Teddy487 commited on
Commit
bfb338f
1 Parent(s): 6649836

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -1
README.md CHANGED
@@ -1,8 +1,90 @@
1
  ---
2
  library_name: peft
3
  base_model: meta-llama/Meta-Llama-3-8B-Instruct
 
 
 
4
  ---
5
- ## Training procedure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  ### Framework versions
8
 
 
1
  ---
2
  library_name: peft
3
  base_model: meta-llama/Meta-Llama-3-8B-Instruct
4
+ license: apache-2.0
5
+ language:
6
+ - en
7
  ---
8
+ ## Overview
9
+
10
+ The model is a LoRa Adaptor based on LLaMA-3-8B-Instruct. The model has been trained on a [re-annotated version](https://github.com/Teddy-Li/MulVOIEL/tree/master/CaRB/data) of the [CaRB dataset](https://github.com/dair-iitd/CaRB).
11
+
12
+ The model produces multi-valent Open IE tuples, i.e. relations with various numbers of arguments (1, 2, or more). We provide an example below:
13
+
14
+ Consider the following sentence (taken from the CaRB dev set):
15
+
16
+ `Earlier this year , President Bush made a final `` take - it - or - leave it '' offer on the minimum wage`
17
+
18
+ Our model would extract the following relation from the sentence:
19
+
20
+ <<span style="color:#2471A3">President Bush</span>, <span style="color:#A93226">made</span>, <span style="color:#138D75">a final "take-it-or-leave-it" offer</span>, <span style="color:#B7950B ">on the minimum wage</span>, <span style="color:#B9770E">earlier this year</span>>
21
+
22
+ where we include <span style="color:#2471A3">President Bush</span> as the <span style="color:#2471A3">subject</span>, <span style="color:#A93226">made</span> as the <span style="color:#A93226">object</span>, <span style="color:#138D75">a final "take-it-or-leave-it" offer</span> as the<span style="color:#138D75">direct object</span>, and <span style="color:#B7950B ">on the minimum wage</span> and <span style="color:#B9770E">earlier this year</span>> as salient <span style="color:#B7950B">_compl_</span><span style="color:#B9770E">_ements_</span>.
23
+
24
+ We briefly describe how to use our model in the below, and provide further details in our [MulVOIEL repository on Github](https://github.com/Teddy-Li/MulVOIEL/)
25
+
26
+
27
+ ## Getting Started
28
+
29
+ ### Model Output Format
30
+
31
+ Given a sentence, the model produces textual predictions in the following format:
32
+
33
+ `<subj> ,, (<auxi> ###) <predicate> ,, (<prep1> ###) <obj1>, (<prep2> ###) <obj2>, ...`
34
+
35
+ ### How to Use
36
+
37
+ 1. Install the relevant libraries (using the LLaMA3-8b-instruct model as an example):
38
+ ```bash
39
+ pip install transformers datasets peft torch
40
+ ```
41
+
42
+ 2. Load the model and perform inference (example):
43
+ ```python
44
+ from transformers import AutoModelForCausalLM, AutoTokenizer
45
+ from peft import PeftModel
46
+ import torch
47
+ from llamaOIE import parse_outstr_to_triples
48
+ from llamaOIE_dataset import prepare_input
49
+
50
+ base_model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
51
+ peft_adapter_name = "Teddy487/LLaMA3-8b-for-OpenIE"
52
+
53
+ model = AutoModelForCausalLM.from_pretrained(base_model_name)
54
+ model = PeftModel.from_pretrained(model, peft_adapter_name)
55
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
56
+
57
+ input_text = "Earlier this year , President Bush made a final `` take - it - or - leave it '' offer on the minimum wage"
58
+ input_text, _ = prepare_input({'s': input_text}, tokenizer, has_labels=False)
59
+
60
+ input_ids = tokenizer(input_text, return_tensors="pt").input_ids
61
+
62
+ outputs = model.generate(input_ids)
63
+ outstr = tokenizer.decode(outputs[0][len(input_ids):], skip_special_tokens=True)
64
+ triples = parse_outstr_to_triples(outstr)
65
+
66
+ for tpl in triples:
67
+ print(tpl)
68
+ ```
69
+
70
+ 🍺
71
+
72
+ ## Model Performance
73
+
74
+ The primary benefit of our model is the ability to extract finer-grained information for predicates. On the other hand, we also report performance on a roughly comparable basis with prior SOTA open IE models, where our method is comparable and even superior to prior models, while producing finer-grained and more complex outputs. We report evaluation results in (macro) F-1 metric, as well as in the average [Levenshtein Distance](https://pypi.org/project/python-Levenshtein/) between gold and predicted relations:
75
+
76
+ | Model | Levenshtein Distance | Macro F-1 |
77
+ | --- | --- | --- | --- |
78
+ | [LoRA LLaMA2-7b](https://huggingface.co/Teddy487/LLaMA2-7b-for-OpenIE) | 5.85 | 50.21% |
79
+ | [LoRA LLaMA3-8b](https://huggingface.co/Teddy487/LLaMA3-8b-for-OpenIE) | 5.04 | 55.32% |
80
+ | RNN OIE * | - | 49.0 |
81
+ | IMOJIE * | - | 53.5 |
82
+ | Open IE 6 * | - | 54.0/52.7 |
83
+
84
+ Note that the precision and recall values are not directly comparable, because we evaluate the model prediction at a finer granularity, and we use different train/dev/test arrangements as the original CaRB dataset, hence the asterisk.
85
+
86
+
87
+
88
 
89
  ### Framework versions
90