Temo27Anas commited on
Commit
4919642
1 Parent(s): 508f083

Model save

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: google/vivit-b-16x2-kinetics400
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: vivit-b-16x2-kinetics400-ft-9811
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # vivit-b-16x2-kinetics400-ft-9811
17
+
18
+ This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.9429
21
+ - Accuracy: 0.5767
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - training_steps: 440
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
53
+ | 1.0942 | 0.2523 | 111 | 1.1040 | 0.4392 |
54
+ | 1.0041 | 1.2523 | 222 | 0.9264 | 0.5608 |
55
+ | 0.9804 | 2.2523 | 333 | 0.8831 | 0.5979 |
56
+ | 0.79 | 3.2432 | 440 | 0.8656 | 0.6085 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.41.2
62
+ - Pytorch 1.13.0+cu117
63
+ - Datasets 2.20.0
64
+ - Tokenizers 0.19.1