Teunis89 commited on
Commit
c070623
1 Parent(s): 4653500

Upload PPO LunarLander-v2 first notebook course

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 274.87 +/- 15.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe5e8920ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe5e8920f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe5e8923040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe5e89230d0>", "_build": "<function ActorCriticPolicy._build at 0x7fe5e8923160>", "forward": "<function ActorCriticPolicy.forward at 0x7fe5e89231f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe5e8923280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe5e8923310>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe5e89233a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe5e8923430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe5e89234c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe5e8923550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe5e8925080>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679414072041309237, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGC1aD77oEo/o9qYPjb3BL8eiK0+mfk8vQAAAAAAAAAAIAlnPgW8uzy9koG+cdkovooLbD6DiFc/AAAAAAAAgD8zt0U+wZjGvKKYnTvECiy6MJs0vosjBrsAAIA/AACAP9oATD5Uq6y871KEO98K3bkyJhi+8sOpugAAgD8AAIA/pls7PkFAiD3o+eS9b8fovSwALz1pHqO8AAAAAAAAAACGsjM+6YVbvOi2bDtO6rC5PeK9vXYnjLoAAIA/AACAP+APJL7D33+8umM4vAf12roj3Og9Tk6wOwAAgD8AAIA/bXMGPnQ+hD91Ptg+h00Cv0uJIj75C4I9AAAAAAAAAABAB42+TyRJP10ljr43DhC/6kW1vmWtOT0AAAAAAAAAAN1muT6rzQY/iOTYvOW0BL9MvBw+KNzTvQAAAAAAAAAAkFuZPlcXDj992oQ93nLevmHzUj6WuPO9AAAAAAAAAACAbxy9K7eVPmBmTrwgEa6+cNhLvfI9Zr0AAAAAAAAAACbjvT0KhwK5Q05oPHNTX7yKdrM6O4RgPAAAAAAAAAAADR8oPlBUjj6bPck8bxe5vux1pT3RLJK8AAAAAAAAAACmZ7c9Kex6OYalNr5NWZEzif2xOwhhADMAAAAAAACAP+azpT240/y7XY+8vLLVEz1cllw95hbxvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINGQ8SuUNc0CUhpRSlIwBbJRL+4wBdJRHQJce6pQ1rIp1fZQoaAZoCWgPQwjKT6p9uvRuQJSGlFKUaBVL0GgWR0CXIC0qH447dX2UKGgGaAloD0MIHa1qSYdbckCUhpRSlGgVS/FoFkdAlyBJ3Tuv2XV9lChoBmgJaA9DCE/ltKdkhm1AlIaUUpRoFUvEaBZHQJcgWqhlDnh1fZQoaAZoCWgPQwh88NqlzSdwQJSGlFKUaBVL8GgWR0CXIFbDdgv2dX2UKGgGaAloD0MITz3S4DYMcECUhpRSlGgVS8hoFkdAlyC+YUnG83V9lChoBmgJaA9DCJ92+GuyHG9AlIaUUpRoFUvKaBZHQJci1mAbyYp1fZQoaAZoCWgPQwgl7NtJhE1xQJSGlFKUaBVLp2gWR0CXIxIAfdRBdX2UKGgGaAloD0MIQN6rVqY0cECUhpRSlGgVS7hoFkdAlyNDp9qk/XV9lChoBmgJaA9DCBpqFJLMinFAlIaUUpRoFU0IAWgWR0CXI82dNFjNdX2UKGgGaAloD0MIqmOV0jPsXECUhpRSlGgVTegDaBZHQJckHATIvJ11fZQoaAZoCWgPQwii1F5E2wpwQJSGlFKUaBVL1WgWR0CXJNwdbPhRdX2UKGgGaAloD0MIQtKnVTS1cECUhpRSlGgVS81oFkdAlyXqsdT5wnV9lChoBmgJaA9DCNLEO8BTKnNAlIaUUpRoFUvKaBZHQJcmAEeQuEp1fZQoaAZoCWgPQwhINlfN85pxQJSGlFKUaBVL4mgWR0CXJySW7e2vdX2UKGgGaAloD0MIIk+SrhljcUCUhpRSlGgVS/VoFkdAlycxhttQ9HV9lChoBmgJaA9DCLfte9Sf+XBAlIaUUpRoFUu/aBZHQJcob8ZUDMh1fZQoaAZoCWgPQwhJL2r3q51kQJSGlFKUaBVN6ANoFkdAlyjahYeT3nV9lChoBmgJaA9DCOWzPA/uZ2FAlIaUUpRoFU3oA2gWR0CXKNvF3pwCdX2UKGgGaAloD0MIzeZxGMyUc0CUhpRSlGgVS8poFkdAlymZ7PY4AHV9lChoBmgJaA9DCMwNhjpsO3BAlIaUUpRoFUvpaBZHQJcp7gOz6ad1fZQoaAZoCWgPQwgD0Chd+v9vQJSGlFKUaBVL3WgWR0CXKmR7JGONdX2UKGgGaAloD0MI46dxb36yb0CUhpRSlGgVS8xoFkdAlyu7DuSfUXV9lChoBmgJaA9DCOnwEMaPuXJAlIaUUpRoFU0IAWgWR0CXLHUnXumadX2UKGgGaAloD0MIm3EaokpcckCUhpRSlGgVS+xoFkdAlyzK4lQdj3V9lChoBmgJaA9DCJENpIuNoHFAlIaUUpRoFUvXaBZHQJctYeT3Zf51fZQoaAZoCWgPQwgbgA2I0J9wQJSGlFKUaBVL4WgWR0CXLaF/QSi/dX2UKGgGaAloD0MI9yAE5AtfckCUhpRSlGgVS8poFkdAly4vLcKw6nV9lChoBmgJaA9DCNcXCW05IXBAlIaUUpRoFUuvaBZHQJcupDw6QvJ1fZQoaAZoCWgPQwhVhJuMKmdxQJSGlFKUaBVL0GgWR0CXLr+MZP2xdX2UKGgGaAloD0MIo3N+iiMGckCUhpRSlGgVS8FoFkdAly+Od9Ujs3V9lChoBmgJaA9DCLlUpS0uuXBAlIaUUpRoFUv5aBZHQJcv+G34Kx91fZQoaAZoCWgPQwgtlbcjHOpxQJSGlFKUaBVL42gWR0CXMPoaDPGAdX2UKGgGaAloD0MIwW9DjFdnYkCUhpRSlGgVTegDaBZHQJcx1PEbYK91fZQoaAZoCWgPQwgxzXSvk09zQJSGlFKUaBVL7GgWR0CXMqfkmx+sdX2UKGgGaAloD0MIzlXzHJHYcUCUhpRSlGgVS9poFkdAlzLdaEBbOnV9lChoBmgJaA9DCLEwRE6fw3FAlIaUUpRoFUvLaBZHQJczhrtVrAR1fZQoaAZoCWgPQwi5Fi1Am7RxQJSGlFKUaBVLwWgWR0CXNPGFzuF6dX2UKGgGaAloD0MITUnW4eh9b0CUhpRSlGgVS+BoFkdAlzWQ7xNIsnV9lChoBmgJaA9DCPnX8sq133JAlIaUUpRoFUvkaBZHQJc2lZOi35N1fZQoaAZoCWgPQwjhl/p5U9VgQJSGlFKUaBVN6ANoFkdAlze+6unuRnV9lChoBmgJaA9DCIyeW+jKOnFAlIaUUpRoFUvqaBZHQJc4lwl0HQh1fZQoaAZoCWgPQwinzM03Ii1uQJSGlFKUaBVL12gWR0CXOVEPlMh6dX2UKGgGaAloD0MIGEM50a7UcUCUhpRSlGgVTRoBaBZHQJc5/7cfvF51fZQoaAZoCWgPQwhGmQ0yyWNxQJSGlFKUaBVLyWgWR0CXOv49HMEBdX2UKGgGaAloD0MImrM+5dgBcECUhpRSlGgVS8doFkdAlz1OXmeUZHV9lChoBmgJaA9DCATj4NLxInFAlIaUUpRoFUvwaBZHQJc9qFJxvNx1fZQoaAZoCWgPQwjcfvlkhUZyQJSGlFKUaBVNCAFoFkdAlz4E1yeZonV9lChoBmgJaA9DCOay0Tm/42BAlIaUUpRoFU3oA2gWR0CXPsUkv9LpdX2UKGgGaAloD0MIBI2ZRL1HckCUhpRSlGgVS+xoFkdAlz+h0EHMU3V9lChoBmgJaA9DCPzgfOpYPXBAlIaUUpRoFUvXaBZHQJc/wwVTJhh1fZQoaAZoCWgPQwgUQDGyJCBzQJSGlFKUaBVLv2gWR0CXP9sySFGodX2UKGgGaAloD0MIdhiT/h64cUCUhpRSlGgVS7loFkdAl0HiMUAT7HV9lChoBmgJaA9DCD4jERpBeWRAlIaUUpRoFU3oA2gWR0CXQePVd5Y6dX2UKGgGaAloD0MIF0hQ/NjHcECUhpRSlGgVS7ZoFkdAl0LQ5vLowHV9lChoBmgJaA9DCBPvAE8av3BAlIaUUpRoFUvoaBZHQJdDIqG1x851fZQoaAZoCWgPQwhyNh0BXF5jQJSGlFKUaBVN6ANoFkdAl0YpF9a2W3V9lChoBmgJaA9DCC+i7Zi6qHBAlIaUUpRoFUvLaBZHQJdGuRMewLV1fZQoaAZoCWgPQwjD2EKQg99yQJSGlFKUaBVL3mgWR0CXRuac7QsxdX2UKGgGaAloD0MI0JuKVBhzb0CUhpRSlGgVS8NoFkdAl0ceSwGGEnV9lChoBmgJaA9DCNgrLLgfLHFAlIaUUpRoFUu9aBZHQJdHy0VrRBx1fZQoaAZoCWgPQwjvOhvyD45zQJSGlFKUaBVLxWgWR0CXSAE6T4cndX2UKGgGaAloD0MIFR+fkF1DcECUhpRSlGgVS9FoFkdAl0iF+EytWHV9lChoBmgJaA9DCD9VhQYi4HBAlIaUUpRoFU0DAWgWR0CXSIVcD8tPdX2UKGgGaAloD0MIDr4wmar/cECUhpRSlGgVS+NoFkdAl0pAqy4WlHV9lChoBmgJaA9DCEZ4exCCQnFAlIaUUpRoFUvkaBZHQJdK8fq5byJ1fZQoaAZoCWgPQwhF9dbAVkhyQJSGlFKUaBVL/GgWR0CXSvsiSq2jdX2UKGgGaAloD0MITS8xlqm6ckCUhpRSlGgVTQUBaBZHQJdMDWtlqah1fZQoaAZoCWgPQwiPG3433f1vQJSGlFKUaBVLymgWR0CXTL3ocJdCdX2UKGgGaAloD0MIh6QWSiZYcUCUhpRSlGgVS8NoFkdAl0zNlAeJYXV9lChoBmgJaA9DCHFa8KIvJm9AlIaUUpRoFUvaaBZHQJdM30qYqoZ1fZQoaAZoCWgPQwid9L7xtaBwQJSGlFKUaBVL12gWR0CXTc9CNS62dX2UKGgGaAloD0MIYfw07k0xckCUhpRSlGgVS/NoFkdAl037MPjGUHV9lChoBmgJaA9DCFn9EYYBuHBAlIaUUpRoFUvWaBZHQJdOaSntOVR1fZQoaAZoCWgPQwjAriZP2VJxQJSGlFKUaBVL52gWR0CXTuKlpGnXdX2UKGgGaAloD0MIA+s4fmijckCUhpRSlGgVS85oFkdAl1AYTj/+9HV9lChoBmgJaA9DCDc3picsKmJAlIaUUpRoFU3oA2gWR0CXUEecx0uEdX2UKGgGaAloD0MIgLbVrLPSbUCUhpRSlGgVS8ZoFkdAl1CprP+n63V9lChoBmgJaA9DCLFSQUXVB19AlIaUUpRoFU3oA2gWR0CXUSnqVyFPdX2UKGgGaAloD0MIxeI3hRX2b0CUhpRSlGgVS9loFkdAl1EzefqX4XV9lChoBmgJaA9DCNobfGHy13FAlIaUUpRoFUu6aBZHQJdSHSWqtHR1fZQoaAZoCWgPQwi4ByEgXwRxQJSGlFKUaBVL0GgWR0CXUs4wyqMndX2UKGgGaAloD0MI34juWVdjbECUhpRSlGgVTY8BaBZHQJdTOXu3MIN1fZQoaAZoCWgPQwhXBP9byZdvQJSGlFKUaBVLwGgWR0CXU3tI065odX2UKGgGaAloD0MIuk24VyZ0ckCUhpRSlGgVTQUBaBZHQJdTh3OfNA11fZQoaAZoCWgPQwikNJvHoV9wQJSGlFKUaBVLv2gWR0CXVESkj5bhdX2UKGgGaAloD0MI4nfTLXtzckCUhpRSlGgVS+VoFkdAl1RE1IiC8XV9lChoBmgJaA9DCI/k8h9ScWNAlIaUUpRoFU3oA2gWR0CXVSVSn+AFdX2UKGgGaAloD0MI71TAPc8McECUhpRSlGgVS9FoFkdAl1XSA2AG0XV9lChoBmgJaA9DCCTyXUodwHFAlIaUUpRoFUvmaBZHQJdWxHNHH3l1fZQoaAZoCWgPQwiUEReARl9yQJSGlFKUaBVL5GgWR0CXVyNwBHTadX2UKGgGaAloD0MIlSnmIGgxcUCUhpRSlGgVS+9oFkdAl1dylvZRK3V9lChoBmgJaA9DCMhdhCmK3XBAlIaUUpRoFUvZaBZHQJdXziIcinp1fZQoaAZoCWgPQwhjDoKOlilzQJSGlFKUaBVL7WgWR0CXWRFqBVdYdX2UKGgGaAloD0MIS3hCr7/fcUCUhpRSlGgVS+NoFkdAl1mCwr1/UnV9lChoBmgJaA9DCE60q5Dyo15AlIaUUpRoFU3oA2gWR0CXWYr5ZbIMdX2UKGgGaAloD0MIm3YxzXT7b0CUhpRSlGgVS91oFkdAl1oQiFCb+nV9lChoBmgJaA9DCIJ0sWnlDXJAlIaUUpRoFU0bAWgWR0CXWpXjU/fPdX2UKGgGaAloD0MIC0eQSjEsb0CUhpRSlGgVS9NoFkdAl1qeuV5a/3V9lChoBmgJaA9DCMxgjEhUCnJAlIaUUpRoFU0GAWgWR0CXWwZTyauwdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a2c63f6667f9c116661e5dbd079ba91037d63d7e6966aabb7f9aa36c3bd53ed
3
+ size 147324
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe5e8920ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe5e8920f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe5e8923040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe5e89230d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe5e8923160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe5e89231f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe5e8923280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe5e8923310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe5e89233a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe5e8923430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe5e89234c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe5e8923550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fe5e8925080>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1679414072041309237,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGC1aD77oEo/o9qYPjb3BL8eiK0+mfk8vQAAAAAAAAAAIAlnPgW8uzy9koG+cdkovooLbD6DiFc/AAAAAAAAgD8zt0U+wZjGvKKYnTvECiy6MJs0vosjBrsAAIA/AACAP9oATD5Uq6y871KEO98K3bkyJhi+8sOpugAAgD8AAIA/pls7PkFAiD3o+eS9b8fovSwALz1pHqO8AAAAAAAAAACGsjM+6YVbvOi2bDtO6rC5PeK9vXYnjLoAAIA/AACAP+APJL7D33+8umM4vAf12roj3Og9Tk6wOwAAgD8AAIA/bXMGPnQ+hD91Ptg+h00Cv0uJIj75C4I9AAAAAAAAAABAB42+TyRJP10ljr43DhC/6kW1vmWtOT0AAAAAAAAAAN1muT6rzQY/iOTYvOW0BL9MvBw+KNzTvQAAAAAAAAAAkFuZPlcXDj992oQ93nLevmHzUj6WuPO9AAAAAAAAAACAbxy9K7eVPmBmTrwgEa6+cNhLvfI9Zr0AAAAAAAAAACbjvT0KhwK5Q05oPHNTX7yKdrM6O4RgPAAAAAAAAAAADR8oPlBUjj6bPck8bxe5vux1pT3RLJK8AAAAAAAAAACmZ7c9Kex6OYalNr5NWZEzif2xOwhhADMAAAAAAACAP+azpT240/y7XY+8vLLVEz1cllw95hbxvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINGQ8SuUNc0CUhpRSlIwBbJRL+4wBdJRHQJce6pQ1rIp1fZQoaAZoCWgPQwjKT6p9uvRuQJSGlFKUaBVL0GgWR0CXIC0qH447dX2UKGgGaAloD0MIHa1qSYdbckCUhpRSlGgVS/FoFkdAlyBJ3Tuv2XV9lChoBmgJaA9DCE/ltKdkhm1AlIaUUpRoFUvEaBZHQJcgWqhlDnh1fZQoaAZoCWgPQwh88NqlzSdwQJSGlFKUaBVL8GgWR0CXIFbDdgv2dX2UKGgGaAloD0MITz3S4DYMcECUhpRSlGgVS8hoFkdAlyC+YUnG83V9lChoBmgJaA9DCJ92+GuyHG9AlIaUUpRoFUvKaBZHQJci1mAbyYp1fZQoaAZoCWgPQwgl7NtJhE1xQJSGlFKUaBVLp2gWR0CXIxIAfdRBdX2UKGgGaAloD0MIQN6rVqY0cECUhpRSlGgVS7hoFkdAlyNDp9qk/XV9lChoBmgJaA9DCBpqFJLMinFAlIaUUpRoFU0IAWgWR0CXI82dNFjNdX2UKGgGaAloD0MIqmOV0jPsXECUhpRSlGgVTegDaBZHQJckHATIvJ11fZQoaAZoCWgPQwii1F5E2wpwQJSGlFKUaBVL1WgWR0CXJNwdbPhRdX2UKGgGaAloD0MIQtKnVTS1cECUhpRSlGgVS81oFkdAlyXqsdT5wnV9lChoBmgJaA9DCNLEO8BTKnNAlIaUUpRoFUvKaBZHQJcmAEeQuEp1fZQoaAZoCWgPQwhINlfN85pxQJSGlFKUaBVL4mgWR0CXJySW7e2vdX2UKGgGaAloD0MIIk+SrhljcUCUhpRSlGgVS/VoFkdAlycxhttQ9HV9lChoBmgJaA9DCLfte9Sf+XBAlIaUUpRoFUu/aBZHQJcob8ZUDMh1fZQoaAZoCWgPQwhJL2r3q51kQJSGlFKUaBVN6ANoFkdAlyjahYeT3nV9lChoBmgJaA9DCOWzPA/uZ2FAlIaUUpRoFU3oA2gWR0CXKNvF3pwCdX2UKGgGaAloD0MIzeZxGMyUc0CUhpRSlGgVS8poFkdAlymZ7PY4AHV9lChoBmgJaA9DCMwNhjpsO3BAlIaUUpRoFUvpaBZHQJcp7gOz6ad1fZQoaAZoCWgPQwgD0Chd+v9vQJSGlFKUaBVL3WgWR0CXKmR7JGONdX2UKGgGaAloD0MI46dxb36yb0CUhpRSlGgVS8xoFkdAlyu7DuSfUXV9lChoBmgJaA9DCOnwEMaPuXJAlIaUUpRoFU0IAWgWR0CXLHUnXumadX2UKGgGaAloD0MIm3EaokpcckCUhpRSlGgVS+xoFkdAlyzK4lQdj3V9lChoBmgJaA9DCJENpIuNoHFAlIaUUpRoFUvXaBZHQJctYeT3Zf51fZQoaAZoCWgPQwgbgA2I0J9wQJSGlFKUaBVL4WgWR0CXLaF/QSi/dX2UKGgGaAloD0MI9yAE5AtfckCUhpRSlGgVS8poFkdAly4vLcKw6nV9lChoBmgJaA9DCNcXCW05IXBAlIaUUpRoFUuvaBZHQJcupDw6QvJ1fZQoaAZoCWgPQwhVhJuMKmdxQJSGlFKUaBVL0GgWR0CXLr+MZP2xdX2UKGgGaAloD0MIo3N+iiMGckCUhpRSlGgVS8FoFkdAly+Od9Ujs3V9lChoBmgJaA9DCLlUpS0uuXBAlIaUUpRoFUv5aBZHQJcv+G34Kx91fZQoaAZoCWgPQwgtlbcjHOpxQJSGlFKUaBVL42gWR0CXMPoaDPGAdX2UKGgGaAloD0MIwW9DjFdnYkCUhpRSlGgVTegDaBZHQJcx1PEbYK91fZQoaAZoCWgPQwgxzXSvk09zQJSGlFKUaBVL7GgWR0CXMqfkmx+sdX2UKGgGaAloD0MIzlXzHJHYcUCUhpRSlGgVS9poFkdAlzLdaEBbOnV9lChoBmgJaA9DCLEwRE6fw3FAlIaUUpRoFUvLaBZHQJczhrtVrAR1fZQoaAZoCWgPQwi5Fi1Am7RxQJSGlFKUaBVLwWgWR0CXNPGFzuF6dX2UKGgGaAloD0MITUnW4eh9b0CUhpRSlGgVS+BoFkdAlzWQ7xNIsnV9lChoBmgJaA9DCPnX8sq133JAlIaUUpRoFUvkaBZHQJc2lZOi35N1fZQoaAZoCWgPQwjhl/p5U9VgQJSGlFKUaBVN6ANoFkdAlze+6unuRnV9lChoBmgJaA9DCIyeW+jKOnFAlIaUUpRoFUvqaBZHQJc4lwl0HQh1fZQoaAZoCWgPQwinzM03Ii1uQJSGlFKUaBVL12gWR0CXOVEPlMh6dX2UKGgGaAloD0MIGEM50a7UcUCUhpRSlGgVTRoBaBZHQJc5/7cfvF51fZQoaAZoCWgPQwhGmQ0yyWNxQJSGlFKUaBVLyWgWR0CXOv49HMEBdX2UKGgGaAloD0MImrM+5dgBcECUhpRSlGgVS8doFkdAlz1OXmeUZHV9lChoBmgJaA9DCATj4NLxInFAlIaUUpRoFUvwaBZHQJc9qFJxvNx1fZQoaAZoCWgPQwjcfvlkhUZyQJSGlFKUaBVNCAFoFkdAlz4E1yeZonV9lChoBmgJaA9DCOay0Tm/42BAlIaUUpRoFU3oA2gWR0CXPsUkv9LpdX2UKGgGaAloD0MIBI2ZRL1HckCUhpRSlGgVS+xoFkdAlz+h0EHMU3V9lChoBmgJaA9DCPzgfOpYPXBAlIaUUpRoFUvXaBZHQJc/wwVTJhh1fZQoaAZoCWgPQwgUQDGyJCBzQJSGlFKUaBVLv2gWR0CXP9sySFGodX2UKGgGaAloD0MIdhiT/h64cUCUhpRSlGgVS7loFkdAl0HiMUAT7HV9lChoBmgJaA9DCD4jERpBeWRAlIaUUpRoFU3oA2gWR0CXQePVd5Y6dX2UKGgGaAloD0MIF0hQ/NjHcECUhpRSlGgVS7ZoFkdAl0LQ5vLowHV9lChoBmgJaA9DCBPvAE8av3BAlIaUUpRoFUvoaBZHQJdDIqG1x851fZQoaAZoCWgPQwhyNh0BXF5jQJSGlFKUaBVN6ANoFkdAl0YpF9a2W3V9lChoBmgJaA9DCC+i7Zi6qHBAlIaUUpRoFUvLaBZHQJdGuRMewLV1fZQoaAZoCWgPQwjD2EKQg99yQJSGlFKUaBVL3mgWR0CXRuac7QsxdX2UKGgGaAloD0MI0JuKVBhzb0CUhpRSlGgVS8NoFkdAl0ceSwGGEnV9lChoBmgJaA9DCNgrLLgfLHFAlIaUUpRoFUu9aBZHQJdHy0VrRBx1fZQoaAZoCWgPQwjvOhvyD45zQJSGlFKUaBVLxWgWR0CXSAE6T4cndX2UKGgGaAloD0MIFR+fkF1DcECUhpRSlGgVS9FoFkdAl0iF+EytWHV9lChoBmgJaA9DCD9VhQYi4HBAlIaUUpRoFU0DAWgWR0CXSIVcD8tPdX2UKGgGaAloD0MIDr4wmar/cECUhpRSlGgVS+NoFkdAl0pAqy4WlHV9lChoBmgJaA9DCEZ4exCCQnFAlIaUUpRoFUvkaBZHQJdK8fq5byJ1fZQoaAZoCWgPQwhF9dbAVkhyQJSGlFKUaBVL/GgWR0CXSvsiSq2jdX2UKGgGaAloD0MITS8xlqm6ckCUhpRSlGgVTQUBaBZHQJdMDWtlqah1fZQoaAZoCWgPQwiPG3433f1vQJSGlFKUaBVLymgWR0CXTL3ocJdCdX2UKGgGaAloD0MIh6QWSiZYcUCUhpRSlGgVS8NoFkdAl0zNlAeJYXV9lChoBmgJaA9DCHFa8KIvJm9AlIaUUpRoFUvaaBZHQJdM30qYqoZ1fZQoaAZoCWgPQwid9L7xtaBwQJSGlFKUaBVL12gWR0CXTc9CNS62dX2UKGgGaAloD0MIYfw07k0xckCUhpRSlGgVS/NoFkdAl037MPjGUHV9lChoBmgJaA9DCFn9EYYBuHBAlIaUUpRoFUvWaBZHQJdOaSntOVR1fZQoaAZoCWgPQwjAriZP2VJxQJSGlFKUaBVL52gWR0CXTuKlpGnXdX2UKGgGaAloD0MIA+s4fmijckCUhpRSlGgVS85oFkdAl1AYTj/+9HV9lChoBmgJaA9DCDc3picsKmJAlIaUUpRoFU3oA2gWR0CXUEecx0uEdX2UKGgGaAloD0MIgLbVrLPSbUCUhpRSlGgVS8ZoFkdAl1CprP+n63V9lChoBmgJaA9DCLFSQUXVB19AlIaUUpRoFU3oA2gWR0CXUSnqVyFPdX2UKGgGaAloD0MIxeI3hRX2b0CUhpRSlGgVS9loFkdAl1EzefqX4XV9lChoBmgJaA9DCNobfGHy13FAlIaUUpRoFUu6aBZHQJdSHSWqtHR1fZQoaAZoCWgPQwi4ByEgXwRxQJSGlFKUaBVL0GgWR0CXUs4wyqMndX2UKGgGaAloD0MI34juWVdjbECUhpRSlGgVTY8BaBZHQJdTOXu3MIN1fZQoaAZoCWgPQwhXBP9byZdvQJSGlFKUaBVLwGgWR0CXU3tI065odX2UKGgGaAloD0MIuk24VyZ0ckCUhpRSlGgVTQUBaBZHQJdTh3OfNA11fZQoaAZoCWgPQwikNJvHoV9wQJSGlFKUaBVLv2gWR0CXVESkj5bhdX2UKGgGaAloD0MI4nfTLXtzckCUhpRSlGgVS+VoFkdAl1RE1IiC8XV9lChoBmgJaA9DCI/k8h9ScWNAlIaUUpRoFU3oA2gWR0CXVSVSn+AFdX2UKGgGaAloD0MI71TAPc8McECUhpRSlGgVS9FoFkdAl1XSA2AG0XV9lChoBmgJaA9DCCTyXUodwHFAlIaUUpRoFUvmaBZHQJdWxHNHH3l1fZQoaAZoCWgPQwiUEReARl9yQJSGlFKUaBVL5GgWR0CXVyNwBHTadX2UKGgGaAloD0MIlSnmIGgxcUCUhpRSlGgVS+9oFkdAl1dylvZRK3V9lChoBmgJaA9DCMhdhCmK3XBAlIaUUpRoFUvZaBZHQJdXziIcinp1fZQoaAZoCWgPQwhjDoKOlilzQJSGlFKUaBVL7WgWR0CXWRFqBVdYdX2UKGgGaAloD0MIS3hCr7/fcUCUhpRSlGgVS+NoFkdAl1mCwr1/UnV9lChoBmgJaA9DCE60q5Dyo15AlIaUUpRoFU3oA2gWR0CXWYr5ZbIMdX2UKGgGaAloD0MIm3YxzXT7b0CUhpRSlGgVS91oFkdAl1oQiFCb+nV9lChoBmgJaA9DCIJ0sWnlDXJAlIaUUpRoFU0bAWgWR0CXWpXjU/fPdX2UKGgGaAloD0MIC0eQSjEsb0CUhpRSlGgVS9NoFkdAl1qeuV5a/3V9lChoBmgJaA9DCMxgjEhUCnJAlIaUUpRoFU0GAWgWR0CXWwZTyauwdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54d2250ffcc6f64af76ccb86ec71f79425f40dc292682393152be5ef9355b87f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:634a95839bbe8bfd3a98b8f92e936d46380f70acd35f9aae3d05c51d71b99fa4
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (162 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 274.8718820097069, "std_reward": 15.05517401569511, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-21T16:37:54.994676"}