|
from dataclasses import dataclass |
|
import numpy as np |
|
import torch |
|
|
|
from torch import Tensor, nn |
|
from einops import rearrange |
|
|
|
from layers import (DoubleStreamBlock, EmbedND, LastLayer, |
|
MLPEmbedder, SingleStreamBlock, |
|
timestep_embedding) |
|
|
|
import torch.distributed as dist |
|
from diffusers.models.embeddings import get_1d_sincos_pos_embed_from_grid |
|
|
|
from accelerate.logging import get_logger |
|
logger = get_logger(__name__, log_level="INFO") |
|
|
|
|
|
|
|
|
|
@dataclass |
|
class FluxParams: |
|
in_channels: int |
|
vec_in_dim: int |
|
context_in_dim: int |
|
hidden_size: int |
|
mlp_ratio: float |
|
num_heads: int |
|
depth: int |
|
depth_single_blocks: int |
|
axes_dim: list[int] |
|
theta: int |
|
qkv_bias: bool |
|
guidance_embed: bool |
|
|
|
|
|
class Flux(nn.Module): |
|
""" |
|
Transformer model for flow matching on sequences. |
|
""" |
|
_supports_gradient_checkpointing = True |
|
|
|
def __init__(self, params: FluxParams): |
|
super().__init__() |
|
|
|
self.params = params |
|
self.in_channels = params.in_channels |
|
self.out_channels = self.in_channels |
|
if params.hidden_size % params.num_heads != 0: |
|
raise ValueError( |
|
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" |
|
) |
|
pe_dim = params.hidden_size // params.num_heads |
|
if sum(params.axes_dim) != pe_dim: |
|
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") |
|
self.hidden_size = params.hidden_size |
|
self.num_heads = params.num_heads |
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) |
|
|
|
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) |
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) |
|
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) |
|
self.guidance_in = ( |
|
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() |
|
) |
|
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) |
|
|
|
|
|
self.double_blocks = nn.ModuleList( |
|
[ |
|
DoubleStreamBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=params.mlp_ratio, |
|
qkv_bias=params.qkv_bias |
|
) |
|
for i in range(1, params.depth+1) |
|
] |
|
) |
|
|
|
self.single_blocks = nn.ModuleList( |
|
[ |
|
SingleStreamBlock( |
|
self.hidden_size, |
|
self.num_heads, |
|
mlp_ratio=params.mlp_ratio |
|
) |
|
for i in range(1, params.depth_single_blocks+1) |
|
] |
|
) |
|
|
|
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) |
|
self.gradient_checkpointing = True |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
|
|
@property |
|
def attn_processors(self): |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors): |
|
if hasattr(module, "set_processor"): |
|
processors[f"{name}.processor"] = module.processor |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
def set_attn_processor(self, processor): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def forward( |
|
self, |
|
img: Tensor, |
|
img_ids: Tensor, |
|
txt: Tensor, |
|
txt_ids: Tensor, |
|
timesteps: Tensor, |
|
y: Tensor, |
|
block_controlnet_hidden_states=None, |
|
guidance: Tensor = None, |
|
image_proj: Tensor = None, |
|
ip_scale: Tensor = 1.0, |
|
return_intermediate: bool = False, |
|
): |
|
|
|
if return_intermediate: |
|
intermediate_double = [] |
|
intermediate_single = [] |
|
|
|
|
|
img = self.img_in(img) |
|
vec = self.time_in(timestep_embedding(timesteps, 256)) |
|
if self.params.guidance_embed: |
|
if guidance is None: |
|
raise ValueError("Didn't get guidance strength for guidance distilled model.") |
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) |
|
vec = vec + self.vector_in(y) |
|
txt = self.txt_in(txt) |
|
|
|
ids = torch.cat((txt_ids, img_ids), dim=1) |
|
pe = self.pe_embedder(ids) |
|
|
|
if block_controlnet_hidden_states is not None: |
|
controlnet_depth = len(block_controlnet_hidden_states) |
|
|
|
|
|
for index_block, block in enumerate(self.double_blocks): |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
img, txt = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
img, |
|
txt, |
|
vec, |
|
pe, |
|
image_proj, |
|
ip_scale, |
|
use_reentrant=False |
|
) |
|
|
|
else: |
|
img, txt = block( |
|
img=img, |
|
txt=txt, |
|
vec=vec, |
|
pe=pe, |
|
image_proj=image_proj, |
|
ip_scale=ip_scale |
|
) |
|
|
|
|
|
if return_intermediate: |
|
intermediate_double.append( |
|
[img, txt] |
|
) |
|
|
|
if block_controlnet_hidden_states is not None: |
|
img = img + block_controlnet_hidden_states[index_block % 2] |
|
|
|
img = torch.cat((txt, img), dim=1) |
|
txt_dim = txt.shape[1] |
|
for index_block, block in enumerate(self.single_blocks): |
|
|
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module, return_dict=None): |
|
def custom_forward(*inputs): |
|
if return_dict is not None: |
|
return module(*inputs, return_dict=return_dict) |
|
else: |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
|
|
img = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(block), |
|
img, |
|
vec, |
|
pe, |
|
use_reentrant=False |
|
) |
|
|
|
else: |
|
img = block(img, vec=vec, pe=pe) |
|
|
|
|
|
|
|
img_ = img[:, txt.shape[1]:, ...] |
|
txt_ = img[:, :txt.shape[1], ...] |
|
|
|
if return_intermediate: |
|
intermediate_single.append( |
|
[img_, txt_] |
|
) |
|
|
|
img = torch.cat([txt_, img_], dim=1) |
|
|
|
img = img[:, txt.shape[1] :, ...] |
|
img = self.final_layer(img, vec) |
|
if return_intermediate: |
|
return img, intermediate_double, intermediate_single |
|
else: |
|
return img |
|
|
|
|