|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes.""" |
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import collections |
|
import re |
|
import unicodedata |
|
import six |
|
from functools import lru_cache |
|
import os |
|
|
|
@lru_cache() |
|
def default_vocab(): |
|
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "vocab.txt") |
|
|
|
def validate_case_matches_checkpoint(do_lower_case, init_checkpoint): |
|
"""Checks whether the casing config is consistent with the checkpoint name.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
if not init_checkpoint: |
|
return |
|
|
|
m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint) |
|
if m is None: |
|
return |
|
|
|
model_name = m.group(1) |
|
|
|
lower_models = [ |
|
"uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12", |
|
"multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12" |
|
] |
|
|
|
cased_models = [ |
|
"cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16", |
|
"multi_cased_L-12_H-768_A-12" |
|
] |
|
|
|
is_bad_config = False |
|
if model_name in lower_models and not do_lower_case: |
|
is_bad_config = True |
|
actual_flag = "False" |
|
case_name = "lowercased" |
|
opposite_flag = "True" |
|
|
|
if model_name in cased_models and do_lower_case: |
|
is_bad_config = True |
|
actual_flag = "True" |
|
case_name = "cased" |
|
opposite_flag = "False" |
|
|
|
if is_bad_config: |
|
raise ValueError( |
|
"You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. " |
|
"However, `%s` seems to be a %s model, so you " |
|
"should pass in `--do_lower_case=%s` so that the fine-tuning matches " |
|
"how the model was pre-training. If this error is wrong, please " |
|
"just comment out this check." % (actual_flag, init_checkpoint, |
|
model_name, case_name, opposite_flag)) |
|
|
|
|
|
def convert_to_unicode(text): |
|
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" |
|
if six.PY3: |
|
if isinstance(text, str): |
|
return text |
|
elif isinstance(text, bytes): |
|
return text.decode("utf-8", "ignore") |
|
else: |
|
raise ValueError("Unsupported string type: %s" % (type(text))) |
|
elif six.PY2: |
|
if isinstance(text, str): |
|
return text.decode("utf-8", "ignore") |
|
elif isinstance(text, unicode): |
|
return text |
|
else: |
|
raise ValueError("Unsupported string type: %s" % (type(text))) |
|
else: |
|
raise ValueError("Not running on Python2 or Python 3?") |
|
|
|
|
|
def printable_text(text): |
|
"""Returns text encoded in a way suitable for print or `tf.logging`.""" |
|
|
|
|
|
|
|
if six.PY3: |
|
if isinstance(text, str): |
|
return text |
|
elif isinstance(text, bytes): |
|
return text.decode("utf-8", "ignore") |
|
else: |
|
raise ValueError("Unsupported string type: %s" % (type(text))) |
|
elif six.PY2: |
|
if isinstance(text, str): |
|
return text |
|
elif isinstance(text, unicode): |
|
return text.encode("utf-8") |
|
else: |
|
raise ValueError("Unsupported string type: %s" % (type(text))) |
|
else: |
|
raise ValueError("Not running on Python2 or Python 3?") |
|
|
|
|
|
def load_vocab(vocab_file): |
|
"""Loads a vocabulary file into a dictionary.""" |
|
vocab = collections.OrderedDict() |
|
index = 0 |
|
with open(vocab_file, "r", encoding="utf-8") as reader: |
|
while True: |
|
token = convert_to_unicode(reader.readline()) |
|
if not token: |
|
break |
|
token = token.strip() |
|
vocab[token] = index |
|
index += 1 |
|
return vocab |
|
|
|
|
|
def convert_by_vocab(vocab, items): |
|
"""Converts a sequence of [tokens|ids] using the vocab.""" |
|
output = [] |
|
for item in items: |
|
output.append(vocab[item]) |
|
return output |
|
|
|
|
|
def convert_tokens_to_ids(vocab, tokens): |
|
return convert_by_vocab(vocab, tokens) |
|
|
|
|
|
def convert_ids_to_tokens(inv_vocab, ids): |
|
return convert_by_vocab(inv_vocab, ids) |
|
|
|
|
|
def whitespace_tokenize(text): |
|
"""Runs basic whitespace cleaning and splitting on a piece of text.""" |
|
text = text.strip() |
|
if not text: |
|
return [] |
|
tokens = text.split() |
|
return tokens |
|
|
|
|
|
class FullTokenizer(object): |
|
"""Runs end-to-end tokenziation.""" |
|
|
|
def __init__(self, vocab_file=default_vocab(), do_lower_case=True): |
|
self.vocab = load_vocab(vocab_file) |
|
self.inv_vocab = {v: k for k, v in self.vocab.items()} |
|
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) |
|
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) |
|
|
|
def tokenize(self, text): |
|
split_tokens = [] |
|
for token in self.basic_tokenizer.tokenize(text): |
|
for sub_token in self.wordpiece_tokenizer.tokenize(token): |
|
split_tokens.append(sub_token) |
|
|
|
return split_tokens |
|
|
|
def convert_tokens_to_ids(self, tokens): |
|
return convert_by_vocab(self.vocab, tokens) |
|
|
|
def convert_ids_to_tokens(self, ids): |
|
return convert_by_vocab(self.inv_vocab, ids) |
|
|
|
@staticmethod |
|
def convert_tokens_to_string(tokens, clean_up_tokenization_spaces=True): |
|
""" Converts a sequence of tokens (string) in a single string. """ |
|
|
|
def clean_up_tokenization(out_string): |
|
""" Clean up a list of simple English tokenization artifacts |
|
like spaces before punctuations and abreviated forms. |
|
""" |
|
out_string = ( |
|
out_string.replace(" .", ".") |
|
.replace(" ?", "?") |
|
.replace(" !", "!") |
|
.replace(" ,", ",") |
|
.replace(" ' ", "'") |
|
.replace(" n't", "n't") |
|
.replace(" 'm", "'m") |
|
.replace(" 's", "'s") |
|
.replace(" 've", "'ve") |
|
.replace(" 're", "'re") |
|
) |
|
return out_string |
|
|
|
text = ' '.join(tokens).replace(' ##', '').strip() |
|
if clean_up_tokenization_spaces: |
|
clean_text = clean_up_tokenization(text) |
|
return clean_text |
|
else: |
|
return text |
|
|
|
def vocab_size(self): |
|
return len(self.vocab) |
|
|
|
|
|
class BasicTokenizer(object): |
|
"""Runs basic tokenization (punctuation splitting, lower casing, etc.).""" |
|
|
|
def __init__(self, do_lower_case=True): |
|
"""Constructs a BasicTokenizer. |
|
|
|
Args: |
|
do_lower_case: Whether to lower case the input. |
|
""" |
|
self.do_lower_case = do_lower_case |
|
|
|
def tokenize(self, text): |
|
"""Tokenizes a piece of text.""" |
|
text = convert_to_unicode(text) |
|
text = self._clean_text(text) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
text = self._tokenize_chinese_chars(text) |
|
|
|
orig_tokens = whitespace_tokenize(text) |
|
split_tokens = [] |
|
for token in orig_tokens: |
|
if self.do_lower_case: |
|
token = token.lower() |
|
token = self._run_strip_accents(token) |
|
split_tokens.extend(self._run_split_on_punc(token)) |
|
|
|
output_tokens = whitespace_tokenize(" ".join(split_tokens)) |
|
return output_tokens |
|
|
|
def _run_strip_accents(self, text): |
|
"""Strips accents from a piece of text.""" |
|
text = unicodedata.normalize("NFD", text) |
|
output = [] |
|
for char in text: |
|
cat = unicodedata.category(char) |
|
if cat == "Mn": |
|
continue |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _run_split_on_punc(self, text): |
|
"""Splits punctuation on a piece of text.""" |
|
chars = list(text) |
|
i = 0 |
|
start_new_word = True |
|
output = [] |
|
while i < len(chars): |
|
char = chars[i] |
|
if _is_punctuation(char): |
|
output.append([char]) |
|
start_new_word = True |
|
else: |
|
if start_new_word: |
|
output.append([]) |
|
start_new_word = False |
|
output[-1].append(char) |
|
i += 1 |
|
|
|
return ["".join(x) for x in output] |
|
|
|
def _tokenize_chinese_chars(self, text): |
|
"""Adds whitespace around any CJK character.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if self._is_chinese_char(cp): |
|
output.append(" ") |
|
output.append(char) |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
def _is_chinese_char(self, cp): |
|
"""Checks whether CP is the codepoint of a CJK character.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ((cp >= 0x4E00 and cp <= 0x9FFF) or |
|
(cp >= 0x3400 and cp <= 0x4DBF) or |
|
(cp >= 0x20000 and cp <= 0x2A6DF) or |
|
(cp >= 0x2A700 and cp <= 0x2B73F) or |
|
(cp >= 0x2B740 and cp <= 0x2B81F) or |
|
(cp >= 0x2B820 and cp <= 0x2CEAF) or |
|
(cp >= 0xF900 and cp <= 0xFAFF) or |
|
(cp >= 0x2F800 and cp <= 0x2FA1F)): |
|
return True |
|
|
|
return False |
|
|
|
def _clean_text(self, text): |
|
"""Performs invalid character removal and whitespace cleanup on text.""" |
|
output = [] |
|
for char in text: |
|
cp = ord(char) |
|
if cp == 0 or cp == 0xfffd or _is_control(char): |
|
continue |
|
if _is_whitespace(char): |
|
output.append(" ") |
|
else: |
|
output.append(char) |
|
return "".join(output) |
|
|
|
|
|
class WordpieceTokenizer(object): |
|
"""Runs WordPiece tokenziation.""" |
|
|
|
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200): |
|
self.vocab = vocab |
|
self.unk_token = unk_token |
|
self.max_input_chars_per_word = max_input_chars_per_word |
|
|
|
def tokenize(self, text): |
|
"""Tokenizes a piece of text into its word pieces. |
|
|
|
This uses a greedy longest-match-first algorithm to perform tokenization |
|
using the given vocabulary. |
|
|
|
For example: |
|
input = "unaffable" |
|
output = ["un", "##aff", "##able"] |
|
|
|
Args: |
|
text: A single token or whitespace separated tokens. This should have |
|
already been passed through `BasicTokenizer. |
|
|
|
Returns: |
|
A list of wordpiece tokens. |
|
""" |
|
|
|
text = convert_to_unicode(text) |
|
|
|
output_tokens = [] |
|
for token in whitespace_tokenize(text): |
|
chars = list(token) |
|
if len(chars) > self.max_input_chars_per_word: |
|
output_tokens.append(self.unk_token) |
|
continue |
|
|
|
is_bad = False |
|
start = 0 |
|
sub_tokens = [] |
|
while start < len(chars): |
|
end = len(chars) |
|
cur_substr = None |
|
while start < end: |
|
substr = "".join(chars[start:end]) |
|
if start > 0: |
|
substr = "##" + substr |
|
if substr in self.vocab: |
|
cur_substr = substr |
|
break |
|
end -= 1 |
|
if cur_substr is None: |
|
is_bad = True |
|
break |
|
sub_tokens.append(cur_substr) |
|
start = end |
|
|
|
if is_bad: |
|
output_tokens.append(self.unk_token) |
|
else: |
|
output_tokens.extend(sub_tokens) |
|
return output_tokens |
|
|
|
|
|
def _is_whitespace(char): |
|
"""Checks whether `chars` is a whitespace character.""" |
|
|
|
|
|
if char == " " or char == "\t" or char == "\n" or char == "\r": |
|
return True |
|
cat = unicodedata.category(char) |
|
if cat == "Zs": |
|
return True |
|
return False |
|
|
|
|
|
def _is_control(char): |
|
"""Checks whether `chars` is a control character.""" |
|
|
|
|
|
if char == "\t" or char == "\n" or char == "\r": |
|
return False |
|
cat = unicodedata.category(char) |
|
if cat in ("Cc", "Cf"): |
|
return True |
|
return False |
|
|
|
|
|
def _is_punctuation(char): |
|
"""Checks whether `chars` is a punctuation character.""" |
|
cp = ord(char) |
|
|
|
|
|
|
|
|
|
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or |
|
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): |
|
return True |
|
cat = unicodedata.category(char) |
|
if cat.startswith("P"): |
|
return True |
|
return False |
|
|