Upload folder using huggingface_hub
Browse files- .gitattributes +3 -0
- README.md +257 -0
- asset/input/canny.jpg +0 -0
- asset/input/depth.jpg +0 -0
- asset/input/pose.jpg +0 -0
- asset/output/canny.jpg +3 -0
- asset/output/depth.jpg +3 -0
- asset/output/pose.jpg +3 -0
- pytorch_model_canny_distill.pt +3 -0
- pytorch_model_depth_distill.pt +3 -0
- pytorch_model_pose_distill.pt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
asset/output/canny.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
asset/output/depth.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
asset/output/pose.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
## Using HunyuanDiT ControlNet
|
3 |
+
|
4 |
+
|
5 |
+
### Instructions
|
6 |
+
|
7 |
+
The dependencies and installation are basically the same as the [**base model**](https://huggingface.co/Tencent-Hunyuan/HunyuanDiT-v1.1).
|
8 |
+
|
9 |
+
We provide three types of ControlNet weights for you to test: canny, depth and pose ControlNet.
|
10 |
+
|
11 |
+
Download the model using the following commands:
|
12 |
+
|
13 |
+
```bash
|
14 |
+
cd HunyuanDiT
|
15 |
+
# Use the huggingface-cli tool to download the model.
|
16 |
+
# We recommend using distilled weights as the base model for ControlNet inference, as our provided pretrained weights are trained on them.
|
17 |
+
huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet-v1.2 --local-dir ./ckpts/t2i/controlnet
|
18 |
+
huggingface-cli download Tencent-Hunyuan/Distillation-v1.2 ./pytorch_model_distill.pt --local-dir ./ckpts/t2i/model
|
19 |
+
|
20 |
+
# Quick start
|
21 |
+
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --control-weight 1.0 --infer-mode fa
|
22 |
+
```
|
23 |
+
|
24 |
+
Examples of condition input and ControlNet results are as follows:
|
25 |
+
<table>
|
26 |
+
<tr>
|
27 |
+
<td colspan="3" align="center">Condition Input</td>
|
28 |
+
</tr>
|
29 |
+
|
30 |
+
<tr>
|
31 |
+
<td align="center">Canny ControlNet </td>
|
32 |
+
<td align="center">Depth ControlNet </td>
|
33 |
+
<td align="center">Pose ControlNet </td>
|
34 |
+
</tr>
|
35 |
+
|
36 |
+
<tr>
|
37 |
+
<td align="center">在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围<br>(At night, an ancient Chinese-style lion statue stands in front of the hotel, its eyes gleaming as if guarding the building. The background is the hotel entrance at night, with a close-up, eye-level, and centered composition. This photo presents a realistic photographic style, embodies Chinese sculpture culture, and reveals a mysterious atmosphere.) </td>
|
38 |
+
<td align="center">在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足。照片采用特写、平视和居中构图的方式,呈现出写实的效果<br>(In the dense forest, a black and white panda sits quietly among the green trees and red flowers, surrounded by mountains and oceans. The background is a daytime forest with ample light. The photo uses a close-up, eye-level, and centered composition to create a realistic effect.) </td>
|
39 |
+
<td align="center">在白天的森林中,一位穿着绿色上衣的亚洲女性站在大象旁边。照片采用了中景、平视和居中构图的方式,呈现出写实的效果。这张照片蕴含了人物摄影文化,并展现了宁静的氛围<br>(In the daytime forest, an Asian woman wearing a green shirt stands beside an elephant. The photo uses a medium shot, eye-level, and centered composition to create a realistic effect. This picture embodies the character photography culture and conveys a serene atmosphere.) </td>
|
40 |
+
</tr>
|
41 |
+
|
42 |
+
<tr>
|
43 |
+
<td align="center"><img src="asset/input/canny.jpg" alt="Image 0" width="200"/></td>
|
44 |
+
<td align="center"><img src="asset/input/depth.jpg" alt="Image 1" width="200"/></td>
|
45 |
+
<td align="center"><img src="asset/input/pose.jpg" alt="Image 2" width="200"/></td>
|
46 |
+
|
47 |
+
</tr>
|
48 |
+
|
49 |
+
<tr>
|
50 |
+
<td colspan="3" align="center">ControlNet Output</td>
|
51 |
+
</tr>
|
52 |
+
|
53 |
+
<tr>
|
54 |
+
<td align="center"><img src="asset/output/canny.jpg" alt="Image 3" width="200"/></td>
|
55 |
+
<td align="center"><img src="asset/output/depth.jpg" alt="Image 4" width="200"/></td>
|
56 |
+
<td align="center"><img src="asset/output/pose.jpg" alt="Image 5" width="200"/></td>
|
57 |
+
</tr>
|
58 |
+
|
59 |
+
|
60 |
+
</table>
|
61 |
+
|
62 |
+
|
63 |
+
### Training
|
64 |
+
|
65 |
+
We utilize [**DWPose**](https://github.com/IDEA-Research/DWPose) for pose extraction. Please follow their guidelines to download the checkpoints and save them to `hydit/annotator/ckpts` directory. We provide serveral commands to quick install:
|
66 |
+
```bash
|
67 |
+
mkdir ./hydit/annotator/ckpts
|
68 |
+
wget -O ./hydit/annotator/ckpts/dwpose.zip https://dit.hunyuan.tencent.com/download/HunyuanDiT/dwpose.zip
|
69 |
+
unzip ./hydit/annotator/ckpts/dwpose.zip -d ./hydit/annotator/ckpts/
|
70 |
+
```
|
71 |
+
Additionally, ensure that you install the related dependencies.
|
72 |
+
```bash
|
73 |
+
pip install matplotlib==3.7.5
|
74 |
+
pip install onnxruntime_gpu==1.16.3
|
75 |
+
pip install opencv-python==4.8.1.78
|
76 |
+
```
|
77 |
+
|
78 |
+
|
79 |
+
We provide three types of weights for ControlNet training, `ema`, `module` and `distill`, and you can choose according to the actual effects. By default, we use `distill` weights.
|
80 |
+
|
81 |
+
Here is an example, we load the `distill` weights into the main model and conduct ControlNet training.
|
82 |
+
|
83 |
+
If you want to load the `module` weights into the main model, just remove the `--ema-to-module` parameter.
|
84 |
+
|
85 |
+
If apply multiple resolution training, you need to add the `--multireso` and `--reso-step 64` parameter.
|
86 |
+
|
87 |
+
```bash
|
88 |
+
task_flag="canny_controlnet" # task flag is used to identify folders.
|
89 |
+
control_type=canny
|
90 |
+
resume=./ckpts/t2i/model/ # checkpoint root for resume
|
91 |
+
index_file=path/to/your/index_file
|
92 |
+
results_dir=./log_EXP # save root for results
|
93 |
+
batch_size=1 # training batch size
|
94 |
+
image_size=1024 # training image resolution
|
95 |
+
grad_accu_steps=2 # gradient accumulation
|
96 |
+
warmup_num_steps=0 # warm-up steps
|
97 |
+
lr=0.0001 # learning rate
|
98 |
+
ckpt_every=10000 # create a ckpt every a few steps.
|
99 |
+
ckpt_latest_every=5000 # create a ckpt named `latest.pt` every a few steps.
|
100 |
+
|
101 |
+
|
102 |
+
sh $(dirname "$0")/run_g_controlnet.sh \
|
103 |
+
--task-flag ${task_flag} \
|
104 |
+
--control-type ${control_type} \
|
105 |
+
--noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.03 \
|
106 |
+
--predict-type v_prediction \
|
107 |
+
--multireso \
|
108 |
+
--reso-step 64 \
|
109 |
+
--ema-to-module \
|
110 |
+
--uncond-p 0.44 \
|
111 |
+
--uncond-p-t5 0.44 \
|
112 |
+
--index-file ${index_file} \
|
113 |
+
--random-flip \
|
114 |
+
--lr ${lr} \
|
115 |
+
--batch-size ${batch_size} \
|
116 |
+
--image-size ${image_size} \
|
117 |
+
--global-seed 999 \
|
118 |
+
--grad-accu-steps ${grad_accu_steps} \
|
119 |
+
--warmup-num-steps ${warmup_num_steps} \
|
120 |
+
--use-flash-attn \
|
121 |
+
--use-fp16 \
|
122 |
+
--use-ema \
|
123 |
+
--ema-dtype fp32 \
|
124 |
+
--results-dir ${results_dir} \
|
125 |
+
--resume-split \
|
126 |
+
--resume ${resume} \
|
127 |
+
--ckpt-every ${ckpt_every} \
|
128 |
+
--ckpt-latest-every ${ckpt_latest_every} \
|
129 |
+
--log-every 10 \
|
130 |
+
--deepspeed \
|
131 |
+
--deepspeed-optimizer \
|
132 |
+
--use-zero-stage 2 \
|
133 |
+
"$@"
|
134 |
+
```
|
135 |
+
|
136 |
+
Recommended parameter settings
|
137 |
+
|
138 |
+
| Parameter | Description | Recommended Parameter Value | Note|
|
139 |
+
|:---------------:|:---------:|:---------------------------------------------------:|:--:|
|
140 |
+
| `--batch-size` | Training batch size | 1 | Depends on GPU memory|
|
141 |
+
| `--grad-accu-steps` | Size of gradient accumulation | 2 | - |
|
142 |
+
| `--lr` | Learning rate | 0.0001 | - |
|
143 |
+
| `--control-type` | ControlNet condition type, support 3 types now (canny, depth and pose) | / | - |
|
144 |
+
|
145 |
+
|
146 |
+
### Inference
|
147 |
+
You can use the following command line for inference.
|
148 |
+
|
149 |
+
a. You can use a float to specify the weight for all layers, **or use a list to separately specify the weight for each layer**, for example, '[1.0 * (0.825 ** float(19 - i)) for i in range(19)]'
|
150 |
+
```bash
|
151 |
+
python3 sample_controlnet.py --control-weight [1.0 * (0.825 ** float(19 - i)) for i in range(19)] --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --infer-mode fa
|
152 |
+
```
|
153 |
+
|
154 |
+
b. Using canny ControlNet during inference
|
155 |
+
|
156 |
+
```bash
|
157 |
+
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --control-weight 1.0 --infer-mode fa
|
158 |
+
```
|
159 |
+
|
160 |
+
c. Using depth ControlNet during inference
|
161 |
+
|
162 |
+
```bash
|
163 |
+
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type depth --prompt "在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足。照片采用特写、平视和居中构图的方式,呈现出写实的效果" --condition-image-path controlnet/asset/input/depth.jpg --control-weight 1.0 --infer-mode fa
|
164 |
+
```
|
165 |
+
|
166 |
+
d. Using pose ControlNet during inference
|
167 |
+
|
168 |
+
|
169 |
+
```bash
|
170 |
+
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type pose --prompt "在白天的森林中,一位穿着绿色上衣的亚洲女性站在大象旁边。照片采用了中景、平视和居中构图的方式,呈现出写实的效果。这张照片蕴含了人物摄影文化,并展现了宁��的氛围" --condition-image-path controlnet/asset/input/pose.jpg --control-weight 1.0 --infer-mode fa
|
171 |
+
```
|
172 |
+
|
173 |
+
## HunyuanDiT Controlnet v1.1
|
174 |
+
|
175 |
+
### Instructions
|
176 |
+
Download the v1.1 base model and controlnet using the following commands:
|
177 |
+
```bash
|
178 |
+
cd HunyuanDiT
|
179 |
+
# Use the huggingface-cli tool to download the model.
|
180 |
+
# We recommend using distilled weights as the base model for ControlNet inference, as our provided pretrained weights are trained on them.
|
181 |
+
huggingface-cli download Tencent-Hunyuan/HYDiT-ControlNet-v1.1 --local-dir ./HunyuanDiT-v1.1/t2i/controlnet
|
182 |
+
huggingface-cli download Tencent-Hunyuan/Distillation-v1.1 ./pytorch_model_distill.pt --local-dir ./HunyuanDiT-v1.1/t2i/model
|
183 |
+
```
|
184 |
+
|
185 |
+
### Training
|
186 |
+
|
187 |
+
```bash
|
188 |
+
task_flag="canny_controlnet" # the task flag is used to identify folders.
|
189 |
+
control_type=canny
|
190 |
+
resume=./HunyuanDiT-v1.1/t2i/model/ # checkpoint root for resume
|
191 |
+
index_file=/path/to/your/indexfile # index file for dataloader
|
192 |
+
results_dir=./log_EXP # save root for results
|
193 |
+
batch_size=1 # training batch size
|
194 |
+
image_size=1024 # training image resolution
|
195 |
+
grad_accu_steps=2 # gradient accumulation
|
196 |
+
warmup_num_steps=0 # warm-up steps
|
197 |
+
lr=0.0001 # learning rate
|
198 |
+
ckpt_every=10000 # create a ckpt every a few steps.
|
199 |
+
ckpt_latest_every=5000 # create a ckpt named `latest.pt` every a few steps.
|
200 |
+
epochs=100 # total training epochs
|
201 |
+
|
202 |
+
|
203 |
+
sh $(dirname "$0")/run_g_controlnet.sh \
|
204 |
+
--task-flag ${task_flag} \
|
205 |
+
--control-type ${control_type} \
|
206 |
+
--noise-schedule scaled_linear --beta-start 0.00085 --beta-end 0.03 \
|
207 |
+
--predict-type v_prediction \
|
208 |
+
--multireso \
|
209 |
+
--reso-step 64 \
|
210 |
+
--ema-to-module \
|
211 |
+
--uncond-p 0.44 \
|
212 |
+
--uncond-p-t5 0.44 \
|
213 |
+
--index-file ${index_file} \
|
214 |
+
--random-flip \
|
215 |
+
--lr ${lr} \
|
216 |
+
--batch-size ${batch_size} \
|
217 |
+
--image-size ${image_size} \
|
218 |
+
--global-seed 999 \
|
219 |
+
--grad-accu-steps ${grad_accu_steps} \
|
220 |
+
--warmup-num-steps ${warmup_num_steps} \
|
221 |
+
--use-flash-attn \
|
222 |
+
--use-fp16 \
|
223 |
+
--results-dir ${results_dir} \
|
224 |
+
--resume-split \
|
225 |
+
--resume ${resume} \
|
226 |
+
--epochs ${epochs} \
|
227 |
+
--ckpt-every ${ckpt_every} \
|
228 |
+
--ckpt-latest-every ${ckpt_latest_every} \
|
229 |
+
--log-every 10 \
|
230 |
+
--deepspeed \
|
231 |
+
--deepspeed-optimizer \
|
232 |
+
--use-zero-stage 2 \
|
233 |
+
--use-style-cond \
|
234 |
+
--size-cond 1024 1024 \
|
235 |
+
"$@"
|
236 |
+
```
|
237 |
+
|
238 |
+
### Inference
|
239 |
+
You can use the following command line for inference.
|
240 |
+
|
241 |
+
a. Using canny ControlNet during inference
|
242 |
+
|
243 |
+
```bash
|
244 |
+
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type canny --prompt "在夜晚的酒店门前,一座古老的中国风格的狮子雕像矗立着,它的眼睛闪烁着光芒,仿佛在守护着这座建筑。背景是夜晚的酒店前,构图方式是特写,平视,居中构图。这张照片呈现了真实摄影风格,蕴含了中国雕塑文化,同时展现了神秘氛围" --condition-image-path controlnet/asset/input/canny.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03
|
245 |
+
```
|
246 |
+
|
247 |
+
b. Using depth ControlNet during inference
|
248 |
+
|
249 |
+
```bash
|
250 |
+
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type depth --prompt "在茂密的森林中,一只黑白相间的熊猫静静地坐在绿树红花中,周围是山川和海洋。背景是白天的森林,光线充足" --condition-image-path controlnet/asset/input/depth.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03
|
251 |
+
```
|
252 |
+
|
253 |
+
c. Using pose ControlNet during inference
|
254 |
+
|
255 |
+
```bash
|
256 |
+
python3 sample_controlnet.py --no-enhance --load-key distill --infer-steps 50 --control-type pose --prompt "一位亚洲女性,身穿绿色上衣,戴着紫色头巾和紫色围巾,站在黑板前。背景是黑板。照片采用近景、平视和居中构图的方式呈现真实摄影风格" --condition-image-path controlnet/asset/input/pose.jpg --control-weight 1.0 --use-style-cond --size-cond 1024 1024 --beta-end 0.03
|
257 |
+
```
|
asset/input/canny.jpg
ADDED
asset/input/depth.jpg
ADDED
asset/input/pose.jpg
ADDED
asset/output/canny.jpg
ADDED
Git LFS Details
|
asset/output/depth.jpg
ADDED
Git LFS Details
|
asset/output/pose.jpg
ADDED
Git LFS Details
|
pytorch_model_canny_distill.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae48d18fcc116e4313ea1fdfc55ef7b35fa2b9a90b738a29d2ee33cf92111695
|
3 |
+
size 1488555446
|
pytorch_model_depth_distill.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fd40492dc16d61fd6ea0bdfc514e67c7a64a843c9479239ddbb61bb38e07bfc
|
3 |
+
size 1488555446
|
pytorch_model_pose_distill.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f5410e5c11ed166d328229d698b7eb4398b671e94ed4f2126fb1d10ed745b30
|
3 |
+
size 1488555419
|