jensjorisdecorte commited on
Commit
99bb455
·
verified ·
1 Parent(s): 7735a36

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Asym/140216480444672_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 1024, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Asym/140216480444672_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32b0721292561cc684d5e71dc13b2d5fc9e86405cb085194500fbb0232530e45
3
+ size 3149984
2_Asym/140216480445248_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 1024, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Asym/140216480445248_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:647eaba5e180e77e55e20b2b1f22cb83a2686bbb0881f6c326627d8d9b5f603d
3
+ size 3149984
2_Asym/config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "types": {
3
+ "140216480444672_Dense": "sentence_transformers.models.Dense",
4
+ "140216480445248_Dense": "sentence_transformers.models.Dense"
5
+ },
6
+ "structure": {
7
+ "anchor": [
8
+ "140216480444672_Dense"
9
+ ],
10
+ "positive": [
11
+ "140216480445248_Dense"
12
+ ]
13
+ },
14
+ "parameters": {
15
+ "allow_empty_key": true
16
+ }
17
+ }
README.md ADDED
@@ -0,0 +1,462 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-mpnet-base-v2
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:5579240
11
+ - loss:CachedMultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: Program Coordinator RN
14
+ sentences:
15
+ - discuss the medical history of the healthcare user, evidence-based approach in
16
+ general practice, apply various lifting techniques, establish daily priorities,
17
+ manage time, demonstrate disciplinary expertise, tolerate sitting for long periods,
18
+ think critically, provide professional care in nursing, attend meetings, represent
19
+ union members, nursing science, manage a multidisciplinary team involved in patient
20
+ care, implement nursing care, customer service, work under supervision in care,
21
+ keep up-to-date with training subjects, evidence-based nursing care, operate lifting
22
+ equipment, follow code of ethics for biomedical practices, coordinate care, provide
23
+ learning support in healthcare
24
+ - provide written content, prepare visual data, design computer network, deliver
25
+ visual presentation of data, communication, operate relational database management
26
+ system, ICT communications protocols, document management, use threading techniques,
27
+ search engines, computer science, analyse network bandwidth requirements, analyse
28
+ network configuration and performance, develop architectural plans, conduct ICT
29
+ code review, hardware architectures, computer engineering, video-games functionalities,
30
+ conduct web searches, use databases, use online tools to collaborate
31
+ - nursing science, administer appointments, administrative tasks in a medical environment,
32
+ intravenous infusion, plan nursing care, prepare intravenous packs, work with
33
+ nursing staff, supervise nursing staff, clinical perfusion
34
+ - source_sentence: Director of Federal Business Development and Capture Mgmt
35
+ sentences:
36
+ - develop business plans, strive for company growth, develop personal skills, channel
37
+ marketing, prepare financial projections, perform market research, identify new
38
+ business opportunities, market research, maintain relationship with customers,
39
+ manage government funding, achieve sales targets, build business relationships,
40
+ expand the network of providers, make decisions, guarantee customer satisfaction,
41
+ collaborate in the development of marketing strategies, analyse business plans,
42
+ think analytically, develop revenue generation strategies, health care legislation,
43
+ align efforts towards business development, assume responsibility, solve problems,
44
+ deliver business research proposals, identify potential markets for companies
45
+ - operate warehouse materials, goods transported from warehouse facilities, organise
46
+ social work packages, coordinate orders from various suppliers, warehouse operations,
47
+ work in assembly line teams, work in a logistics team, footwear materials
48
+ - manufacturing plant equipment, use hand tools, assemble hardware components, use
49
+ traditional toolbox tools, perform product testing, control panel components,
50
+ perform pre-assembly quality checks, oversee equipment operation, assemble mechatronic
51
+ units, arrange equipment repairs, assemble machines, build machines, resolve equipment
52
+ malfunctions, electromechanics, develop assembly instructions, install hydraulic
53
+ systems, revise quality control systems documentation, detect product defects,
54
+ operate hydraulic machinery controls, show an exemplary leading role in an organisation,
55
+ assemble manufactured pipeline parts, types of pallets, perform office routine
56
+ activities, conform with production requirements, comply with quality standards
57
+ related to healthcare practice
58
+ - source_sentence: director of production
59
+ sentences:
60
+ - use customer relationship management software, sales strategies, create project
61
+ specifications, document project progress, attend trade fairs, building automation,
62
+ sales department processes, work independently, develop account strategy, build
63
+ business relationships, facilitate the bidding process, close sales at auction,
64
+ satisfy technical requirements, results-based management, achieve sales targets,
65
+ manage sales teams, liaise with specialist contractors for well operations, sales
66
+ activities, use sales forecasting softwares, guarantee customer satisfaction,
67
+ integrate building requirements in the architectural design, participate actively
68
+ in civic life, customer relationship management, implement sales strategies
69
+ - translate strategy into operation, lead the brand strategic planning process,
70
+ assist in developing marketing campaigns, implement sales strategies, sales promotion
71
+ techniques, negotiate with employment agencies, perform market research, communicate
72
+ with customers, develop media strategy, change power distribution systems, beverage
73
+ products, project management, provide advertisement samples, devise military tactics,
74
+ use microsoft office, market analysis, manage sales teams, create brand guidelines,
75
+ brand marketing techniques, use sales forecasting softwares, supervise brand management,
76
+ analyse packaging requirements, provide written content, hand out product samples,
77
+ channel marketing
78
+ - use microsoft office, use scripting programming, build team spirit, operate games,
79
+ production processes, create project specifications, analyse production processes
80
+ for improvement, manage production enterprise, Agile development, apply basic
81
+ programming skills, document project progress, supervise game operations, work
82
+ to develop physical ability to perform at the highest level in sport, fix meetings,
83
+ office software, enhance production workflow, manage a team, set production KPI,
84
+ manage commercial risks, work in teams, teamwork principles, address identified
85
+ risks, meet deadlines, consult with production director
86
+ - source_sentence: Nursing Assistant
87
+ sentences:
88
+ - supervise medical residents, observe healthcare users, provide domestic care,
89
+ prepare health documentation, position patients undergoing interventions, work
90
+ with broad variety of personalities, supervise food in healthcare, tend to elderly
91
+ people, monitor patient's vital signs, transfer patients, show empathy, provide
92
+ in-home support for disabled individuals, hygiene in a health care setting, supervise
93
+ housekeeping operations, perform cleaning duties, monitor patient's health condition,
94
+ provide basic support to patients, work with nursing staff, involve service users
95
+ and carers in care planning, use electronic health records management system,
96
+ arrange in-home services for patients, provide nursing care in community settings
97
+ , work in shifts, supervise nursing staff
98
+ - manage relationships with stakeholders, use microsoft office, maintain records
99
+ of financial transactions, software components suppliers, tools for software configuration
100
+ management, attend to detail, keep track of expenses, build business relationships,
101
+ issue sales invoices, financial department processes, supplier management, process
102
+ payments, perform records management, manage standard enterprise resource planning
103
+ system
104
+ - inspect quality of products, apply HACCP, test package, follow verbal instructions,
105
+ laboratory equipment, assist in the production of laboratory documentation, ensure
106
+ quality control in packaging, develop food safety programmes, packaging engineering,
107
+ appropriate packaging of dangerous goods, maintain laboratory equipment, SAP Data
108
+ Services, calibrate laboratory equipment, analyse packaging requirements, write
109
+ English
110
+ - source_sentence: Branch Manager
111
+ sentences:
112
+ - support employability of people with disabilities, schedule shifts, issue licences,
113
+ funding methods, maintain correspondence records, computer equipment, decide on
114
+ providing funds, tend filing machine, use microsoft office, lift stacks of paper,
115
+ transport office equipment, tend to guests with special needs, provide written
116
+ content, foreign affairs policy development, provide charity services, philanthropy,
117
+ maintain financial records, meet deadlines, manage fundraising activities, assist
118
+ individuals with disabilities in community activities, report on grants, prepare
119
+ compliance documents, manage grant applications, tolerate sitting for long periods,
120
+ follow work schedule
121
+ - cook pastry products, create new recipes, food service operations, assess shelf
122
+ life of food products, apply requirements concerning manufacturing of food and
123
+ beverages, food waste monitoring systems, maintain work area cleanliness, comply
124
+ with food safety and hygiene, coordinate catering, maintain store cleanliness,
125
+ work according to recipe, health, safety and hygiene legislation, install refrigeration
126
+ equipment, prepare desserts, measure precise food processing operations, conform
127
+ with production requirements, work in an organised manner, demand excellence from
128
+ performers, refrigerants, attend to detail, ensure food quality, manufacture prepared
129
+ meals
130
+ - teamwork principles, office administration, delegate responsibilities, create
131
+ banking accounts, manage alarm system, make independent operating decisions, use
132
+ microsoft office, offer financial services, ensure proper document management,
133
+ own management skills, use spreadsheets software, manage cash flow, integrate
134
+ community outreach, manage time, perform multiple tasks at the same time, carry
135
+ out calculations, assess customer credibility, maintain customer service, team
136
+ building, digitise documents, promote financial products, communication, assist
137
+ customers, follow procedures in the event of an alarm, office equipment
138
+ ---
139
+
140
+ # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
141
+
142
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the generator dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
143
+
144
+ ## Model Details
145
+
146
+ ### Model Description
147
+ - **Model Type:** Sentence Transformer
148
+ - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 9a3225965996d404b775526de6dbfe85d3368642 -->
149
+ - **Maximum Sequence Length:** 64 tokens
150
+ - **Output Dimensionality:** 1024 tokens
151
+ - **Similarity Function:** Cosine Similarity
152
+ - **Training Dataset:**
153
+ - generator
154
+ <!-- - **Language:** Unknown -->
155
+ <!-- - **License:** Unknown -->
156
+
157
+ ### Model Sources
158
+
159
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
160
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
161
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
162
+
163
+ ### Full Model Architecture
164
+
165
+ ```
166
+ SentenceTransformer(
167
+ (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: MPNetModel
168
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
169
+ (2): Asym(
170
+ (anchor-0): Dense({'in_features': 768, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
171
+ (positive-0): Dense({'in_features': 768, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
172
+ )
173
+ )
174
+ ```
175
+
176
+ ## Usage
177
+
178
+ ### Direct Usage (Sentence Transformers)
179
+
180
+ First install the Sentence Transformers library:
181
+
182
+ ```bash
183
+ pip install -U sentence-transformers
184
+ ```
185
+
186
+ Then you can load this model and run inference.
187
+ ```python
188
+ from sentence_transformers import SentenceTransformer
189
+
190
+ # Download from the 🤗 Hub
191
+ model = SentenceTransformer("jensjorisdecorte/JobBERT-v2")
192
+ # Run inference
193
+ sentences = [
194
+ 'Branch Manager',
195
+ 'teamwork principles, office administration, delegate responsibilities, create banking accounts, manage alarm system, make independent operating decisions, use microsoft office, offer financial services, ensure proper document management, own management skills, use spreadsheets software, manage cash flow, integrate community outreach, manage time, perform multiple tasks at the same time, carry out calculations, assess customer credibility, maintain customer service, team building, digitise documents, promote financial products, communication, assist customers, follow procedures in the event of an alarm, office equipment',
196
+ 'support employability of people with disabilities, schedule shifts, issue licences, funding methods, maintain correspondence records, computer equipment, decide on providing funds, tend filing machine, use microsoft office, lift stacks of paper, transport office equipment, tend to guests with special needs, provide written content, foreign affairs policy development, provide charity services, philanthropy, maintain financial records, meet deadlines, manage fundraising activities, assist individuals with disabilities in community activities, report on grants, prepare compliance documents, manage grant applications, tolerate sitting for long periods, follow work schedule',
197
+ ]
198
+ embeddings = model.encode(sentences)
199
+ print(embeddings.shape)
200
+ # [3, 1024]
201
+
202
+ # Get the similarity scores for the embeddings
203
+ similarities = model.similarity(embeddings, embeddings)
204
+ print(similarities.shape)
205
+ # [3, 3]
206
+ ```
207
+
208
+ <!--
209
+ ### Direct Usage (Transformers)
210
+
211
+ <details><summary>Click to see the direct usage in Transformers</summary>
212
+
213
+ </details>
214
+ -->
215
+
216
+ <!--
217
+ ### Downstream Usage (Sentence Transformers)
218
+
219
+ You can finetune this model on your own dataset.
220
+
221
+ <details><summary>Click to expand</summary>
222
+
223
+ </details>
224
+ -->
225
+
226
+ <!--
227
+ ### Out-of-Scope Use
228
+
229
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
230
+ -->
231
+
232
+ <!--
233
+ ## Bias, Risks and Limitations
234
+
235
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
236
+ -->
237
+
238
+ <!--
239
+ ### Recommendations
240
+
241
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
242
+ -->
243
+
244
+ ## Training Details
245
+
246
+ ### Training Dataset
247
+
248
+ #### generator
249
+
250
+ * Dataset: generator
251
+ * Size: 5,579,240 training samples
252
+ * Columns: <code>anchor</code> and <code>positive</code>
253
+ * Approximate statistics based on the first 1000 samples:
254
+ | | anchor | positive |
255
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
256
+ | type | string | string |
257
+ | details | <ul><li>min: 3 tokens</li><li>mean: 7.95 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 59.33 tokens</li><li>max: 64 tokens</li></ul> |
258
+ * Samples:
259
+ | anchor | positive |
260
+ |:--------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
261
+ | <code>CAD Designer - Fire Sprinkler - Milwaukee - Relocation</code> | <code>coordinate construction activities, oversee construction project, fire protection engineering, install fire sprinklers, hydraulics, construction industry, create AutoCAD drawings, design sprinkler systems, inspect construction sites, design drawings, supervise sewerage systems construction, prepare site for construction, building codes, communicate with construction crews</code> |
262
+ | <code>RN Practitioner</code> | <code>assume responsibility, financial statements, manage work, implement fundamentals of nursing, diagnose advanced nursing care, diagnose nursing care, specialist nursing care, nursing principles, provide nursing advice on healthcare, apply nursing care in long-term care, prescribe advanced nursing care, plan advanced nursing care, nursing science, implement nursing care, develop financial statistics reports, clinical decision-making at advanced practice, prepare financial statements, create a financial report, produce statistical financial records, operate in a specific field of nursing care</code> |
263
+ | <code>Respiratory Therapist Travel Positions (BB-160B7)</code> | <code>respiratory therapy, comply with quality standards related to healthcare practice, provide information, primary care, record treated patient's information, formulate a treatment plan, carry out treatment prescribed by doctors, develop patient treatment strategies</code> |
264
+ * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
265
+ ```json
266
+ {
267
+ "scale": 20.0,
268
+ "similarity_fct": "cos_sim"
269
+ }
270
+ ```
271
+
272
+ ### Training Hyperparameters
273
+ #### Non-Default Hyperparameters
274
+
275
+ - `overwrite_output_dir`: True
276
+ - `per_device_train_batch_size`: 2048
277
+ - `per_device_eval_batch_size`: 2048
278
+ - `num_train_epochs`: 1
279
+ - `fp16`: True
280
+
281
+ #### All Hyperparameters
282
+ <details><summary>Click to expand</summary>
283
+
284
+ - `overwrite_output_dir`: True
285
+ - `do_predict`: False
286
+ - `eval_strategy`: no
287
+ - `prediction_loss_only`: True
288
+ - `per_device_train_batch_size`: 2048
289
+ - `per_device_eval_batch_size`: 2048
290
+ - `per_gpu_train_batch_size`: None
291
+ - `per_gpu_eval_batch_size`: None
292
+ - `gradient_accumulation_steps`: 1
293
+ - `eval_accumulation_steps`: None
294
+ - `torch_empty_cache_steps`: None
295
+ - `learning_rate`: 5e-05
296
+ - `weight_decay`: 0.0
297
+ - `adam_beta1`: 0.9
298
+ - `adam_beta2`: 0.999
299
+ - `adam_epsilon`: 1e-08
300
+ - `max_grad_norm`: 1.0
301
+ - `num_train_epochs`: 1
302
+ - `max_steps`: -1
303
+ - `lr_scheduler_type`: linear
304
+ - `lr_scheduler_kwargs`: {}
305
+ - `warmup_ratio`: 0.0
306
+ - `warmup_steps`: 0
307
+ - `log_level`: passive
308
+ - `log_level_replica`: warning
309
+ - `log_on_each_node`: True
310
+ - `logging_nan_inf_filter`: True
311
+ - `save_safetensors`: True
312
+ - `save_on_each_node`: False
313
+ - `save_only_model`: False
314
+ - `restore_callback_states_from_checkpoint`: False
315
+ - `no_cuda`: False
316
+ - `use_cpu`: False
317
+ - `use_mps_device`: False
318
+ - `seed`: 42
319
+ - `data_seed`: None
320
+ - `jit_mode_eval`: False
321
+ - `use_ipex`: False
322
+ - `bf16`: False
323
+ - `fp16`: True
324
+ - `fp16_opt_level`: O1
325
+ - `half_precision_backend`: auto
326
+ - `bf16_full_eval`: False
327
+ - `fp16_full_eval`: False
328
+ - `tf32`: None
329
+ - `local_rank`: 0
330
+ - `ddp_backend`: None
331
+ - `tpu_num_cores`: None
332
+ - `tpu_metrics_debug`: False
333
+ - `debug`: []
334
+ - `dataloader_drop_last`: False
335
+ - `dataloader_num_workers`: 0
336
+ - `dataloader_prefetch_factor`: None
337
+ - `past_index`: -1
338
+ - `disable_tqdm`: False
339
+ - `remove_unused_columns`: True
340
+ - `label_names`: None
341
+ - `load_best_model_at_end`: False
342
+ - `ignore_data_skip`: False
343
+ - `fsdp`: []
344
+ - `fsdp_min_num_params`: 0
345
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
346
+ - `fsdp_transformer_layer_cls_to_wrap`: None
347
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
348
+ - `deepspeed`: None
349
+ - `label_smoothing_factor`: 0.0
350
+ - `optim`: adamw_torch
351
+ - `optim_args`: None
352
+ - `adafactor`: False
353
+ - `group_by_length`: False
354
+ - `length_column_name`: length
355
+ - `ddp_find_unused_parameters`: None
356
+ - `ddp_bucket_cap_mb`: None
357
+ - `ddp_broadcast_buffers`: False
358
+ - `dataloader_pin_memory`: True
359
+ - `dataloader_persistent_workers`: False
360
+ - `skip_memory_metrics`: True
361
+ - `use_legacy_prediction_loop`: False
362
+ - `push_to_hub`: False
363
+ - `resume_from_checkpoint`: None
364
+ - `hub_model_id`: None
365
+ - `hub_strategy`: every_save
366
+ - `hub_private_repo`: False
367
+ - `hub_always_push`: False
368
+ - `gradient_checkpointing`: False
369
+ - `gradient_checkpointing_kwargs`: None
370
+ - `include_inputs_for_metrics`: False
371
+ - `eval_do_concat_batches`: True
372
+ - `fp16_backend`: auto
373
+ - `push_to_hub_model_id`: None
374
+ - `push_to_hub_organization`: None
375
+ - `mp_parameters`:
376
+ - `auto_find_batch_size`: False
377
+ - `full_determinism`: False
378
+ - `torchdynamo`: None
379
+ - `ray_scope`: last
380
+ - `ddp_timeout`: 1800
381
+ - `torch_compile`: False
382
+ - `torch_compile_backend`: None
383
+ - `torch_compile_mode`: None
384
+ - `dispatch_batches`: None
385
+ - `split_batches`: None
386
+ - `include_tokens_per_second`: False
387
+ - `include_num_input_tokens_seen`: False
388
+ - `neftune_noise_alpha`: None
389
+ - `optim_target_modules`: None
390
+ - `batch_eval_metrics`: False
391
+ - `eval_on_start`: False
392
+ - `eval_use_gather_object`: False
393
+ - `batch_sampler`: batch_sampler
394
+ - `multi_dataset_batch_sampler`: proportional
395
+
396
+ </details>
397
+
398
+ ### Training Logs
399
+ | Epoch | Step | Training Loss |
400
+ |:------:|:----:|:-------------:|
401
+ | 0.1835 | 500 | 3.6354 |
402
+ | 0.3670 | 1000 | 3.1788 |
403
+ | 0.5505 | 1500 | 2.9969 |
404
+ | 0.7339 | 2000 | 2.9026 |
405
+ | 0.9174 | 2500 | 2.8421 |
406
+
407
+
408
+ ### Framework Versions
409
+ - Python: 3.9.19
410
+ - Sentence Transformers: 3.1.0
411
+ - Transformers: 4.44.2
412
+ - PyTorch: 2.4.1+cu118
413
+ - Accelerate: 0.34.2
414
+ - Datasets: 3.0.0
415
+ - Tokenizers: 0.19.1
416
+
417
+ ## Citation
418
+
419
+ ### BibTeX
420
+
421
+ #### Sentence Transformers
422
+ ```bibtex
423
+ @inproceedings{reimers-2019-sentence-bert,
424
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
425
+ author = "Reimers, Nils and Gurevych, Iryna",
426
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
427
+ month = "11",
428
+ year = "2019",
429
+ publisher = "Association for Computational Linguistics",
430
+ url = "https://arxiv.org/abs/1908.10084",
431
+ }
432
+ ```
433
+
434
+ #### CachedMultipleNegativesRankingLoss
435
+ ```bibtex
436
+ @misc{gao2021scaling,
437
+ title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
438
+ author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
439
+ year={2021},
440
+ eprint={2101.06983},
441
+ archivePrefix={arXiv},
442
+ primaryClass={cs.LG}
443
+ }
444
+ ```
445
+
446
+ <!--
447
+ ## Glossary
448
+
449
+ *Clearly define terms in order to be accessible across audiences.*
450
+ -->
451
+
452
+ <!--
453
+ ## Model Card Authors
454
+
455
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
456
+ -->
457
+
458
+ <!--
459
+ ## Model Card Contact
460
+
461
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
462
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "title-models/title-profile-contrastive-d1024",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:955fda98dcb7765d37617ace3e0a13c8695ac6d4c2e27d4b85c0e9454222117a
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Asym",
18
+ "type": "sentence_transformers.models.Asym"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 64,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff