|
from typing import Dict |
|
import torch |
|
from diffusers import FluxKontextPipeline |
|
from io import BytesIO |
|
import base64 |
|
from PIL import Image, ImageOps |
|
import numpy as np |
|
|
|
class EndpointHandler: |
|
def __init__(self, path: str = ""): |
|
print("π Initializing Flux Kontext pipeline...") |
|
|
|
|
|
self.pipe = FluxKontextPipeline.from_pretrained( |
|
"black-forest-labs/FLUX.1-Kontext-dev", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
|
|
|
|
print("π Available methods on pipeline:", dir(self.pipe)) |
|
|
|
|
|
try: |
|
self.pipe.load_lora_weights( |
|
"Texttra/BhoriKontext", |
|
weight_name="Bh0r12.safetensors" |
|
) |
|
print("β
LoRA weights loaded from Texttra/BhoriKontext/Bh0r12.safetensors.") |
|
except Exception as e: |
|
print(f"β οΈ Failed to load LoRA weights: {str(e)}") |
|
|
|
|
|
self.pipe.to("cuda" if torch.cuda.is_available() else "cpu") |
|
print("β
Model ready with LoRA applied.") |
|
|
|
def __call__(self, data: Dict) -> Dict: |
|
print("π§ Received raw data type:", type(data)) |
|
print("π§ Received raw data content:", data) |
|
|
|
|
|
if isinstance(data, dict): |
|
prompt = data.get("prompt") |
|
image_input = data.get("image") |
|
|
|
|
|
if prompt is None and image_input is None: |
|
inputs = data.get("inputs") |
|
if isinstance(inputs, dict): |
|
prompt = inputs.get("prompt") |
|
image_input = inputs.get("image") |
|
else: |
|
return {"error": "Expected 'inputs' to be a JSON object containing 'prompt' and 'image'."} |
|
else: |
|
return {"error": "Input payload must be a JSON object."} |
|
|
|
if not prompt: |
|
return {"error": "Missing 'prompt' in input data."} |
|
if not image_input: |
|
return {"error": "Missing 'image' (base64) in input data."} |
|
|
|
|
|
try: |
|
image_bytes = base64.b64decode(image_input) |
|
image = Image.open(BytesIO(image_bytes)).convert("RGB") |
|
image = ImageOps.exif_transpose(image) |
|
except Exception as e: |
|
return {"error": f"Failed to decode 'image' as base64: {str(e)}"} |
|
|
|
|
|
print(f"π Final prompt: {prompt}") |
|
print(f"πΌοΈ Image size: {image.size}") |
|
|
|
|
|
try: |
|
output = self.pipe( |
|
prompt=prompt, |
|
image=image, |
|
num_inference_steps=35, |
|
guidance_scale=4.0 |
|
).images[0] |
|
print("π¨ Image generated.") |
|
|
|
|
|
output_array = np.array(output) |
|
output_array = np.clip(output_array, 0, 255).astype(np.uint8) |
|
output = Image.fromarray(output_array) |
|
print("π Hard clamped output pixel values to [0, 255].") |
|
|
|
except Exception as e: |
|
return {"error": f"Model inference failed: {str(e)}"} |
|
|
|
|
|
try: |
|
buffer = BytesIO() |
|
output.save(buffer, format="PNG") |
|
base64_image = base64.b64encode(buffer.getvalue()).decode("utf-8") |
|
print("β
Returning image.") |
|
return {"image": base64_image} |
|
except Exception as e: |
|
return {"error": f"Failed to encode output image: {str(e)}"} |
|
|