | f0 = np.nan_to_num(target) | 
					
						
						|  | return f0 | 
					
						
						|  |  | 
					
						
						|  | def get_f0_official_crepe_computation( | 
					
						
						|  | self, | 
					
						
						|  | x, | 
					
						
						|  | f0_min, | 
					
						
						|  | f0_max, | 
					
						
						|  | *args, | 
					
						
						|  | **kwargs | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | batch_size = 512 | 
					
						
						|  |  | 
					
						
						|  | audio = torch.tensor(np.copy(x))[None].float() | 
					
						
						|  | model = kwargs.get('model', 'full') | 
					
						
						|  | f0, pd = torchcrepe.predict( | 
					
						
						|  | audio, | 
					
						
						|  | self.sr, | 
					
						
						|  | self.window, | 
					
						
						|  | f0_min, | 
					
						
						|  | f0_max, | 
					
						
						|  | model, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | device=self.device, | 
					
						
						|  | return_periodicity=True, | 
					
						
						|  | ) | 
					
						
						|  | pd = torchcrepe.filter.median(pd, 3) | 
					
						
						|  | f0 = torchcrepe.filter.mean(f0, 3) | 
					
						
						|  | f0[pd < 0.1] = 0 | 
					
						
						|  | f0 = f0[0].cpu().numpy() | 
					
						
						|  | return f0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_f0_pyin_computation(self, x, f0_min, f0_max): | 
					
						
						|  | y, sr = librosa.load(x, sr=self.sr, mono=True) | 
					
						
						|  | f0, _, _ = librosa.pyin(y, fmin=f0_min, fmax=f0_max, sr=self.sr) | 
					
						
						|  | f0 = f0[1:] | 
					
						
						|  | return f0 | 
					
						
						|  |  | 
					
						
						|  | def get_rmvpe(self, x, *args, **kwargs): | 
					
						
						|  | if not hasattr(self, "model_rmvpe"): | 
					
						
						|  | from lib.infer.infer_libs.rmvpe import RMVPE | 
					
						
						|  |  | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Loading rmvpe model, {os.environ['rmvpe_model_path']}" | 
					
						
						|  | ) | 
					
						
						|  | self.model_rmvpe = RMVPE( | 
					
						
						|  | os.environ["rmvpe_model_path"], | 
					
						
						|  | is_half=self.is_half, | 
					
						
						|  | device=self.device, | 
					
						
						|  | ) | 
					
						
						|  | f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) | 
					
						
						|  |  | 
					
						
						|  | if "privateuseone" in str(self.device): | 
					
						
						|  | del self.model_rmvpe.model | 
					
						
						|  | del self.model_rmvpe | 
					
						
						|  | logger.info("Cleaning ortruntime memory") | 
					
						
						|  |  | 
					
						
						|  | return f0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs): | 
					
						
						|  | if not hasattr(self, "model_rmvpe"): | 
					
						
						|  | from lib.infer.infer_libs.rmvpe import RMVPE | 
					
						
						|  |  | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Loading rmvpe model, {os.environ['rmvpe_model_path']}" | 
					
						
						|  | ) | 
					
						
						|  | self.model_rmvpe = RMVPE( | 
					
						
						|  | os.environ["rmvpe_model_path"], | 
					
						
						|  | is_half=self.is_half, | 
					
						
						|  | device=self.device, | 
					
						
						|  | ) | 
					
						
						|  | f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max) | 
					
						
						|  | if "privateuseone" in str(self.device): | 
					
						
						|  | del self.model_rmvpe.model | 
					
						
						|  | del self.model_rmvpe | 
					
						
						|  | logger.info("Cleaning ortruntime memory") | 
					
						
						|  |  | 
					
						
						|  | return f0 | 
					
						
						|  |  | 
					
						
						|  | def get_fcpe(self, x, f0_min, f0_max, p_len, *args, **kwargs): | 
					
						
						|  | self.model_fcpe = FCPE(os.environ["fcpe_model_path"], f0_min=f0_min, f0_max=f0_max, dtype=torch.float32, device=self.device, sampling_rate=self.sr, threshold=0.03) | 
					
						
						|  | f0 = self.model_fcpe.compute_f0(x, p_len=p_len) | 
					
						
						|  | del self.model_fcpe | 
					
						
						|  | gc.collect() | 
					
						
						|  | return f0 | 
					
						
						|  |  | 
					
						
						|  | def get_torchfcpe(self, x, sr, f0_min, f0_max, p_len, *args, **kwargs): | 
					
						
						|  | self.model_torchfcpe = spawn_bundled_infer_model(device=self.device) | 
					
						
						|  | f0 = self.model_torchfcpe.infer( | 
					
						
						|  | torch.from_numpy(x).float().unsqueeze(0).unsqueeze(-1).to(self.device), | 
					
						
						|  | sr=sr, | 
					
						
						|  | decoder_mode="local_argmax", | 
					
						
						|  | threshold=0.006, | 
					
						
						|  | f0_min=f0_min, | 
					
						
						|  | f0_max=f0_max, | 
					
						
						|  | output_interp_target_length=p_len | 
					
						
						|  | ) | 
					
						
						|  | return f0.squeeze().cpu().numpy() | 
					
						
						|  |  | 
					
						
						|  | def autotune_f0(self, f0): | 
					
						
						|  | autotuned_f0 = [] | 
					
						
						|  | for freq in f0: | 
					
						
						|  | closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)] | 
					
						
						|  | autotuned_f0.append(random.choice(closest_notes)) | 
					
						
						|  | return np.array(autotuned_f0, np.float64) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_f0_hybrid_computation( | 
					
						
						|  | self, | 
					
						
						|  | methods_str, | 
					
						
						|  | input_audio_path, | 
					
						
						|  | x, | 
					
						
						|  | f0_min, | 
					
						
						|  | f0_max, | 
					
						
						|  | p_len, | 
					
						
						|  | filter_radius, | 
					
						
						|  | crepe_hop_length, | 
					
						
						|  | time_step, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | methods_str = re.search('hybrid\[(.+)\]', methods_str) | 
					
						
						|  | if methods_str: | 
					
						
						|  | methods = [method.strip() for method in methods_str.group(1).split('+')] | 
					
						
						|  | f0_computation_stack = [] | 
					
						
						|  |  | 
					
						
						|  | print("Calculating f0 pitch estimations for methods: %s" % str(methods)) | 
					
						
						|  | x = x.astype(np.float32) | 
					
						
						|  | x /= np.quantile(np.abs(x), 0.999) | 
					
						
						|  |  | 
					
						
						|  | for method in methods: | 
					
						
						|  | f0 = None | 
					
						
						|  | if method == "pm": | 
					
						
						|  | f0 = ( | 
					
						
						|  | parselmouth.Sound(x, self.sr) | 
					
						
						|  | .to_pitch_ac( | 
					
						
						|  | time_step=time_step / 1000, | 
					
						
						|  | voicing_threshold=0.6, | 
					
						
						|  | pitch_floor=f0_min, | 
					
						
						|  | pitch_ceiling=f0_max, | 
					
						
						|  | ) | 
					
						
						|  | .selected_array["frequency"] | 
					
						
						|  | ) | 
					
						
						|  | pad_size = (p_len - len(f0) + 1) // 2 | 
					
						
						|  | if pad_size > 0 or p_len - len(f0) - pad_size > 0: | 
					
						
						|  | f0 = np.pad( | 
					
						
						|  | f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" | 
					
						
						|  | ) | 
					
						
						|  | elif method == "crepe": | 
					
						
						|  | f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="full") | 
					
						
						|  | f0 = f0[1:] | 
					
						
						|  | elif method == "crepe-tiny": | 
					
						
						|  | f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny") | 
					
						
						|  | f0 = f0[1:] | 
					
						
						|  | elif method == "mangio-crepe": | 
					
						
						|  | f0 = self.get_f0_crepe_computation( | 
					
						
						|  | x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length | 
					
						
						|  | ) | 
					
						
						|  | elif method == "mangio-crepe-tiny": | 
					
						
						|  | f0 = self.get_f0_crepe_computation( | 
					
						
						|  | x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny" | 
					
						
						|  | ) | 
					
						
						|  | elif method == "harvest": | 
					
						
						|  | input_audio_path2wav[input_audio_path] = x.astype(np.double) | 
					
						
						|  | f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10) | 
					
						
						|  | if filter_radius > 2: | 
					
						
						|  | f0 = signal.medfilt(f0, 3) | 
					
						
						|  | elif method == "dio": | 
					
						
						|  | f0, t = pyworld.dio( | 
					
						
						|  | x.astype(np.double), | 
					
						
						|  | fs=self.sr, | 
					
						
						|  | f0_ceil=f0_max, | 
					
						
						|  | f0_floor=f0_min, | 
					
						
						|  | frame_period=10, | 
					
						
						|  | ) | 
					
						
						|  | f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) | 
					
						
						|  | f0 = signal.medfilt(f0, 3) | 
					
						
						|  | f0 = f0[1:] | 
					
						
						|  | elif method == "rmvpe": | 
					
						
						|  | f0 = self.get_rmvpe(x) | 
					
						
						|  | f0 = f0[1:] | 
					
						
						|  | elif method == "fcpe_legacy": | 
					
						
						|  | f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len) | 
					
						
						|  | elif method == "fcpe": | 
					
						
						|  | f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len) | 
					
						
						|  | elif method == "pyin": | 
					
						
						|  | f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max) | 
					
						
						|  |  | 
					
						
						|  | f0_computation_stack.append(f0) | 
					
						
						|  |  | 
					
						
						|  | for fc in f0_computation_stack: | 
					
						
						|  | print(len(fc)) | 
					
						
						|  |  | 
					
						
						|  | print("Calculating hybrid median f0 from the stack of: %s" % str(methods)) | 
					
						
						|  | f0_median_hybrid = None | 
					
						
						|  | if len(f0_computation_stack) == 1: | 
					
						
						|  | f0_median_hybrid = f0_computation_stack[0] | 
					
						
						|  | else: | 
					
						
						|  | f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0) | 
					
						
						|  | return f0_median_hybrid | 
					
						
						|  |  | 
					
						
						|  | def get_f0( | 
					
						
						|  | self, | 
					
						
						|  | input_audio_path, | 
					
						
						|  | x, | 
					
						
						|  | p_len, | 
					
						
						|  | f0_up_key, | 
					
						
						|  | f0_method, | 
					
						
						|  | filter_radius, | 
					
						
						|  | crepe_hop_length, | 
					
						
						|  | f0_autotune, | 
					
						
						|  | inp_f0=None, | 
					
						
						|  | f0_min=50, | 
					
						
						|  | f0_max=1100, | 
					
						
						|  | ): | 
					
						
						|  | global input_audio_path2wav | 
					
						
						|  | time_step = self.window / self.sr * 1000 | 
					
						
						|  | f0_min = f0_min | 
					
						
						|  | f0_max = f0_max | 
					
						
						|  | f0_mel_min = 1127 * np.log(1 + f0_min / 700) | 
					
						
						|  | f0_mel_max = 1127 * np.log(1 + f0_max / 700) | 
					
						
						|  |  | 
					
						
						|  | if f0_method == "pm": | 
					
						
						|  | f0 = ( | 
					
						
						|  | parselmouth.Sound(x, self.sr) | 
					
						
						|  | .to_pitch_ac( | 
					
						
						|  | time_step=time_step / 1000, | 
					
						
						|  | voicing_threshold=0.6, | 
					
						
						|  | pitch_floor=f0_min, | 
					
						
						|  | pitch_ceiling=f0_max, | 
					
						
						|  | ) | 
					
						
						|  | .selected_array["frequency"] | 
					
						
						|  | ) | 
					
						
						|  | pad_size = (p_len - len(f0) + 1) // 2 | 
					
						
						|  | if pad_size > 0 or p_len - len(f0) - pad_size > 0: | 
					
						
						|  | f0 = np.pad( | 
					
						
						|  | f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant" | 
					
						
						|  | ) | 
					
						
						|  | elif f0_method == "harvest": | 
					
						
						|  | input_audio_path2wav[input_audio_path] = x.astype(np.double) | 
					
						
						|  | f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10) | 
					
						
						|  | if filter_radius > 2: | 
					
						
						|  | f0 = signal.medfilt(f0, 3) | 
					
						
						|  | elif f0_method == "dio": | 
					
						
						|  | f0, t = pyworld.dio( | 
					
						
						|  | x.astype(np.double), | 
					
						
						|  | fs=self.sr, | 
					
						
						|  | f0_ceil=f0_max, | 
					
						
						|  | f0_floor=f0_min, | 
					
						
						|  | frame_period=10, | 
					
						
						|  | ) | 
					
						
						|  | f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr) | 
					
						
						|  | f0 = signal.medfilt(f0, 3) | 
					
						
						|  | elif f0_method == "crepe": | 
					
						
						|  | model = "full" | 
					
						
						|  |  | 
					
						
						|  | batch_size = 512 | 
					
						
						|  |  | 
					
						
						|  | audio = torch.tensor(np.copy(x))[None].float() | 
					
						
						|  | f0, pd = torchcrepe.predict( | 
					
						
						|  | audio, | 
					
						
						|  | self.sr, | 
					
						
						|  | self.window, | 
					
						
						|  | f0_min, | 
					
						
						|  | f0_max, | 
					
						
						|  | model, | 
					
						
						|  | batch_size=batch_size, | 
					
						
						|  | device=self.device, | 
					
						
						|  | return_periodicity=True, | 
					
						
						|  | ) | 
					
						
						|  | pd = torchcrepe.filter.median(pd, 3) | 
					
						
						|  | f0 = torchcrepe.filter.mean(f0, 3) | 
					
						
						|  | f0[pd < 0.1] = 0 | 
					
						
						|  | f0 = f0[0].cpu().numpy() | 
					
						
						|  | elif f0_method == "crepe-tiny": | 
					
						
						|  | f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny") | 
					
						
						|  | elif f0_method == "mangio-crepe": | 
					
						
						|  | f0 = self.get_f0_crepe_computation( | 
					
						
						|  | x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length | 
					
						
						|  | ) | 
					
						
						|  | elif f0_method == "mangio-crepe-tiny": | 
					
						
						|  | f0 = self.get_f0_crepe_computation( | 
					
						
						|  | x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny" | 
					
						
						|  | ) | 
					
						
						|  | elif f0_method == "rmvpe": | 
					
						
						|  | if not hasattr(self, "model_rmvpe"): | 
					
						
						|  | from lib.infer.infer_libs.rmvpe import RMVPE | 
					
						
						|  |  | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Loading rmvpe model, {os.environ['rmvpe_model_path']}" | 
					
						
						|  | ) | 
					
						
						|  | self.model_rmvpe = RMVPE( | 
					
						
						|  | os.environ["rmvpe_model_path"], | 
					
						
						|  | is_half=self.is_half, | 
					
						
						|  | device=self.device, | 
					
						
						|  | ) | 
					
						
						|  | f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) | 
					
						
						|  |  | 
					
						
						|  | if "privateuseone" in str(self.device): | 
					
						
						|  | del self.model_rmvpe.model | 
					
						
						|  | del self.model_rmvpe | 
					
						
						|  | logger.info("Cleaning ortruntime memory") | 
					
						
						|  | elif f0_method == "rmvpe+": | 
					
						
						|  | params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min, | 
					
						
						|  | 'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius, | 
					
						
						|  | 'crepe_hop_length': crepe_hop_length, 'model': "full" | 
					
						
						|  | } | 
					
						
						|  | f0 = self.get_pitch_dependant_rmvpe(**params) | 
					
						
						|  | elif f0_method == "pyin": | 
					
						
						|  | f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max) | 
					
						
						|  | elif f0_method == "fcpe_legacy": | 
					
						
						|  | f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len) | 
					
						
						|  | elif f0_method == "fcpe": | 
					
						
						|  | f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len) | 
					
						
						|  | elif "hybrid" in f0_method: | 
					
						
						|  |  | 
					
						
						|  | input_audio_path2wav[input_audio_path] = x.astype(np.double) | 
					
						
						|  | f0 = self.get_f0_hybrid_computation( | 
					
						
						|  | f0_method, | 
					
						
						|  | input_audio_path, | 
					
						
						|  | x, | 
					
						
						|  | f0_min, | 
					
						
						|  | f0_max, | 
					
						
						|  | p_len, | 
					
						
						|  | filter_radius, | 
					
						
						|  | crepe_hop_length, | 
					
						
						|  | time_step, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if f0_autotune == True: | 
					
						
						|  | print("Autotune:", f0_autotune) | 
					
						
						|  | f0 = self.autotune_f0(f0) | 
					
						
						|  |  | 
					
						
						|  | f0 *= pow(2, f0_up_key / 12) | 
					
						
						|  |  | 
					
						
						|  | tf0 = self.sr // self.window | 
					
						
						|  | if inp_f0 is not None: | 
					
						
						|  | delta_t = np.round( | 
					
						
						|  | (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1 | 
					
						
						|  | ).astype("int16") | 
					
						
						|  | replace_f0 = np.interp( | 
					
						
						|  | list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1] | 
					
						
						|  | ) | 
					
						
						|  | shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0] | 
					
						
						|  | f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[ | 
					
						
						|  | :shape | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | f0bak = f0.copy() | 
					
						
						|  | f0_mel = 1127 * np.log(1 + f0 / 700) | 
					
						
						|  | f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / ( | 
					
						
						|  | f0_mel_max - f0_mel_min | 
					
						
						|  | ) + 1 | 
					
						
						|  | f0_mel[f0_mel <= 1] = 1 | 
					
						
						|  | f0_mel[f0_mel > 255] = 255 | 
					
						
						|  | f0_coarse = np.rint(f0_mel).astype(np.int32) | 
					
						
						|  | return f0_coarse, f0bak | 
					
						
						|  |  | 
					
						
						|  | def vc( | 
					
						
						|  | self, | 
					
						
						|  | model, | 
					
						
						|  | net_g, | 
					
						
						|  | sid, | 
					
						
						|  | audio0, | 
					
						
						|  | pitch, | 
					
						
						|  | pitchf, | 
					
						
						|  | times, | 
					
						
						|  | index, | 
					
						
						|  | big_npy, | 
					
						
						|  | index_rate, | 
					
						
						|  | version, | 
					
						
						|  | protect, | 
					
						
						|  | ): | 
					
						
						|  | feats = torch.from_numpy(audio0) | 
					
						
						|  | if self.is_half: | 
					
						
						|  | feats = feats.half() | 
					
						
						|  | else: | 
					
						
						|  | feats = feats.float() | 
					
						
						|  | if feats.dim() == 2: | 
					
						
						|  | feats = feats.mean(-1) | 
					
						
						|  | assert feats.dim() == 1, feats.dim() | 
					
						
						|  | feats = feats.view(1, -1) | 
					
						
						|  | padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False) | 
					
						
						|  |  | 
					
						
						|  | inputs = { | 
					
						
						|  | "source": feats.to(self.device), | 
					
						
						|  | "padding_mask": padding_mask, | 
					
						
						|  | "output_layer": 9 if version == "v1" else 12, | 
					
						
						|  | } | 
					
						
						|  | t0 = ttime() | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | logits = model.extract_features(**inputs) | 
					
						
						|  | feats = model.final_proj(logits[0]) if version == "v1" else logits[0] | 
					
						
						|  | if protect < 0.5 and pitch is not None and pitchf is not None: | 
					
						
						|  | feats0 = feats.clone() | 
					
						
						|  | if ( | 
					
						
						|  | not isinstance(index, type(None)) | 
					
						
						|  | and not isinstance(big_npy, type(None)) | 
					
						
						|  | and index_rate != 0 | 
					
						
						|  | ): | 
					
						
						|  | npy = feats[0].cpu().numpy() | 
					
						
						|  | if self.is_half: | 
					
						
						|  | npy = npy.astype("float32") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | score, ix = index.search(npy, k=8) | 
					
						
						|  | weight = np.square(1 / score) | 
					
						
						|  | weight /= weight.sum(axis=1, keepdims=True) | 
					
						
						|  | npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1) | 
					
						
						|  |  | 
					
						
						|  | if self.is_half: | 
					
						
						|  | npy = npy.astype("float16") | 
					
						
						|  | feats = ( | 
					
						
						|  | torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate | 
					
						
						|  | + (1 - index_rate) * feats | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1) | 
					
						
						|  | if protect < 0.5 and pitch is not None and pitchf is not None: | 
					
						
						|  | feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute( | 
					
						
						|  | 0, 2, 1 | 
					
						
						|  | ) | 
					
						
						|  | t1 = ttime() | 
					
						
						|  | p_len = audio0.shape[0] // self.window | 
					
						
						|  | if feats.shape[1] < p_len: | 
					
						
						|  | p_len = feats.shape[1] | 
					
						
						|  | if pitch is not None and pitchf is not None: | 
					
						
						|  | pitch = pitch[:, :p_len] | 
					
						
						|  | pitchf = pitchf[:, :p_len] | 
					
						
						|  |  | 
					
						
						|  | if protect < 0.5 and pitch is not None and pitchf is not None: | 
					
						
						|  | pitchff = pitchf.clone() | 
					
						
						|  | pitchff[pitchf > 0] = 1 | 
					
						
						|  | pitchff[pitchf < 1] = protect | 
					
						
						|  | pitchff = pitchff.unsqueeze(-1) | 
					
						
						|  | feats = feats * pitchff + feats0 * (1 - pitchff) | 
					
						
						|  | feats = feats.to(feats0.dtype) | 
					
						
						|  | p_len = torch.tensor([p_len], device=self.device).long() | 
					
						
						|  | with torch.no_grad(): | 
					
						
						|  | hasp = pitch is not None and pitchf is not None | 
					
						
						|  | arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid) | 
					
						
						|  | audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy() | 
					
						
						|  | del hasp, arg | 
					
						
						|  | del feats, p_len, padding_mask | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  | t2 = ttime() | 
					
						
						|  | times[0] += t1 - t0 | 
					
						
						|  | times[2] += t2 - t1 | 
					
						
						|  | return audio1 | 
					
						
						|  | def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g): | 
					
						
						|  | t = t // window * window | 
					
						
						|  | if if_f0 == 1: | 
					
						
						|  | return self.vc( | 
					
						
						|  | model, | 
					
						
						|  | net_g, | 
					
						
						|  | sid, | 
					
						
						|  | audio_pad[s : t + t_pad_tgt + window], | 
					
						
						|  | pitch[:, s // window : (t + t_pad_tgt) // window], | 
					
						
						|  | pitchf[:, s // window : (t + t_pad_tgt) // window], | 
					
						
						|  | times, | 
					
						
						|  | index, | 
					
						
						|  | big_npy, | 
					
						
						|  | index_rate, | 
					
						
						|  | version, | 
					
						
						|  | protect, | 
					
						
						|  | )[t_pad_tgt : -t_pad_tgt] | 
					
						
						|  | else: | 
					
						
						|  | return self.vc( | 
					
						
						|  | model, | 
					
						
						|  | net_g, | 
					
						
						|  | sid, | 
					
						
						|  | audio_pad[s : t + t_pad_tgt + window], | 
					
						
						|  | None, | 
					
						
						|  | None, | 
					
						
						|  | times, | 
					
						
						|  | index, | 
					
						
						|  | big_npy, | 
					
						
						|  | index_rate, | 
					
						
						|  | version, | 
					
						
						|  | protect, | 
					
						
						|  | )[t_pad_tgt : -t_pad_tgt] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def pipeline( | 
					
						
						|  | self, | 
					
						
						|  | model, | 
					
						
						|  | net_g, | 
					
						
						|  | sid, | 
					
						
						|  | audio, | 
					
						
						|  | input_audio_path, | 
					
						
						|  | times, | 
					
						
						|  | f0_up_key, | 
					
						
						|  | f0_method, | 
					
						
						|  | file_index, | 
					
						
						|  | index_rate, | 
					
						
						|  | if_f0, | 
					
						
						|  | filter_radius, | 
					
						
						|  | tgt_sr, | 
					
						
						|  | resample_sr, | 
					
						
						|  | rms_mix_rate, | 
					
						
						|  | version, | 
					
						
						|  | protect, | 
					
						
						|  | crepe_hop_length, | 
					
						
						|  | f0_autotune, | 
					
						
						|  | f0_min=50, | 
					
						
						|  | f0_max=1100 | 
					
						
						|  | ): | 
					
						
						|  | if ( | 
					
						
						|  | file_index != "" | 
					
						
						|  | and isinstance(file_index, str) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | and os.path.exists(file_index) | 
					
						
						|  | and index_rate != 0 | 
					
						
						|  | ): | 
					
						
						|  | try: | 
					
						
						|  | index = faiss.read_index(file_index) | 
					
						
						|  |  | 
					
						
						|  | big_npy = index.reconstruct_n(0, index.ntotal) | 
					
						
						|  | except: | 
					
						
						|  | traceback.print_exc() | 
					
						
						|  | index = big_npy = None | 
					
						
						|  | else: | 
					
						
						|  | index = big_npy = None | 
					
						
						|  | audio = signal.filtfilt(bh, ah, audio) | 
					
						
						|  | audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect") | 
					
						
						|  | opt_ts = [] | 
					
						
						|  | if audio_pad.shape[0] > self.t_max: | 
					
						
						|  | audio_sum = np.zeros_like(audio) | 
					
						
						|  | for i in range(self.window): | 
					
						
						|  | audio_sum += audio_pad[i : i - self.window] | 
					
						
						|  | for t in range(self.t_center, audio.shape[0], self.t_center): | 
					
						
						|  | opt_ts.append( | 
					
						
						|  | t | 
					
						
						|  | - self.t_query | 
					
						
						|  | + np.where( | 
					
						
						|  | np.abs(audio_sum[t - self.t_query : t + self.t_query]) | 
					
						
						|  | == np.abs(audio_sum[t - self.t_query : t + self.t_query]).min() | 
					
						
						|  | )[0][0] | 
					
						
						|  | ) | 
					
						
						|  | s = 0 | 
					
						
						|  | audio_opt = [] | 
					
						
						|  | t = None | 
					
						
						|  | t1 = ttime() | 
					
						
						|  | audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect") | 
					
						
						|  | p_len = audio_pad.shape[0] // self.window | 
					
						
						|  | inp_f0 = None | 
					
						
						|  |  | 
					
						
						|  | sid = torch.tensor(sid, device=self.device).unsqueeze(0).long() | 
					
						
						|  | pitch, pitchf = None, None | 
					
						
						|  | if if_f0: | 
					
						
						|  | pitch, pitchf = self.get_f0( | 
					
						
						|  | input_audio_path, | 
					
						
						|  | audio_pad, | 
					
						
						|  | p_len, | 
					
						
						|  | f0_up_key, | 
					
						
						|  | f0_method, | 
					
						
						|  | filter_radius, | 
					
						
						|  | crepe_hop_length, | 
					
						
						|  | f0_autotune, | 
					
						
						|  | inp_f0, | 
					
						
						|  | f0_min, | 
					
						
						|  | f0_max | 
					
						
						|  | ) | 
					
						
						|  | pitch = pitch[:p_len] | 
					
						
						|  | pitchf = pitchf[:p_len] | 
					
						
						|  | if "mps" not in str(self.device) or "xpu" not in str(self.device): | 
					
						
						|  | pitchf = pitchf.astype(np.float32) | 
					
						
						|  | pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long() | 
					
						
						|  | pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float() | 
					
						
						|  | t2 = ttime() | 
					
						
						|  | times[1] += t2 - t1 | 
					
						
						|  |  | 
					
						
						|  | with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar: | 
					
						
						|  | for i, t in enumerate(opt_ts): | 
					
						
						|  | t = t // self.window * self.window | 
					
						
						|  | start = s | 
					
						
						|  | end = t + self.t_pad2 + self.window | 
					
						
						|  | audio_slice = audio_pad[start:end] | 
					
						
						|  | pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None | 
					
						
						|  | pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None | 
					
						
						|  | audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt]) | 
					
						
						|  | s = t | 
					
						
						|  | pbar.update(1) | 
					
						
						|  | pbar.refresh() | 
					
						
						|  |  | 
					
						
						|  | audio_slice = audio_pad[t:] | 
					
						
						|  | pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch | 
					
						
						|  | pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf | 
					
						
						|  | audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt]) | 
					
						
						|  |  | 
					
						
						|  | audio_opt = np.concatenate(audio_opt) | 
					
						
						|  | if rms_mix_rate != 1: | 
					
						
						|  | audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate) | 
					
						
						|  | if tgt_sr != resample_sr >= 16000: | 
					
						
						|  | audio_opt = librosa.resample( | 
					
						
						|  | audio_opt, orig_sr=tgt_sr, target_sr=resample_sr | 
					
						
						|  | ) | 
					
						
						|  | audio_max = np.abs(audio_opt).max() / 0.99 | 
					
						
						|  | max_int16 = 32768 | 
					
						
						|  | if audio_max > 1: | 
					
						
						|  | max_int16 /= audio_max | 
					
						
						|  | audio_opt = (audio_opt * max_int16).astype(np.int16) | 
					
						
						|  | del pitch, pitchf, sid | 
					
						
						|  | if torch.cuda.is_available(): | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | print("Returning completed audio...") | 
					
						
						|  | return audio_opt |