Update README.md
Browse files
README.md
CHANGED
@@ -39,7 +39,7 @@ def get_embedding(last_hidden_state: torch.Tensor, attention_mask: torch.Tensor)
|
|
39 |
### Encode Text Query
|
40 |
|
41 |
```python
|
42 |
-
queries = ["query: Where can we
|
43 |
query_inputs = processor(queries, return_tensors="pt", padding="longest", max_length=128, truncation=True).to('cuda:0')
|
44 |
output = model(**query_inputs, return_dict=True, output_hidden_states=True)
|
45 |
query_embeddings = get_embedding(output.hidden_states[-1], query_inputs["attention_mask"])
|
@@ -49,12 +49,24 @@ query_embeddings = get_embedding(output.hidden_states[-1], query_inputs["attenti
|
|
49 |
|
50 |
```python
|
51 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
passage_image1 = Image.open("path/to/your/image1.png")
|
54 |
-
passage_image2 = Image.open("path/to/your/image2.png")
|
55 |
passage_images = [passage_image1, passage_image2]
|
56 |
passage_prompts = ["\nWhat is shown in this image?</s>", "\nWhat is shown in this image?</s>"]
|
57 |
|
|
|
58 |
passage_inputs = processor(passage_prompts, images=passage_images, return_tensors="pt", padding="longest", max_length=4096, truncation=True).to('cuda:0')
|
59 |
output = model(**passage_inputs, return_dict=True, output_hidden_states=True)
|
60 |
doc_embeddings = get_embedding(output.hidden_states[-1], passage_inputs["attention_mask"])
|
@@ -72,7 +84,10 @@ print(similarities)
|
|
72 |
### Encode Document Text
|
73 |
This DSE checkpoint is warm-up with `Tevatron/msmarco-passage-aug`, thus the model can also effectively encode document as text input.
|
74 |
```python
|
75 |
-
passage_prompts = [
|
|
|
|
|
|
|
76 |
|
77 |
passage_inputs = processor(passage_prompts, images=None, return_tensors="pt", padding="longest", max_length=4096, truncation=True).to('cuda:0')
|
78 |
output = model(**passage_inputs, return_dict=True, output_hidden_states=True)
|
|
|
39 |
### Encode Text Query
|
40 |
|
41 |
```python
|
42 |
+
queries = ["query: Where can we see Llama?", "query: What is LLaMA model?"]
|
43 |
query_inputs = processor(queries, return_tensors="pt", padding="longest", max_length=128, truncation=True).to('cuda:0')
|
44 |
output = model(**query_inputs, return_dict=True, output_hidden_states=True)
|
45 |
query_embeddings = get_embedding(output.hidden_states[-1], query_inputs["attention_mask"])
|
|
|
49 |
|
50 |
```python
|
51 |
from PIL import Image
|
52 |
+
import requests
|
53 |
+
from io import BytesIO
|
54 |
+
|
55 |
+
# URLs of the images
|
56 |
+
url1 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v1.0/blob/main/animal-llama.png"
|
57 |
+
url2 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v1.0/blob/main/meta-llama.png"
|
58 |
+
|
59 |
+
# Download and open images
|
60 |
+
response1 = requests.get(url1)
|
61 |
+
response2 = requests.get(url2)
|
62 |
+
|
63 |
+
passage_image1 = Image.open(BytesIO(response1.content))
|
64 |
+
passage_image2 = Image.open(BytesIO(response2.content))
|
65 |
|
|
|
|
|
66 |
passage_images = [passage_image1, passage_image2]
|
67 |
passage_prompts = ["\nWhat is shown in this image?</s>", "\nWhat is shown in this image?</s>"]
|
68 |
|
69 |
+
# Process inputs and get embeddings
|
70 |
passage_inputs = processor(passage_prompts, images=passage_images, return_tensors="pt", padding="longest", max_length=4096, truncation=True).to('cuda:0')
|
71 |
output = model(**passage_inputs, return_dict=True, output_hidden_states=True)
|
72 |
doc_embeddings = get_embedding(output.hidden_states[-1], passage_inputs["attention_mask"])
|
|
|
84 |
### Encode Document Text
|
85 |
This DSE checkpoint is warm-up with `Tevatron/msmarco-passage-aug`, thus the model can also effectively encode document as text input.
|
86 |
```python
|
87 |
+
passage_prompts = [
|
88 |
+
"The llama (/ˈlɑːmə/; Spanish pronunciation: [ˈʎama] or [ˈʝama]) (Lama glama) is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era.</s>",
|
89 |
+
"Llama (acronym for Large Language Model Meta AI, and formerly stylized as LLaMA) is a family of autoregressive large language models (LLMs) released by Meta AI starting in February 2023.[2][3] The latest version is Llama 3.1, released in July 2024.[4]"
|
90 |
+
]
|
91 |
|
92 |
passage_inputs = processor(passage_prompts, images=None, return_tensors="pt", padding="longest", max_length=4096, truncation=True).to('cuda:0')
|
93 |
output = model(**passage_inputs, return_dict=True, output_hidden_states=True)
|