Tengisbold commited on
Commit
dab784f
1 Parent(s): 2243e69

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - mn
4
+ license: apache-2.0
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-base-multilingual-cased-ner-demo
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # bert-base-multilingual-cased-ner-demo
21
+
22
+ This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.1333
25
+ - Precision: 0.9160
26
+ - Recall: 0.9229
27
+ - F1: 0.9194
28
+ - Accuracy: 0.9779
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 32
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 10
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.1658 | 1.0 | 572 | 0.1113 | 0.8581 | 0.8792 | 0.8685 | 0.9658 |
60
+ | 0.0816 | 2.0 | 1144 | 0.0880 | 0.8950 | 0.9096 | 0.9022 | 0.9737 |
61
+ | 0.0554 | 3.0 | 1716 | 0.0935 | 0.8941 | 0.9096 | 0.9018 | 0.9741 |
62
+ | 0.0394 | 4.0 | 2288 | 0.1069 | 0.9070 | 0.9189 | 0.9129 | 0.9762 |
63
+ | 0.0284 | 5.0 | 2860 | 0.1029 | 0.9007 | 0.9184 | 0.9095 | 0.9752 |
64
+ | 0.0192 | 6.0 | 3432 | 0.1110 | 0.9102 | 0.9214 | 0.9157 | 0.9764 |
65
+ | 0.0139 | 7.0 | 4004 | 0.1156 | 0.9166 | 0.9272 | 0.9218 | 0.9786 |
66
+ | 0.0095 | 8.0 | 4576 | 0.1319 | 0.9091 | 0.9174 | 0.9132 | 0.9761 |
67
+ | 0.0066 | 9.0 | 5148 | 0.1313 | 0.9132 | 0.9226 | 0.9179 | 0.9781 |
68
+ | 0.0053 | 10.0 | 5720 | 0.1333 | 0.9160 | 0.9229 | 0.9194 | 0.9779 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.28.1
74
+ - Pytorch 2.0.0+cu118
75
+ - Datasets 2.12.0
76
+ - Tokenizers 0.13.3