|
import os
|
|
import sys
|
|
import gc
|
|
import traceback
|
|
import logging
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
from functools import lru_cache
|
|
from time import time as ttime
|
|
from torch import Tensor
|
|
import faiss
|
|
import librosa
|
|
import numpy as np
|
|
import parselmouth
|
|
import pyworld
|
|
import torch.nn.functional as F
|
|
from scipy import signal
|
|
from tqdm import tqdm
|
|
|
|
import random
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
import re
|
|
from functools import partial
|
|
bh, ah = signal.butter(N=5, Wn=48, btype="high", fs=16000)
|
|
|
|
input_audio_path2wav = {}
|
|
import torchcrepe
|
|
from torchfcpe import spawn_bundled_infer_model
|
|
import torch
|
|
from lib.infer_libs.rmvpe import RMVPE
|
|
from lib.infer_libs.fcpe import FCPE
|
|
|
|
@lru_cache
|
|
def cache_harvest_f0(input_audio_path, fs, f0max, f0min, frame_period):
|
|
audio = input_audio_path2wav[input_audio_path]
|
|
f0, t = pyworld.harvest(
|
|
audio,
|
|
fs=fs,
|
|
f0_ceil=f0max,
|
|
f0_floor=f0min,
|
|
frame_period=frame_period,
|
|
)
|
|
f0 = pyworld.stonemask(audio, f0, t, fs)
|
|
return f0
|
|
|
|
|
|
def change_rms(data1, sr1, data2, sr2, rate):
|
|
|
|
rms1 = librosa.feature.rms(
|
|
y=data1, frame_length=sr1 // 2 * 2, hop_length=sr1 // 2
|
|
)
|
|
rms2 = librosa.feature.rms(y=data2, frame_length=sr2 // 2 * 2, hop_length=sr2 // 2)
|
|
rms1 = torch.from_numpy(rms1)
|
|
rms1 = F.interpolate(
|
|
rms1.unsqueeze(0), size=data2.shape[0], mode="linear"
|
|
).squeeze()
|
|
rms2 = torch.from_numpy(rms2)
|
|
rms2 = F.interpolate(
|
|
rms2.unsqueeze(0), size=data2.shape[0], mode="linear"
|
|
).squeeze()
|
|
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-6)
|
|
data2 *= (
|
|
torch.pow(rms1, torch.tensor(1 - rate))
|
|
* torch.pow(rms2, torch.tensor(rate - 1))
|
|
).numpy()
|
|
return data2
|
|
|
|
|
|
class Pipeline(object):
|
|
def __init__(self, tgt_sr, config):
|
|
self.x_pad, self.x_query, self.x_center, self.x_max, self.is_half = (
|
|
config.x_pad,
|
|
config.x_query,
|
|
config.x_center,
|
|
config.x_max,
|
|
config.is_half,
|
|
)
|
|
self.sr = 16000
|
|
self.window = 160
|
|
self.t_pad = self.sr * self.x_pad
|
|
self.t_pad_tgt = tgt_sr * self.x_pad
|
|
self.t_pad2 = self.t_pad * 2
|
|
self.t_query = self.sr * self.x_query
|
|
self.t_center = self.sr * self.x_center
|
|
self.t_max = self.sr * self.x_max
|
|
self.device = config.device
|
|
self.model_rmvpe = RMVPE(os.environ["rmvpe_model_path"], is_half=self.is_half, device=self.device)
|
|
|
|
self.note_dict = [
|
|
65.41, 69.30, 73.42, 77.78, 82.41, 87.31,
|
|
92.50, 98.00, 103.83, 110.00, 116.54, 123.47,
|
|
130.81, 138.59, 146.83, 155.56, 164.81, 174.61,
|
|
185.00, 196.00, 207.65, 220.00, 233.08, 246.94,
|
|
261.63, 277.18, 293.66, 311.13, 329.63, 349.23,
|
|
369.99, 392.00, 415.30, 440.00, 466.16, 493.88,
|
|
523.25, 554.37, 587.33, 622.25, 659.25, 698.46,
|
|
739.99, 783.99, 830.61, 880.00, 932.33, 987.77,
|
|
1046.50, 1108.73, 1174.66, 1244.51, 1318.51, 1396.91,
|
|
1479.98, 1567.98, 1661.22, 1760.00, 1864.66, 1975.53,
|
|
2093.00, 2217.46, 2349.32, 2489.02, 2637.02, 2793.83,
|
|
2959.96, 3135.96, 3322.44, 3520.00, 3729.31, 3951.07
|
|
]
|
|
|
|
|
|
def get_optimal_torch_device(self, index: int = 0) -> torch.device:
|
|
if torch.cuda.is_available():
|
|
return torch.device(
|
|
f"cuda:{index % torch.cuda.device_count()}"
|
|
)
|
|
elif torch.backends.mps.is_available():
|
|
return torch.device("mps")
|
|
return torch.device("cpu")
|
|
|
|
|
|
def get_f0_crepe_computation(
|
|
self,
|
|
x,
|
|
f0_min,
|
|
f0_max,
|
|
p_len,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
x = x.astype(
|
|
np.float32
|
|
)
|
|
x /= np.quantile(np.abs(x), 0.999)
|
|
torch_device = self.get_optimal_torch_device()
|
|
audio = torch.from_numpy(x).to(torch_device, copy=True)
|
|
audio = torch.unsqueeze(audio, dim=0)
|
|
if audio.ndim == 2 and audio.shape[0] > 1:
|
|
audio = torch.mean(audio, dim=0, keepdim=True).detach()
|
|
audio = audio.detach()
|
|
hop_length = kwargs.get('crepe_hop_length', 160)
|
|
model = kwargs.get('model', 'full')
|
|
print("Initiating prediction with a crepe_hop_length of: " + str(hop_length))
|
|
pitch: Tensor = torchcrepe.predict(
|
|
audio,
|
|
self.sr,
|
|
hop_length,
|
|
f0_min,
|
|
f0_max,
|
|
model,
|
|
batch_size=hop_length * 2,
|
|
device=torch_device,
|
|
pad=True,
|
|
)
|
|
p_len = p_len or x.shape[0] // hop_length
|
|
|
|
source = np.array(pitch.squeeze(0).cpu().float().numpy())
|
|
source[source < 0.001] = np.nan
|
|
target = np.interp(
|
|
np.arange(0, len(source) * p_len, len(source)) / p_len,
|
|
np.arange(0, len(source)),
|
|
source,
|
|
)
|
|
f0 = np.nan_to_num(target)
|
|
return f0
|
|
|
|
def get_f0_official_crepe_computation(
|
|
self,
|
|
x,
|
|
f0_min,
|
|
f0_max,
|
|
*args,
|
|
**kwargs
|
|
):
|
|
|
|
batch_size = 512
|
|
|
|
audio = torch.tensor(np.copy(x))[None].float()
|
|
model = kwargs.get('model', 'full')
|
|
f0, pd = torchcrepe.predict(
|
|
audio,
|
|
self.sr,
|
|
self.window,
|
|
f0_min,
|
|
f0_max,
|
|
model,
|
|
batch_size=batch_size,
|
|
device=self.device,
|
|
return_periodicity=True,
|
|
)
|
|
pd = torchcrepe.filter.median(pd, 3)
|
|
f0 = torchcrepe.filter.mean(f0, 3)
|
|
f0[pd < 0.1] = 0
|
|
f0 = f0[0].cpu().numpy()
|
|
return f0
|
|
|
|
|
|
def get_f0_pyin_computation(self, x, f0_min, f0_max):
|
|
y, sr = librosa.load(x, sr=self.sr, mono=True)
|
|
f0, _, _ = librosa.pyin(y, fmin=f0_min, fmax=f0_max, sr=self.sr)
|
|
f0 = f0[1:]
|
|
return f0
|
|
|
|
def get_rmvpe(self, x, *args, **kwargs):
|
|
if not hasattr(self, "model_rmvpe"):
|
|
from lib.infer.infer_libs.rmvpe import RMVPE
|
|
|
|
logger.info(
|
|
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
|
|
)
|
|
self.model_rmvpe = RMVPE(
|
|
os.environ["rmvpe_model_path"],
|
|
is_half=self.is_half,
|
|
device=self.device,
|
|
)
|
|
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
|
|
|
if "privateuseone" in str(self.device):
|
|
del self.model_rmvpe.model
|
|
del self.model_rmvpe
|
|
logger.info("Cleaning ortruntime memory")
|
|
|
|
return f0
|
|
|
|
|
|
def get_pitch_dependant_rmvpe(self, x, f0_min=1, f0_max=40000, *args, **kwargs):
|
|
if not hasattr(self, "model_rmvpe"):
|
|
from lib.infer.infer_libs.rmvpe import RMVPE
|
|
|
|
logger.info(
|
|
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
|
|
)
|
|
self.model_rmvpe = RMVPE(
|
|
os.environ["rmvpe_model_path"],
|
|
is_half=self.is_half,
|
|
device=self.device,
|
|
)
|
|
f0 = self.model_rmvpe.infer_from_audio_with_pitch(x, thred=0.03, f0_min=f0_min, f0_max=f0_max)
|
|
if "privateuseone" in str(self.device):
|
|
del self.model_rmvpe.model
|
|
del self.model_rmvpe
|
|
logger.info("Cleaning ortruntime memory")
|
|
|
|
return f0
|
|
|
|
def get_fcpe(self, x, f0_min, f0_max, p_len, *args, **kwargs):
|
|
self.model_fcpe = FCPE(os.environ["fcpe_model_path"], f0_min=f0_min, f0_max=f0_max, dtype=torch.float32, device=self.device, sampling_rate=self.sr, threshold=0.03)
|
|
f0 = self.model_fcpe.compute_f0(x, p_len=p_len)
|
|
del self.model_fcpe
|
|
gc.collect()
|
|
return f0
|
|
|
|
def get_torchfcpe(self, x, sr, f0_min, f0_max, p_len, *args, **kwargs):
|
|
self.model_torchfcpe = spawn_bundled_infer_model(device=self.device)
|
|
f0 = self.model_torchfcpe.infer(
|
|
torch.from_numpy(x).float().unsqueeze(0).unsqueeze(-1).to(self.device),
|
|
sr=sr,
|
|
decoder_mode="local_argmax",
|
|
threshold=0.006,
|
|
f0_min=f0_min,
|
|
f0_max=f0_max,
|
|
output_interp_target_length=p_len
|
|
)
|
|
return f0.squeeze().cpu().numpy()
|
|
|
|
def autotune_f0(self, f0):
|
|
autotuned_f0 = []
|
|
for freq in f0:
|
|
closest_notes = [x for x in self.note_dict if abs(x - freq) == min(abs(n - freq) for n in self.note_dict)]
|
|
autotuned_f0.append(random.choice(closest_notes))
|
|
return np.array(autotuned_f0, np.float64)
|
|
|
|
|
|
|
|
def get_f0_hybrid_computation(
|
|
self,
|
|
methods_str,
|
|
input_audio_path,
|
|
x,
|
|
f0_min,
|
|
f0_max,
|
|
p_len,
|
|
filter_radius,
|
|
crepe_hop_length,
|
|
time_step,
|
|
):
|
|
|
|
methods_str = re.search('hybrid\[(.+)\]', methods_str)
|
|
if methods_str:
|
|
methods = [method.strip() for method in methods_str.group(1).split('+')]
|
|
f0_computation_stack = []
|
|
|
|
print("Calculating f0 pitch estimations for methods: %s" % str(methods))
|
|
x = x.astype(np.float32)
|
|
x /= np.quantile(np.abs(x), 0.999)
|
|
|
|
for method in methods:
|
|
f0 = None
|
|
if method == "pm":
|
|
f0 = (
|
|
parselmouth.Sound(x, self.sr)
|
|
.to_pitch_ac(
|
|
time_step=time_step / 1000,
|
|
voicing_threshold=0.6,
|
|
pitch_floor=f0_min,
|
|
pitch_ceiling=f0_max,
|
|
)
|
|
.selected_array["frequency"]
|
|
)
|
|
pad_size = (p_len - len(f0) + 1) // 2
|
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
|
f0 = np.pad(
|
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
|
)
|
|
elif method == "crepe":
|
|
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="full")
|
|
f0 = f0[1:]
|
|
elif method == "crepe-tiny":
|
|
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
|
|
f0 = f0[1:]
|
|
elif method == "mangio-crepe":
|
|
f0 = self.get_f0_crepe_computation(
|
|
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
|
|
)
|
|
elif method == "mangio-crepe-tiny":
|
|
f0 = self.get_f0_crepe_computation(
|
|
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
|
|
)
|
|
elif method == "harvest":
|
|
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
|
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
|
if filter_radius > 2:
|
|
f0 = signal.medfilt(f0, 3)
|
|
elif method == "dio":
|
|
f0, t = pyworld.dio(
|
|
x.astype(np.double),
|
|
fs=self.sr,
|
|
f0_ceil=f0_max,
|
|
f0_floor=f0_min,
|
|
frame_period=10,
|
|
)
|
|
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
|
f0 = signal.medfilt(f0, 3)
|
|
f0 = f0[1:]
|
|
elif method == "rmvpe":
|
|
f0 = self.get_rmvpe(x)
|
|
f0 = f0[1:]
|
|
elif method == "fcpe_legacy":
|
|
f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
|
|
elif method == "fcpe":
|
|
f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
|
|
elif method == "pyin":
|
|
f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
|
|
|
|
f0_computation_stack.append(f0)
|
|
|
|
for fc in f0_computation_stack:
|
|
print(len(fc))
|
|
|
|
print("Calculating hybrid median f0 from the stack of: %s" % str(methods))
|
|
f0_median_hybrid = None
|
|
if len(f0_computation_stack) == 1:
|
|
f0_median_hybrid = f0_computation_stack[0]
|
|
else:
|
|
f0_median_hybrid = np.nanmedian(f0_computation_stack, axis=0)
|
|
return f0_median_hybrid
|
|
|
|
def get_f0(
|
|
self,
|
|
input_audio_path,
|
|
x,
|
|
p_len,
|
|
f0_up_key,
|
|
f0_method,
|
|
filter_radius,
|
|
crepe_hop_length,
|
|
f0_autotune,
|
|
inp_f0=None,
|
|
f0_min=50,
|
|
f0_max=1100,
|
|
):
|
|
global input_audio_path2wav
|
|
time_step = self.window / self.sr * 1000
|
|
f0_min = f0_min
|
|
f0_max = f0_max
|
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
|
|
|
if f0_method == "pm":
|
|
f0 = (
|
|
parselmouth.Sound(x, self.sr)
|
|
.to_pitch_ac(
|
|
time_step=time_step / 1000,
|
|
voicing_threshold=0.6,
|
|
pitch_floor=f0_min,
|
|
pitch_ceiling=f0_max,
|
|
)
|
|
.selected_array["frequency"]
|
|
)
|
|
pad_size = (p_len - len(f0) + 1) // 2
|
|
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
|
f0 = np.pad(
|
|
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
|
)
|
|
elif f0_method == "harvest":
|
|
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
|
f0 = cache_harvest_f0(input_audio_path, self.sr, f0_max, f0_min, 10)
|
|
if filter_radius > 2:
|
|
f0 = signal.medfilt(f0, 3)
|
|
elif f0_method == "dio":
|
|
f0, t = pyworld.dio(
|
|
x.astype(np.double),
|
|
fs=self.sr,
|
|
f0_ceil=f0_max,
|
|
f0_floor=f0_min,
|
|
frame_period=10,
|
|
)
|
|
f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
|
|
f0 = signal.medfilt(f0, 3)
|
|
elif f0_method == "crepe":
|
|
model = "full"
|
|
|
|
batch_size = 512
|
|
|
|
audio = torch.tensor(np.copy(x))[None].float()
|
|
f0, pd = torchcrepe.predict(
|
|
audio,
|
|
self.sr,
|
|
self.window,
|
|
f0_min,
|
|
f0_max,
|
|
model,
|
|
batch_size=batch_size,
|
|
device=self.device,
|
|
return_periodicity=True,
|
|
)
|
|
pd = torchcrepe.filter.median(pd, 3)
|
|
f0 = torchcrepe.filter.mean(f0, 3)
|
|
f0[pd < 0.1] = 0
|
|
f0 = f0[0].cpu().numpy()
|
|
elif f0_method == "crepe-tiny":
|
|
f0 = self.get_f0_official_crepe_computation(x, f0_min, f0_max, model="tiny")
|
|
elif f0_method == "mangio-crepe":
|
|
f0 = self.get_f0_crepe_computation(
|
|
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length
|
|
)
|
|
elif f0_method == "mangio-crepe-tiny":
|
|
f0 = self.get_f0_crepe_computation(
|
|
x, f0_min, f0_max, p_len, crepe_hop_length=crepe_hop_length, model="tiny"
|
|
)
|
|
elif f0_method == "rmvpe":
|
|
if not hasattr(self, "model_rmvpe"):
|
|
from lib.infer.infer_libs.rmvpe import RMVPE
|
|
|
|
logger.info(
|
|
f"Loading rmvpe model, {os.environ['rmvpe_model_path']}"
|
|
)
|
|
self.model_rmvpe = RMVPE(
|
|
os.environ["rmvpe_model_path"],
|
|
is_half=self.is_half,
|
|
device=self.device,
|
|
)
|
|
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
|
|
|
if "privateuseone" in str(self.device):
|
|
del self.model_rmvpe.model
|
|
del self.model_rmvpe
|
|
logger.info("Cleaning ortruntime memory")
|
|
elif f0_method == "rmvpe+":
|
|
params = {'x': x, 'p_len': p_len, 'f0_up_key': f0_up_key, 'f0_min': f0_min,
|
|
'f0_max': f0_max, 'time_step': time_step, 'filter_radius': filter_radius,
|
|
'crepe_hop_length': crepe_hop_length, 'model': "full"
|
|
}
|
|
f0 = self.get_pitch_dependant_rmvpe(**params)
|
|
elif f0_method == "pyin":
|
|
f0 = self.get_f0_pyin_computation(input_audio_path, f0_min, f0_max)
|
|
elif f0_method == "fcpe_legacy":
|
|
f0 = self.get_fcpe(x, f0_min=f0_min, f0_max=f0_max, p_len=p_len)
|
|
elif f0_method == "fcpe":
|
|
f0 = self.get_torchfcpe(x, self.sr, f0_min, f0_max, p_len)
|
|
elif "hybrid" in f0_method:
|
|
|
|
input_audio_path2wav[input_audio_path] = x.astype(np.double)
|
|
f0 = self.get_f0_hybrid_computation(
|
|
f0_method,
|
|
input_audio_path,
|
|
x,
|
|
f0_min,
|
|
f0_max,
|
|
p_len,
|
|
filter_radius,
|
|
crepe_hop_length,
|
|
time_step,
|
|
)
|
|
|
|
if f0_autotune == True:
|
|
print("Autotune:", f0_autotune)
|
|
f0 = self.autotune_f0(f0)
|
|
|
|
f0 *= pow(2, f0_up_key / 12)
|
|
|
|
tf0 = self.sr // self.window
|
|
if inp_f0 is not None:
|
|
delta_t = np.round(
|
|
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
|
).astype("int16")
|
|
replace_f0 = np.interp(
|
|
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
|
)
|
|
shape = f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)].shape[0]
|
|
f0[self.x_pad * tf0 : self.x_pad * tf0 + len(replace_f0)] = replace_f0[
|
|
:shape
|
|
]
|
|
|
|
f0bak = f0.copy()
|
|
f0_mel = 1127 * np.log(1 + f0 / 700)
|
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
|
f0_mel_max - f0_mel_min
|
|
) + 1
|
|
f0_mel[f0_mel <= 1] = 1
|
|
f0_mel[f0_mel > 255] = 255
|
|
f0_coarse = np.rint(f0_mel).astype(np.int32)
|
|
return f0_coarse, f0bak
|
|
|
|
def vc(
|
|
self,
|
|
model,
|
|
net_g,
|
|
sid,
|
|
audio0,
|
|
pitch,
|
|
pitchf,
|
|
times,
|
|
index,
|
|
big_npy,
|
|
index_rate,
|
|
version,
|
|
protect,
|
|
):
|
|
feats = torch.from_numpy(audio0)
|
|
if self.is_half:
|
|
feats = feats.half()
|
|
else:
|
|
feats = feats.float()
|
|
if feats.dim() == 2:
|
|
feats = feats.mean(-1)
|
|
assert feats.dim() == 1, feats.dim()
|
|
feats = feats.view(1, -1)
|
|
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
|
|
|
inputs = {
|
|
"source": feats.to(self.device),
|
|
"padding_mask": padding_mask,
|
|
"output_layer": 9 if version == "v1" else 12,
|
|
}
|
|
t0 = ttime()
|
|
with torch.no_grad():
|
|
logits = model.extract_features(**inputs)
|
|
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
|
if protect < 0.5 and pitch is not None and pitchf is not None:
|
|
feats0 = feats.clone()
|
|
if (
|
|
not isinstance(index, type(None))
|
|
and not isinstance(big_npy, type(None))
|
|
and index_rate != 0
|
|
):
|
|
npy = feats[0].cpu().numpy()
|
|
if self.is_half:
|
|
npy = npy.astype("float32")
|
|
|
|
|
|
|
|
|
|
score, ix = index.search(npy, k=8)
|
|
weight = np.square(1 / score)
|
|
weight /= weight.sum(axis=1, keepdims=True)
|
|
npy = np.sum(big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
|
|
|
|
if self.is_half:
|
|
npy = npy.astype("float16")
|
|
feats = (
|
|
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
|
+ (1 - index_rate) * feats
|
|
)
|
|
|
|
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
|
if protect < 0.5 and pitch is not None and pitchf is not None:
|
|
feats0 = F.interpolate(feats0.permute(0, 2, 1), scale_factor=2).permute(
|
|
0, 2, 1
|
|
)
|
|
t1 = ttime()
|
|
p_len = audio0.shape[0] // self.window
|
|
if feats.shape[1] < p_len:
|
|
p_len = feats.shape[1]
|
|
if pitch is not None and pitchf is not None:
|
|
pitch = pitch[:, :p_len]
|
|
pitchf = pitchf[:, :p_len]
|
|
|
|
if protect < 0.5 and pitch is not None and pitchf is not None:
|
|
pitchff = pitchf.clone()
|
|
pitchff[pitchf > 0] = 1
|
|
pitchff[pitchf < 1] = protect
|
|
pitchff = pitchff.unsqueeze(-1)
|
|
feats = feats * pitchff + feats0 * (1 - pitchff)
|
|
feats = feats.to(feats0.dtype)
|
|
p_len = torch.tensor([p_len], device=self.device).long()
|
|
with torch.no_grad():
|
|
hasp = pitch is not None and pitchf is not None
|
|
arg = (feats, p_len, pitch, pitchf, sid) if hasp else (feats, p_len, sid)
|
|
audio1 = (net_g.infer(*arg)[0][0, 0]).data.cpu().float().numpy()
|
|
del hasp, arg
|
|
del feats, p_len, padding_mask
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
t2 = ttime()
|
|
times[0] += t1 - t0
|
|
times[2] += t2 - t1
|
|
return audio1
|
|
def process_t(self, t, s, window, audio_pad, pitch, pitchf, times, index, big_npy, index_rate, version, protect, t_pad_tgt, if_f0, sid, model, net_g):
|
|
t = t // window * window
|
|
if if_f0 == 1:
|
|
return self.vc(
|
|
model,
|
|
net_g,
|
|
sid,
|
|
audio_pad[s : t + t_pad_tgt + window],
|
|
pitch[:, s // window : (t + t_pad_tgt) // window],
|
|
pitchf[:, s // window : (t + t_pad_tgt) // window],
|
|
times,
|
|
index,
|
|
big_npy,
|
|
index_rate,
|
|
version,
|
|
protect,
|
|
)[t_pad_tgt : -t_pad_tgt]
|
|
else:
|
|
return self.vc(
|
|
model,
|
|
net_g,
|
|
sid,
|
|
audio_pad[s : t + t_pad_tgt + window],
|
|
None,
|
|
None,
|
|
times,
|
|
index,
|
|
big_npy,
|
|
index_rate,
|
|
version,
|
|
protect,
|
|
)[t_pad_tgt : -t_pad_tgt]
|
|
|
|
|
|
def pipeline(
|
|
self,
|
|
model,
|
|
net_g,
|
|
sid,
|
|
audio,
|
|
input_audio_path,
|
|
times,
|
|
f0_up_key,
|
|
f0_method,
|
|
file_index,
|
|
index_rate,
|
|
if_f0,
|
|
filter_radius,
|
|
tgt_sr,
|
|
resample_sr,
|
|
rms_mix_rate,
|
|
version,
|
|
protect,
|
|
crepe_hop_length,
|
|
f0_autotune,
|
|
f0_min=50,
|
|
f0_max=1100
|
|
):
|
|
if (
|
|
file_index != ""
|
|
and isinstance(file_index, str)
|
|
|
|
|
|
and os.path.exists(file_index)
|
|
and index_rate != 0
|
|
):
|
|
try:
|
|
index = faiss.read_index(file_index)
|
|
|
|
big_npy = index.reconstruct_n(0, index.ntotal)
|
|
except:
|
|
traceback.print_exc()
|
|
index = big_npy = None
|
|
else:
|
|
index = big_npy = None
|
|
audio = signal.filtfilt(bh, ah, audio)
|
|
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
|
opt_ts = []
|
|
if audio_pad.shape[0] > self.t_max:
|
|
audio_sum = np.zeros_like(audio)
|
|
for i in range(self.window):
|
|
audio_sum += audio_pad[i : i - self.window]
|
|
for t in range(self.t_center, audio.shape[0], self.t_center):
|
|
opt_ts.append(
|
|
t
|
|
- self.t_query
|
|
+ np.where(
|
|
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
|
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
|
)[0][0]
|
|
)
|
|
s = 0
|
|
audio_opt = []
|
|
t = None
|
|
t1 = ttime()
|
|
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
|
p_len = audio_pad.shape[0] // self.window
|
|
inp_f0 = None
|
|
|
|
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
|
pitch, pitchf = None, None
|
|
if if_f0:
|
|
pitch, pitchf = self.get_f0(
|
|
input_audio_path,
|
|
audio_pad,
|
|
p_len,
|
|
f0_up_key,
|
|
f0_method,
|
|
filter_radius,
|
|
crepe_hop_length,
|
|
f0_autotune,
|
|
inp_f0,
|
|
f0_min,
|
|
f0_max
|
|
)
|
|
pitch = pitch[:p_len]
|
|
pitchf = pitchf[:p_len]
|
|
if "mps" not in str(self.device) or "xpu" not in str(self.device):
|
|
pitchf = pitchf.astype(np.float32)
|
|
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
|
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
|
t2 = ttime()
|
|
times[1] += t2 - t1
|
|
|
|
with tqdm(total=len(opt_ts), desc="Processing", unit="window") as pbar:
|
|
for i, t in enumerate(opt_ts):
|
|
t = t // self.window * self.window
|
|
start = s
|
|
end = t + self.t_pad2 + self.window
|
|
audio_slice = audio_pad[start:end]
|
|
pitch_slice = pitch[:, start // self.window:end // self.window] if if_f0 else None
|
|
pitchf_slice = pitchf[:, start // self.window:end // self.window] if if_f0 else None
|
|
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
|
|
s = t
|
|
pbar.update(1)
|
|
pbar.refresh()
|
|
|
|
audio_slice = audio_pad[t:]
|
|
pitch_slice = pitch[:, t // self.window:] if if_f0 and t is not None else pitch
|
|
pitchf_slice = pitchf[:, t // self.window:] if if_f0 and t is not None else pitchf
|
|
audio_opt.append(self.vc(model, net_g, sid, audio_slice, pitch_slice, pitchf_slice, times, index, big_npy, index_rate, version, protect)[self.t_pad_tgt : -self.t_pad_tgt])
|
|
|
|
audio_opt = np.concatenate(audio_opt)
|
|
if rms_mix_rate != 1:
|
|
audio_opt = change_rms(audio, 16000, audio_opt, tgt_sr, rms_mix_rate)
|
|
if tgt_sr != resample_sr >= 16000:
|
|
audio_opt = librosa.resample(
|
|
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
|
)
|
|
audio_max = np.abs(audio_opt).max() / 0.99
|
|
max_int16 = 32768
|
|
if audio_max > 1:
|
|
max_int16 /= audio_max
|
|
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
|
del pitch, pitchf, sid
|
|
if torch.cuda.is_available():
|
|
torch.cuda.empty_cache()
|
|
|
|
print("Returning completed audio...")
|
|
return audio_opt |