QA-CLIP / eval /evaluation_tr.py
kunyi
Upload 30 files
f76d30f
raw
history blame
6.45 kB
# -*- coding: utf-8 -*-
'''
This script computes the recall scores given the ground-truth annotations and predictions.
'''
import json
import sys
import os
import string
import numpy as np
import time
NUM_K = 10
def read_submission(submit_path, reference, k=5):
# check whether the path of submitted file exists
if not os.path.exists(submit_path):
raise Exception("The submission file is not found!")
submission_dict = {}
ref_image_ids = set(reference.keys())
with open(submit_path, encoding="utf-8") as fin:
for line in fin:
line = line.strip()
try:
pred_obj = json.loads(line)
except:
raise Exception('Cannot parse this line into json object: {}'.format(line))
if "image_id" not in pred_obj:
raise Exception('There exists one line not containing image_id: {}'.format(line))
if not isinstance(pred_obj['image_id'], int):
raise Exception('Found an invalid image_id {}, it should be an integer (not string), please check your schema'.format(pred_obj['image_id']))
image_id = pred_obj['image_id']
if "text_ids" not in pred_obj:
raise Exception('There exists one line not containing the predicted text_ids: {}'.format(line))
text_ids = pred_obj["text_ids"]
if not isinstance(text_ids, list):
raise Exception('The text_ids field of image_id {} is not a list, please check your schema'.format(image_id))
# check whether there are K products for each text
if len(text_ids) != k:
raise Exception('Image_id {} has wrong number of predicted text_ids! Require {}, but {} founded.'.format(image_id, k, len(text_ids)))
# check whether there exist an invalid prediction for any text
for rank, text_id in enumerate(text_ids):
if not isinstance(text_id, int):
raise Exception('Image_id {} has an invalid predicted text_id {} at rank {}, it should be an integer (not string), please check your schema'.format(image_id, text_id, rank + 1))
# check whether there are duplicate predicted products for a single text
if len(set(text_ids)) != k:
raise Exception('Image_id {} has duplicate products in your prediction. Pleace check again!'.format(image_id))
submission_dict[image_id] = text_ids # here we save the list of product ids
# check if any text is missing in the submission
pred_image_ids = set(submission_dict.keys())
nopred_image_ids = ref_image_ids - pred_image_ids
if len(nopred_image_ids) != 0:
raise Exception('The following image_ids have no prediction in your submission, please check again: {}'.format(", ".join([str(idx) for idx in nopred_image_ids])))
return submission_dict
def dump_2_json(info, path):
with open(path, 'w', encoding="utf-8") as output_json_file:
json.dump(info, output_json_file)
def report_error_msg(detail, showMsg, out_p):
error_dict=dict()
error_dict['errorDetail']=detail
error_dict['errorMsg']=showMsg
error_dict['score']=0
error_dict['scoreJson']={}
error_dict['success']=False
dump_2_json(error_dict,out_p)
def report_score(r1, r5, r10, out_p):
result = dict()
result['success']=True
mean_recall = (r1 + r5 + r10) / 3.0
result['score'] = mean_recall * 100
result['scoreJson'] = {'score': mean_recall * 100, 'mean_recall': mean_recall * 100, 'r1': r1 * 100, 'r5': r5 * 100, 'r10': r10 * 100}
dump_2_json(result,out_p)
def read_reference(path):
fin = open(path, encoding="utf-8")
reference = dict()
for line in fin:
line = line.strip()
obj = json.loads(line)
reference[obj['image_id']] = obj['text_ids']
return reference
def compute_score(golden_file, predict_file):
# read ground-truth
reference = read_reference(golden_file)
# read predictions
k = 10
predictions = read_submission(predict_file, reference, k)
# compute score for each text
r1_stat, r5_stat, r10_stat = 0, 0, 0
for qid in reference.keys():
ground_truth_ids = set(reference[qid])
top10_pred_ids = predictions[qid]
if any([idx in top10_pred_ids[:1] for idx in ground_truth_ids]):
r1_stat += 1
if any([idx in top10_pred_ids[:5] for idx in ground_truth_ids]):
r5_stat += 1
if any([idx in top10_pred_ids[:10] for idx in ground_truth_ids]):
r10_stat += 1
# the higher score, the better
r1, r5, r10 = r1_stat * 1.0 / len(reference), r5_stat * 1.0 / len(reference), r10_stat * 1.0 / len(reference)
mean_recall = (r1 + r5 + r10) / 3.0
result = [mean_recall, r1, r5, r10]
result = [score * 100 for score in result]
return result
if __name__=="__main__":
# the path of answer json file (eg. test_queries_answers.jsonl)
standard_path = sys.argv[1]
# the path of prediction file (eg. example_pred.jsonl)
submit_path = sys.argv[2]
# the score will be dumped into this output json file
out_path = sys.argv[3]
print("Read standard from %s" % standard_path)
print("Read user submit file from %s" % submit_path)
try:
# read ground-truth
reference = read_reference(standard_path)
# read predictions
k = 10
predictions = read_submission(submit_path, reference, k)
# compute score for each text
r1_stat, r5_stat, r10_stat = 0, 0, 0
for qid in reference.keys():
ground_truth_ids = set(reference[qid])
top10_pred_ids = predictions[qid]
if any([idx in top10_pred_ids[:1] for idx in ground_truth_ids]):
r1_stat += 1
if any([idx in top10_pred_ids[:5] for idx in ground_truth_ids]):
r5_stat += 1
if any([idx in top10_pred_ids[:10] for idx in ground_truth_ids]):
r10_stat += 1
# the higher score, the better
r1, r5, r10 = r1_stat * 1.0 / len(reference), r5_stat * 1.0 / len(reference), r10_stat * 1.0 / len(reference)
report_score(r1, r5, r10, out_path)
print("The evaluation finished successfully.")
except Exception as e:
report_error_msg(e.args[0], e.args[0], out_path)
print("The evaluation failed: {}".format(e.args[0]))