TharunSivamani commited on
Commit
cac4536
·
1 Parent(s): d6033a1

starcoder-1b-kubeflow ckpt

Browse files
Files changed (45) hide show
  1. .ipynb_checkpoints/README-checkpoint.md +202 -0
  2. README.md +202 -3
  3. adapter_config.json +31 -0
  4. adapter_model.safetensors +3 -0
  5. checkpoint-100/README.md +202 -0
  6. checkpoint-100/adapter_config.json +31 -0
  7. checkpoint-100/adapter_model.safetensors +3 -0
  8. checkpoint-100/optimizer.pt +3 -0
  9. checkpoint-100/rng_state.pth +3 -0
  10. checkpoint-100/scheduler.pt +3 -0
  11. checkpoint-100/trainer_state.json +93 -0
  12. checkpoint-100/training_args.bin +3 -0
  13. checkpoint-200/README.md +202 -0
  14. checkpoint-200/adapter_config.json +31 -0
  15. checkpoint-200/adapter_model.safetensors +3 -0
  16. checkpoint-200/optimizer.pt +3 -0
  17. checkpoint-200/rng_state.pth +3 -0
  18. checkpoint-200/scheduler.pt +3 -0
  19. checkpoint-200/trainer_state.json +153 -0
  20. checkpoint-200/training_args.bin +3 -0
  21. checkpoint-300/README.md +202 -0
  22. checkpoint-300/adapter_config.json +31 -0
  23. checkpoint-300/adapter_model.safetensors +3 -0
  24. checkpoint-300/optimizer.pt +3 -0
  25. checkpoint-300/rng_state.pth +3 -0
  26. checkpoint-300/scheduler.pt +3 -0
  27. checkpoint-300/trainer_state.json +213 -0
  28. checkpoint-300/training_args.bin +3 -0
  29. checkpoint-400/README.md +202 -0
  30. checkpoint-400/adapter_config.json +31 -0
  31. checkpoint-400/adapter_model.safetensors +3 -0
  32. checkpoint-400/optimizer.pt +3 -0
  33. checkpoint-400/rng_state.pth +3 -0
  34. checkpoint-400/scheduler.pt +3 -0
  35. checkpoint-400/trainer_state.json +273 -0
  36. checkpoint-400/training_args.bin +3 -0
  37. checkpoint-500/README.md +202 -0
  38. checkpoint-500/adapter_config.json +31 -0
  39. checkpoint-500/adapter_model.safetensors +3 -0
  40. checkpoint-500/optimizer.pt +3 -0
  41. checkpoint-500/rng_state.pth +3 -0
  42. checkpoint-500/scheduler.pt +3 -0
  43. checkpoint-500/trainer_state.json +333 -0
  44. checkpoint-500/training_args.bin +3 -0
  45. training_args.bin +3 -0
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: bigcode/starcoderbase-1b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.1.dev0
README.md CHANGED
@@ -1,3 +1,202 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: bigcode/starcoderbase-1b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.1.dev0
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoderbase-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "c_proj",
24
+ "c_fc",
25
+ "c_attn",
26
+ "q_attn"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8ad067c72fbc48be19d899f3c8042114dea086ec96a0bb89bb8896a1d2618c9
3
+ size 22241240
checkpoint-100/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: bigcode/starcoderbase-1b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.1.dev0
checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoderbase-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "c_proj",
24
+ "c_fc",
25
+ "c_attn",
26
+ "q_attn"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
checkpoint-100/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b3003dd24d4a067aa5cfb3f0fd25ed897ca76295a5107433cbc964f7fcb62c3
3
+ size 22241240
checkpoint-100/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdb079f1f095f86ab6ccaf883541331c83ba03e63c29175e8a55f0ad2ce24e88
3
+ size 44594810
checkpoint-100/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b87d966c97e4572e34f9c1e44ac612e8552bea603c9bd8806e8d6587f80994fc
3
+ size 14244
checkpoint-100/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:032c582972fc6346d384b9e7b8947150a7a6ec9d0a2ec1d495601a4de3bf0bb7
3
+ size 1064
checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.2,
5
+ "eval_steps": 25,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.05,
13
+ "grad_norm": 0.18923527002334595,
14
+ "learning_rate": 0.0001666666666666667,
15
+ "loss": 1.1779,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "eval_loss": 0.7435017824172974,
21
+ "eval_runtime": 621.1563,
22
+ "eval_samples_per_second": 4.356,
23
+ "eval_steps_per_second": 0.546,
24
+ "step": 25
25
+ },
26
+ {
27
+ "epoch": 0.1,
28
+ "grad_norm": 0.16780352592468262,
29
+ "learning_rate": 0.00019148936170212768,
30
+ "loss": 1.2708,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 0.1,
35
+ "eval_loss": 0.7384106516838074,
36
+ "eval_runtime": 619.3795,
37
+ "eval_samples_per_second": 4.369,
38
+ "eval_steps_per_second": 0.547,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.15,
43
+ "grad_norm": 0.1804531365633011,
44
+ "learning_rate": 0.00018085106382978726,
45
+ "loss": 1.2848,
46
+ "step": 75
47
+ },
48
+ {
49
+ "epoch": 0.15,
50
+ "eval_loss": 0.7341726422309875,
51
+ "eval_runtime": 619.225,
52
+ "eval_samples_per_second": 4.37,
53
+ "eval_steps_per_second": 0.547,
54
+ "step": 75
55
+ },
56
+ {
57
+ "epoch": 0.2,
58
+ "grad_norm": 0.17204701900482178,
59
+ "learning_rate": 0.00017021276595744682,
60
+ "loss": 1.3443,
61
+ "step": 100
62
+ },
63
+ {
64
+ "epoch": 0.2,
65
+ "eval_loss": 0.7313376665115356,
66
+ "eval_runtime": 619.8363,
67
+ "eval_samples_per_second": 4.366,
68
+ "eval_steps_per_second": 0.547,
69
+ "step": 100
70
+ }
71
+ ],
72
+ "logging_steps": 25,
73
+ "max_steps": 500,
74
+ "num_input_tokens_seen": 0,
75
+ "num_train_epochs": 9223372036854775807,
76
+ "save_steps": 100,
77
+ "stateful_callbacks": {
78
+ "TrainerControl": {
79
+ "args": {
80
+ "should_epoch_stop": false,
81
+ "should_evaluate": false,
82
+ "should_log": false,
83
+ "should_save": true,
84
+ "should_training_stop": false
85
+ },
86
+ "attributes": {}
87
+ }
88
+ },
89
+ "total_flos": 2.0158630330368e+16,
90
+ "train_batch_size": 1,
91
+ "trial_name": null,
92
+ "trial_params": null
93
+ }
checkpoint-100/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0bab29e9b3132b540b844be698b8d6cee10ba9f03ea8a1a2c3173e08e976c0
3
+ size 5240
checkpoint-200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: bigcode/starcoderbase-1b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.1.dev0
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoderbase-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "c_proj",
24
+ "c_fc",
25
+ "c_attn",
26
+ "q_attn"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b5b2b1426588bc72c6c555730957c57f7ceb1253700443b95466edcb2f56a29
3
+ size 22241240
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56b47228a9a66196b25a42e6e0da290208b140c1ebf737cdd743ddce0954a631
3
+ size 44594810
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a9a52eafab5a471ac7ee0af300f883755d2ea6ce6faec139412c6085bd63a0e
3
+ size 14180
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d088660a09b7c158eef1451d55c201f101f9c9d27cb3830c9b89f2415244cf34
3
+ size 1064
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.4,
5
+ "eval_steps": 25,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.05,
13
+ "grad_norm": 0.18923527002334595,
14
+ "learning_rate": 0.0001666666666666667,
15
+ "loss": 1.1779,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "eval_loss": 0.7435017824172974,
21
+ "eval_runtime": 621.1563,
22
+ "eval_samples_per_second": 4.356,
23
+ "eval_steps_per_second": 0.546,
24
+ "step": 25
25
+ },
26
+ {
27
+ "epoch": 0.1,
28
+ "grad_norm": 0.16780352592468262,
29
+ "learning_rate": 0.00019148936170212768,
30
+ "loss": 1.2708,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 0.1,
35
+ "eval_loss": 0.7384106516838074,
36
+ "eval_runtime": 619.3795,
37
+ "eval_samples_per_second": 4.369,
38
+ "eval_steps_per_second": 0.547,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.15,
43
+ "grad_norm": 0.1804531365633011,
44
+ "learning_rate": 0.00018085106382978726,
45
+ "loss": 1.2848,
46
+ "step": 75
47
+ },
48
+ {
49
+ "epoch": 0.15,
50
+ "eval_loss": 0.7341726422309875,
51
+ "eval_runtime": 619.225,
52
+ "eval_samples_per_second": 4.37,
53
+ "eval_steps_per_second": 0.547,
54
+ "step": 75
55
+ },
56
+ {
57
+ "epoch": 0.2,
58
+ "grad_norm": 0.17204701900482178,
59
+ "learning_rate": 0.00017021276595744682,
60
+ "loss": 1.3443,
61
+ "step": 100
62
+ },
63
+ {
64
+ "epoch": 0.2,
65
+ "eval_loss": 0.7313376665115356,
66
+ "eval_runtime": 619.8363,
67
+ "eval_samples_per_second": 4.366,
68
+ "eval_steps_per_second": 0.547,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.25,
73
+ "grad_norm": 0.2668892741203308,
74
+ "learning_rate": 0.00015957446808510637,
75
+ "loss": 1.2563,
76
+ "step": 125
77
+ },
78
+ {
79
+ "epoch": 0.25,
80
+ "eval_loss": 0.7282304167747498,
81
+ "eval_runtime": 619.962,
82
+ "eval_samples_per_second": 4.365,
83
+ "eval_steps_per_second": 0.547,
84
+ "step": 125
85
+ },
86
+ {
87
+ "epoch": 0.3,
88
+ "grad_norm": 0.21089820563793182,
89
+ "learning_rate": 0.00014893617021276596,
90
+ "loss": 0.7529,
91
+ "step": 150
92
+ },
93
+ {
94
+ "epoch": 0.3,
95
+ "eval_loss": 0.7184526324272156,
96
+ "eval_runtime": 619.2606,
97
+ "eval_samples_per_second": 4.37,
98
+ "eval_steps_per_second": 0.547,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.35,
103
+ "grad_norm": 0.158623605966568,
104
+ "learning_rate": 0.00013829787234042554,
105
+ "loss": 0.7957,
106
+ "step": 175
107
+ },
108
+ {
109
+ "epoch": 0.35,
110
+ "eval_loss": 0.7136204242706299,
111
+ "eval_runtime": 619.6757,
112
+ "eval_samples_per_second": 4.367,
113
+ "eval_steps_per_second": 0.547,
114
+ "step": 175
115
+ },
116
+ {
117
+ "epoch": 0.4,
118
+ "grad_norm": 0.16229337453842163,
119
+ "learning_rate": 0.00012765957446808513,
120
+ "loss": 0.7322,
121
+ "step": 200
122
+ },
123
+ {
124
+ "epoch": 0.4,
125
+ "eval_loss": 0.7111368179321289,
126
+ "eval_runtime": 620.1668,
127
+ "eval_samples_per_second": 4.363,
128
+ "eval_steps_per_second": 0.547,
129
+ "step": 200
130
+ }
131
+ ],
132
+ "logging_steps": 25,
133
+ "max_steps": 500,
134
+ "num_input_tokens_seen": 0,
135
+ "num_train_epochs": 9223372036854775807,
136
+ "save_steps": 100,
137
+ "stateful_callbacks": {
138
+ "TrainerControl": {
139
+ "args": {
140
+ "should_epoch_stop": false,
141
+ "should_evaluate": false,
142
+ "should_log": false,
143
+ "should_save": true,
144
+ "should_training_stop": false
145
+ },
146
+ "attributes": {}
147
+ }
148
+ },
149
+ "total_flos": 4.0317260660736e+16,
150
+ "train_batch_size": 1,
151
+ "trial_name": null,
152
+ "trial_params": null
153
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0bab29e9b3132b540b844be698b8d6cee10ba9f03ea8a1a2c3173e08e976c0
3
+ size 5240
checkpoint-300/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: bigcode/starcoderbase-1b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.1.dev0
checkpoint-300/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoderbase-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "c_proj",
24
+ "c_fc",
25
+ "c_attn",
26
+ "q_attn"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
checkpoint-300/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d289994bea48630a214064b1f4f4d540dd50c8fe0b1009ca26cc7f2d6ea2a07
3
+ size 22241240
checkpoint-300/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50ffaab46c673d6d0a38348867dc10cc692d2fbad4bf3dcde4d644393b20adbf
3
+ size 44594810
checkpoint-300/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79ec5c37f4c16cfc2374f2325906bbe634a17293146746c113a3ef50890336e0
3
+ size 14244
checkpoint-300/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:011625d6b9cb46061d32ca7fe2179d571926a66a901f0584d591ac4f9b8e30db
3
+ size 1064
checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.6,
5
+ "eval_steps": 25,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.05,
13
+ "grad_norm": 0.18923527002334595,
14
+ "learning_rate": 0.0001666666666666667,
15
+ "loss": 1.1779,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "eval_loss": 0.7435017824172974,
21
+ "eval_runtime": 621.1563,
22
+ "eval_samples_per_second": 4.356,
23
+ "eval_steps_per_second": 0.546,
24
+ "step": 25
25
+ },
26
+ {
27
+ "epoch": 0.1,
28
+ "grad_norm": 0.16780352592468262,
29
+ "learning_rate": 0.00019148936170212768,
30
+ "loss": 1.2708,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 0.1,
35
+ "eval_loss": 0.7384106516838074,
36
+ "eval_runtime": 619.3795,
37
+ "eval_samples_per_second": 4.369,
38
+ "eval_steps_per_second": 0.547,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.15,
43
+ "grad_norm": 0.1804531365633011,
44
+ "learning_rate": 0.00018085106382978726,
45
+ "loss": 1.2848,
46
+ "step": 75
47
+ },
48
+ {
49
+ "epoch": 0.15,
50
+ "eval_loss": 0.7341726422309875,
51
+ "eval_runtime": 619.225,
52
+ "eval_samples_per_second": 4.37,
53
+ "eval_steps_per_second": 0.547,
54
+ "step": 75
55
+ },
56
+ {
57
+ "epoch": 0.2,
58
+ "grad_norm": 0.17204701900482178,
59
+ "learning_rate": 0.00017021276595744682,
60
+ "loss": 1.3443,
61
+ "step": 100
62
+ },
63
+ {
64
+ "epoch": 0.2,
65
+ "eval_loss": 0.7313376665115356,
66
+ "eval_runtime": 619.8363,
67
+ "eval_samples_per_second": 4.366,
68
+ "eval_steps_per_second": 0.547,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.25,
73
+ "grad_norm": 0.2668892741203308,
74
+ "learning_rate": 0.00015957446808510637,
75
+ "loss": 1.2563,
76
+ "step": 125
77
+ },
78
+ {
79
+ "epoch": 0.25,
80
+ "eval_loss": 0.7282304167747498,
81
+ "eval_runtime": 619.962,
82
+ "eval_samples_per_second": 4.365,
83
+ "eval_steps_per_second": 0.547,
84
+ "step": 125
85
+ },
86
+ {
87
+ "epoch": 0.3,
88
+ "grad_norm": 0.21089820563793182,
89
+ "learning_rate": 0.00014893617021276596,
90
+ "loss": 0.7529,
91
+ "step": 150
92
+ },
93
+ {
94
+ "epoch": 0.3,
95
+ "eval_loss": 0.7184526324272156,
96
+ "eval_runtime": 619.2606,
97
+ "eval_samples_per_second": 4.37,
98
+ "eval_steps_per_second": 0.547,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.35,
103
+ "grad_norm": 0.158623605966568,
104
+ "learning_rate": 0.00013829787234042554,
105
+ "loss": 0.7957,
106
+ "step": 175
107
+ },
108
+ {
109
+ "epoch": 0.35,
110
+ "eval_loss": 0.7136204242706299,
111
+ "eval_runtime": 619.6757,
112
+ "eval_samples_per_second": 4.367,
113
+ "eval_steps_per_second": 0.547,
114
+ "step": 175
115
+ },
116
+ {
117
+ "epoch": 0.4,
118
+ "grad_norm": 0.16229337453842163,
119
+ "learning_rate": 0.00012765957446808513,
120
+ "loss": 0.7322,
121
+ "step": 200
122
+ },
123
+ {
124
+ "epoch": 0.4,
125
+ "eval_loss": 0.7111368179321289,
126
+ "eval_runtime": 620.1668,
127
+ "eval_samples_per_second": 4.363,
128
+ "eval_steps_per_second": 0.547,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.45,
133
+ "grad_norm": 0.2108817994594574,
134
+ "learning_rate": 0.00011702127659574468,
135
+ "loss": 0.671,
136
+ "step": 225
137
+ },
138
+ {
139
+ "epoch": 0.45,
140
+ "eval_loss": 0.708846390247345,
141
+ "eval_runtime": 683.0846,
142
+ "eval_samples_per_second": 3.961,
143
+ "eval_steps_per_second": 0.496,
144
+ "step": 225
145
+ },
146
+ {
147
+ "epoch": 0.5,
148
+ "grad_norm": 0.24791103601455688,
149
+ "learning_rate": 0.00010638297872340425,
150
+ "loss": 0.5157,
151
+ "step": 250
152
+ },
153
+ {
154
+ "epoch": 0.5,
155
+ "eval_loss": 0.7082125544548035,
156
+ "eval_runtime": 621.1208,
157
+ "eval_samples_per_second": 4.357,
158
+ "eval_steps_per_second": 0.546,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 0.55,
163
+ "grad_norm": 0.17589089274406433,
164
+ "learning_rate": 9.574468085106384e-05,
165
+ "loss": 0.4863,
166
+ "step": 275
167
+ },
168
+ {
169
+ "epoch": 0.55,
170
+ "eval_loss": 0.7080355882644653,
171
+ "eval_runtime": 619.9715,
172
+ "eval_samples_per_second": 4.365,
173
+ "eval_steps_per_second": 0.547,
174
+ "step": 275
175
+ },
176
+ {
177
+ "epoch": 0.6,
178
+ "grad_norm": 0.18594518303871155,
179
+ "learning_rate": 8.510638297872341e-05,
180
+ "loss": 0.5497,
181
+ "step": 300
182
+ },
183
+ {
184
+ "epoch": 0.6,
185
+ "eval_loss": 0.7067092657089233,
186
+ "eval_runtime": 619.2811,
187
+ "eval_samples_per_second": 4.37,
188
+ "eval_steps_per_second": 0.547,
189
+ "step": 300
190
+ }
191
+ ],
192
+ "logging_steps": 25,
193
+ "max_steps": 500,
194
+ "num_input_tokens_seen": 0,
195
+ "num_train_epochs": 9223372036854775807,
196
+ "save_steps": 100,
197
+ "stateful_callbacks": {
198
+ "TrainerControl": {
199
+ "args": {
200
+ "should_epoch_stop": false,
201
+ "should_evaluate": false,
202
+ "should_log": false,
203
+ "should_save": true,
204
+ "should_training_stop": false
205
+ },
206
+ "attributes": {}
207
+ }
208
+ },
209
+ "total_flos": 6.0475890991104e+16,
210
+ "train_batch_size": 1,
211
+ "trial_name": null,
212
+ "trial_params": null
213
+ }
checkpoint-300/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0bab29e9b3132b540b844be698b8d6cee10ba9f03ea8a1a2c3173e08e976c0
3
+ size 5240
checkpoint-400/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: bigcode/starcoderbase-1b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.1.dev0
checkpoint-400/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoderbase-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "c_proj",
24
+ "c_fc",
25
+ "c_attn",
26
+ "q_attn"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
checkpoint-400/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:040bdbe17b6a4596b2a7a8008957c8e536113b092c49a90ca55fd4918546f748
3
+ size 22241240
checkpoint-400/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c3b9ed5c80976fb574ae9a997544da020bf1a811116d86d303a2bc32b8a04de
3
+ size 44594810
checkpoint-400/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d86f35baf79b824eb04e0ea9ba7c619c7f80de41c6535aacbaac77b6d4578acc
3
+ size 14244
checkpoint-400/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ee470593ab3968bc9ba7865981396cc326f4b2a1146c08e7eab84acb6bb9b43
3
+ size 1064
checkpoint-400/trainer_state.json ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8,
5
+ "eval_steps": 25,
6
+ "global_step": 400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.05,
13
+ "grad_norm": 0.18923527002334595,
14
+ "learning_rate": 0.0001666666666666667,
15
+ "loss": 1.1779,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "eval_loss": 0.7435017824172974,
21
+ "eval_runtime": 621.1563,
22
+ "eval_samples_per_second": 4.356,
23
+ "eval_steps_per_second": 0.546,
24
+ "step": 25
25
+ },
26
+ {
27
+ "epoch": 0.1,
28
+ "grad_norm": 0.16780352592468262,
29
+ "learning_rate": 0.00019148936170212768,
30
+ "loss": 1.2708,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 0.1,
35
+ "eval_loss": 0.7384106516838074,
36
+ "eval_runtime": 619.3795,
37
+ "eval_samples_per_second": 4.369,
38
+ "eval_steps_per_second": 0.547,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.15,
43
+ "grad_norm": 0.1804531365633011,
44
+ "learning_rate": 0.00018085106382978726,
45
+ "loss": 1.2848,
46
+ "step": 75
47
+ },
48
+ {
49
+ "epoch": 0.15,
50
+ "eval_loss": 0.7341726422309875,
51
+ "eval_runtime": 619.225,
52
+ "eval_samples_per_second": 4.37,
53
+ "eval_steps_per_second": 0.547,
54
+ "step": 75
55
+ },
56
+ {
57
+ "epoch": 0.2,
58
+ "grad_norm": 0.17204701900482178,
59
+ "learning_rate": 0.00017021276595744682,
60
+ "loss": 1.3443,
61
+ "step": 100
62
+ },
63
+ {
64
+ "epoch": 0.2,
65
+ "eval_loss": 0.7313376665115356,
66
+ "eval_runtime": 619.8363,
67
+ "eval_samples_per_second": 4.366,
68
+ "eval_steps_per_second": 0.547,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.25,
73
+ "grad_norm": 0.2668892741203308,
74
+ "learning_rate": 0.00015957446808510637,
75
+ "loss": 1.2563,
76
+ "step": 125
77
+ },
78
+ {
79
+ "epoch": 0.25,
80
+ "eval_loss": 0.7282304167747498,
81
+ "eval_runtime": 619.962,
82
+ "eval_samples_per_second": 4.365,
83
+ "eval_steps_per_second": 0.547,
84
+ "step": 125
85
+ },
86
+ {
87
+ "epoch": 0.3,
88
+ "grad_norm": 0.21089820563793182,
89
+ "learning_rate": 0.00014893617021276596,
90
+ "loss": 0.7529,
91
+ "step": 150
92
+ },
93
+ {
94
+ "epoch": 0.3,
95
+ "eval_loss": 0.7184526324272156,
96
+ "eval_runtime": 619.2606,
97
+ "eval_samples_per_second": 4.37,
98
+ "eval_steps_per_second": 0.547,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.35,
103
+ "grad_norm": 0.158623605966568,
104
+ "learning_rate": 0.00013829787234042554,
105
+ "loss": 0.7957,
106
+ "step": 175
107
+ },
108
+ {
109
+ "epoch": 0.35,
110
+ "eval_loss": 0.7136204242706299,
111
+ "eval_runtime": 619.6757,
112
+ "eval_samples_per_second": 4.367,
113
+ "eval_steps_per_second": 0.547,
114
+ "step": 175
115
+ },
116
+ {
117
+ "epoch": 0.4,
118
+ "grad_norm": 0.16229337453842163,
119
+ "learning_rate": 0.00012765957446808513,
120
+ "loss": 0.7322,
121
+ "step": 200
122
+ },
123
+ {
124
+ "epoch": 0.4,
125
+ "eval_loss": 0.7111368179321289,
126
+ "eval_runtime": 620.1668,
127
+ "eval_samples_per_second": 4.363,
128
+ "eval_steps_per_second": 0.547,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.45,
133
+ "grad_norm": 0.2108817994594574,
134
+ "learning_rate": 0.00011702127659574468,
135
+ "loss": 0.671,
136
+ "step": 225
137
+ },
138
+ {
139
+ "epoch": 0.45,
140
+ "eval_loss": 0.708846390247345,
141
+ "eval_runtime": 683.0846,
142
+ "eval_samples_per_second": 3.961,
143
+ "eval_steps_per_second": 0.496,
144
+ "step": 225
145
+ },
146
+ {
147
+ "epoch": 0.5,
148
+ "grad_norm": 0.24791103601455688,
149
+ "learning_rate": 0.00010638297872340425,
150
+ "loss": 0.5157,
151
+ "step": 250
152
+ },
153
+ {
154
+ "epoch": 0.5,
155
+ "eval_loss": 0.7082125544548035,
156
+ "eval_runtime": 621.1208,
157
+ "eval_samples_per_second": 4.357,
158
+ "eval_steps_per_second": 0.546,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 0.55,
163
+ "grad_norm": 0.17589089274406433,
164
+ "learning_rate": 9.574468085106384e-05,
165
+ "loss": 0.4863,
166
+ "step": 275
167
+ },
168
+ {
169
+ "epoch": 0.55,
170
+ "eval_loss": 0.7080355882644653,
171
+ "eval_runtime": 619.9715,
172
+ "eval_samples_per_second": 4.365,
173
+ "eval_steps_per_second": 0.547,
174
+ "step": 275
175
+ },
176
+ {
177
+ "epoch": 0.6,
178
+ "grad_norm": 0.18594518303871155,
179
+ "learning_rate": 8.510638297872341e-05,
180
+ "loss": 0.5497,
181
+ "step": 300
182
+ },
183
+ {
184
+ "epoch": 0.6,
185
+ "eval_loss": 0.7067092657089233,
186
+ "eval_runtime": 619.2811,
187
+ "eval_samples_per_second": 4.37,
188
+ "eval_steps_per_second": 0.547,
189
+ "step": 300
190
+ },
191
+ {
192
+ "epoch": 0.65,
193
+ "grad_norm": 0.24192531406879425,
194
+ "learning_rate": 7.446808510638298e-05,
195
+ "loss": 0.4659,
196
+ "step": 325
197
+ },
198
+ {
199
+ "epoch": 0.65,
200
+ "eval_loss": 0.7063791155815125,
201
+ "eval_runtime": 619.417,
202
+ "eval_samples_per_second": 4.369,
203
+ "eval_steps_per_second": 0.547,
204
+ "step": 325
205
+ },
206
+ {
207
+ "epoch": 0.7,
208
+ "grad_norm": 0.1753111630678177,
209
+ "learning_rate": 6.382978723404256e-05,
210
+ "loss": 0.4427,
211
+ "step": 350
212
+ },
213
+ {
214
+ "epoch": 0.7,
215
+ "eval_loss": 0.7059241533279419,
216
+ "eval_runtime": 619.429,
217
+ "eval_samples_per_second": 4.369,
218
+ "eval_steps_per_second": 0.547,
219
+ "step": 350
220
+ },
221
+ {
222
+ "epoch": 0.75,
223
+ "grad_norm": 0.22774459421634674,
224
+ "learning_rate": 5.319148936170213e-05,
225
+ "loss": 0.4565,
226
+ "step": 375
227
+ },
228
+ {
229
+ "epoch": 0.75,
230
+ "eval_loss": 0.7058201432228088,
231
+ "eval_runtime": 619.3116,
232
+ "eval_samples_per_second": 4.369,
233
+ "eval_steps_per_second": 0.547,
234
+ "step": 375
235
+ },
236
+ {
237
+ "epoch": 0.8,
238
+ "grad_norm": 0.18160311877727509,
239
+ "learning_rate": 4.2553191489361704e-05,
240
+ "loss": 0.4964,
241
+ "step": 400
242
+ },
243
+ {
244
+ "epoch": 0.8,
245
+ "eval_loss": 0.7054587006568909,
246
+ "eval_runtime": 619.5833,
247
+ "eval_samples_per_second": 4.367,
248
+ "eval_steps_per_second": 0.547,
249
+ "step": 400
250
+ }
251
+ ],
252
+ "logging_steps": 25,
253
+ "max_steps": 500,
254
+ "num_input_tokens_seen": 0,
255
+ "num_train_epochs": 9223372036854775807,
256
+ "save_steps": 100,
257
+ "stateful_callbacks": {
258
+ "TrainerControl": {
259
+ "args": {
260
+ "should_epoch_stop": false,
261
+ "should_evaluate": false,
262
+ "should_log": false,
263
+ "should_save": true,
264
+ "should_training_stop": false
265
+ },
266
+ "attributes": {}
267
+ }
268
+ },
269
+ "total_flos": 8.0634521321472e+16,
270
+ "train_batch_size": 1,
271
+ "trial_name": null,
272
+ "trial_params": null
273
+ }
checkpoint-400/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0bab29e9b3132b540b844be698b8d6cee10ba9f03ea8a1a2c3173e08e976c0
3
+ size 5240
checkpoint-500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: bigcode/starcoderbase-1b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.12.1.dev0
checkpoint-500/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "bigcode/starcoderbase-1b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "c_proj",
24
+ "c_fc",
25
+ "c_attn",
26
+ "q_attn"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
checkpoint-500/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8ad067c72fbc48be19d899f3c8042114dea086ec96a0bb89bb8896a1d2618c9
3
+ size 22241240
checkpoint-500/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38c403b2631f02989de64e1b8df594c52858112ebf6a2ff452e592d07848473a
3
+ size 44594810
checkpoint-500/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:392861f8be0d9de34cd06fa510b6a2f8731642b86d2cd629a1d819625ac50f24
3
+ size 14244
checkpoint-500/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f4fe8e328be6e10e053e14666b2e571c45c73d9a8291556b08910e3da67b3e6
3
+ size 1064
checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 25,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.05,
13
+ "grad_norm": 0.18923527002334595,
14
+ "learning_rate": 0.0001666666666666667,
15
+ "loss": 1.1779,
16
+ "step": 25
17
+ },
18
+ {
19
+ "epoch": 0.05,
20
+ "eval_loss": 0.7435017824172974,
21
+ "eval_runtime": 621.1563,
22
+ "eval_samples_per_second": 4.356,
23
+ "eval_steps_per_second": 0.546,
24
+ "step": 25
25
+ },
26
+ {
27
+ "epoch": 0.1,
28
+ "grad_norm": 0.16780352592468262,
29
+ "learning_rate": 0.00019148936170212768,
30
+ "loss": 1.2708,
31
+ "step": 50
32
+ },
33
+ {
34
+ "epoch": 0.1,
35
+ "eval_loss": 0.7384106516838074,
36
+ "eval_runtime": 619.3795,
37
+ "eval_samples_per_second": 4.369,
38
+ "eval_steps_per_second": 0.547,
39
+ "step": 50
40
+ },
41
+ {
42
+ "epoch": 0.15,
43
+ "grad_norm": 0.1804531365633011,
44
+ "learning_rate": 0.00018085106382978726,
45
+ "loss": 1.2848,
46
+ "step": 75
47
+ },
48
+ {
49
+ "epoch": 0.15,
50
+ "eval_loss": 0.7341726422309875,
51
+ "eval_runtime": 619.225,
52
+ "eval_samples_per_second": 4.37,
53
+ "eval_steps_per_second": 0.547,
54
+ "step": 75
55
+ },
56
+ {
57
+ "epoch": 0.2,
58
+ "grad_norm": 0.17204701900482178,
59
+ "learning_rate": 0.00017021276595744682,
60
+ "loss": 1.3443,
61
+ "step": 100
62
+ },
63
+ {
64
+ "epoch": 0.2,
65
+ "eval_loss": 0.7313376665115356,
66
+ "eval_runtime": 619.8363,
67
+ "eval_samples_per_second": 4.366,
68
+ "eval_steps_per_second": 0.547,
69
+ "step": 100
70
+ },
71
+ {
72
+ "epoch": 0.25,
73
+ "grad_norm": 0.2668892741203308,
74
+ "learning_rate": 0.00015957446808510637,
75
+ "loss": 1.2563,
76
+ "step": 125
77
+ },
78
+ {
79
+ "epoch": 0.25,
80
+ "eval_loss": 0.7282304167747498,
81
+ "eval_runtime": 619.962,
82
+ "eval_samples_per_second": 4.365,
83
+ "eval_steps_per_second": 0.547,
84
+ "step": 125
85
+ },
86
+ {
87
+ "epoch": 0.3,
88
+ "grad_norm": 0.21089820563793182,
89
+ "learning_rate": 0.00014893617021276596,
90
+ "loss": 0.7529,
91
+ "step": 150
92
+ },
93
+ {
94
+ "epoch": 0.3,
95
+ "eval_loss": 0.7184526324272156,
96
+ "eval_runtime": 619.2606,
97
+ "eval_samples_per_second": 4.37,
98
+ "eval_steps_per_second": 0.547,
99
+ "step": 150
100
+ },
101
+ {
102
+ "epoch": 0.35,
103
+ "grad_norm": 0.158623605966568,
104
+ "learning_rate": 0.00013829787234042554,
105
+ "loss": 0.7957,
106
+ "step": 175
107
+ },
108
+ {
109
+ "epoch": 0.35,
110
+ "eval_loss": 0.7136204242706299,
111
+ "eval_runtime": 619.6757,
112
+ "eval_samples_per_second": 4.367,
113
+ "eval_steps_per_second": 0.547,
114
+ "step": 175
115
+ },
116
+ {
117
+ "epoch": 0.4,
118
+ "grad_norm": 0.16229337453842163,
119
+ "learning_rate": 0.00012765957446808513,
120
+ "loss": 0.7322,
121
+ "step": 200
122
+ },
123
+ {
124
+ "epoch": 0.4,
125
+ "eval_loss": 0.7111368179321289,
126
+ "eval_runtime": 620.1668,
127
+ "eval_samples_per_second": 4.363,
128
+ "eval_steps_per_second": 0.547,
129
+ "step": 200
130
+ },
131
+ {
132
+ "epoch": 0.45,
133
+ "grad_norm": 0.2108817994594574,
134
+ "learning_rate": 0.00011702127659574468,
135
+ "loss": 0.671,
136
+ "step": 225
137
+ },
138
+ {
139
+ "epoch": 0.45,
140
+ "eval_loss": 0.708846390247345,
141
+ "eval_runtime": 683.0846,
142
+ "eval_samples_per_second": 3.961,
143
+ "eval_steps_per_second": 0.496,
144
+ "step": 225
145
+ },
146
+ {
147
+ "epoch": 0.5,
148
+ "grad_norm": 0.24791103601455688,
149
+ "learning_rate": 0.00010638297872340425,
150
+ "loss": 0.5157,
151
+ "step": 250
152
+ },
153
+ {
154
+ "epoch": 0.5,
155
+ "eval_loss": 0.7082125544548035,
156
+ "eval_runtime": 621.1208,
157
+ "eval_samples_per_second": 4.357,
158
+ "eval_steps_per_second": 0.546,
159
+ "step": 250
160
+ },
161
+ {
162
+ "epoch": 0.55,
163
+ "grad_norm": 0.17589089274406433,
164
+ "learning_rate": 9.574468085106384e-05,
165
+ "loss": 0.4863,
166
+ "step": 275
167
+ },
168
+ {
169
+ "epoch": 0.55,
170
+ "eval_loss": 0.7080355882644653,
171
+ "eval_runtime": 619.9715,
172
+ "eval_samples_per_second": 4.365,
173
+ "eval_steps_per_second": 0.547,
174
+ "step": 275
175
+ },
176
+ {
177
+ "epoch": 0.6,
178
+ "grad_norm": 0.18594518303871155,
179
+ "learning_rate": 8.510638297872341e-05,
180
+ "loss": 0.5497,
181
+ "step": 300
182
+ },
183
+ {
184
+ "epoch": 0.6,
185
+ "eval_loss": 0.7067092657089233,
186
+ "eval_runtime": 619.2811,
187
+ "eval_samples_per_second": 4.37,
188
+ "eval_steps_per_second": 0.547,
189
+ "step": 300
190
+ },
191
+ {
192
+ "epoch": 0.65,
193
+ "grad_norm": 0.24192531406879425,
194
+ "learning_rate": 7.446808510638298e-05,
195
+ "loss": 0.4659,
196
+ "step": 325
197
+ },
198
+ {
199
+ "epoch": 0.65,
200
+ "eval_loss": 0.7063791155815125,
201
+ "eval_runtime": 619.417,
202
+ "eval_samples_per_second": 4.369,
203
+ "eval_steps_per_second": 0.547,
204
+ "step": 325
205
+ },
206
+ {
207
+ "epoch": 0.7,
208
+ "grad_norm": 0.1753111630678177,
209
+ "learning_rate": 6.382978723404256e-05,
210
+ "loss": 0.4427,
211
+ "step": 350
212
+ },
213
+ {
214
+ "epoch": 0.7,
215
+ "eval_loss": 0.7059241533279419,
216
+ "eval_runtime": 619.429,
217
+ "eval_samples_per_second": 4.369,
218
+ "eval_steps_per_second": 0.547,
219
+ "step": 350
220
+ },
221
+ {
222
+ "epoch": 0.75,
223
+ "grad_norm": 0.22774459421634674,
224
+ "learning_rate": 5.319148936170213e-05,
225
+ "loss": 0.4565,
226
+ "step": 375
227
+ },
228
+ {
229
+ "epoch": 0.75,
230
+ "eval_loss": 0.7058201432228088,
231
+ "eval_runtime": 619.3116,
232
+ "eval_samples_per_second": 4.369,
233
+ "eval_steps_per_second": 0.547,
234
+ "step": 375
235
+ },
236
+ {
237
+ "epoch": 0.8,
238
+ "grad_norm": 0.18160311877727509,
239
+ "learning_rate": 4.2553191489361704e-05,
240
+ "loss": 0.4964,
241
+ "step": 400
242
+ },
243
+ {
244
+ "epoch": 0.8,
245
+ "eval_loss": 0.7054587006568909,
246
+ "eval_runtime": 619.5833,
247
+ "eval_samples_per_second": 4.367,
248
+ "eval_steps_per_second": 0.547,
249
+ "step": 400
250
+ },
251
+ {
252
+ "epoch": 0.85,
253
+ "grad_norm": 0.21065783500671387,
254
+ "learning_rate": 3.191489361702128e-05,
255
+ "loss": 0.5872,
256
+ "step": 425
257
+ },
258
+ {
259
+ "epoch": 0.85,
260
+ "eval_loss": 0.7043496966362,
261
+ "eval_runtime": 620.3928,
262
+ "eval_samples_per_second": 4.362,
263
+ "eval_steps_per_second": 0.546,
264
+ "step": 425
265
+ },
266
+ {
267
+ "epoch": 0.9,
268
+ "grad_norm": 0.30514490604400635,
269
+ "learning_rate": 2.1276595744680852e-05,
270
+ "loss": 0.5681,
271
+ "step": 450
272
+ },
273
+ {
274
+ "epoch": 0.9,
275
+ "eval_loss": 0.7028947472572327,
276
+ "eval_runtime": 619.3459,
277
+ "eval_samples_per_second": 4.369,
278
+ "eval_steps_per_second": 0.547,
279
+ "step": 450
280
+ },
281
+ {
282
+ "epoch": 0.95,
283
+ "grad_norm": 0.19263707101345062,
284
+ "learning_rate": 1.0638297872340426e-05,
285
+ "loss": 0.7266,
286
+ "step": 475
287
+ },
288
+ {
289
+ "epoch": 0.95,
290
+ "eval_loss": 0.7024132609367371,
291
+ "eval_runtime": 619.4408,
292
+ "eval_samples_per_second": 4.368,
293
+ "eval_steps_per_second": 0.547,
294
+ "step": 475
295
+ },
296
+ {
297
+ "epoch": 1.0,
298
+ "grad_norm": 0.2509796619415283,
299
+ "learning_rate": 0.0,
300
+ "loss": 0.5945,
301
+ "step": 500
302
+ },
303
+ {
304
+ "epoch": 1.0,
305
+ "eval_loss": 0.7022281885147095,
306
+ "eval_runtime": 619.6582,
307
+ "eval_samples_per_second": 4.367,
308
+ "eval_steps_per_second": 0.547,
309
+ "step": 500
310
+ }
311
+ ],
312
+ "logging_steps": 25,
313
+ "max_steps": 500,
314
+ "num_input_tokens_seen": 0,
315
+ "num_train_epochs": 9223372036854775807,
316
+ "save_steps": 100,
317
+ "stateful_callbacks": {
318
+ "TrainerControl": {
319
+ "args": {
320
+ "should_epoch_stop": false,
321
+ "should_evaluate": false,
322
+ "should_log": false,
323
+ "should_save": true,
324
+ "should_training_stop": true
325
+ },
326
+ "attributes": {}
327
+ }
328
+ },
329
+ "total_flos": 1.0079315165184e+17,
330
+ "train_batch_size": 1,
331
+ "trial_name": null,
332
+ "trial_params": null
333
+ }
checkpoint-500/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0bab29e9b3132b540b844be698b8d6cee10ba9f03ea8a1a2c3173e08e976c0
3
+ size 5240
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf0bab29e9b3132b540b844be698b8d6cee10ba9f03ea8a1a2c3173e08e976c0
3
+ size 5240