Upload PPO LunarLander-v2 trained agent
Browse files- README.md +2 -5
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +4 -4
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
@@ -30,11 +30,8 @@ TODO: Add your code
|
|
30 |
|
31 |
|
32 |
```python
|
|
|
33 |
from huggingface_sb3 import load_from_hub
|
34 |
-
checkpoint = load_from_hub(
|
35 |
-
repo_id="Taverse/ppo-LunarLander-v2",
|
36 |
-
filename="{MODEL FILENAME}.zip",
|
37 |
-
)
|
38 |
|
39 |
...
|
40 |
```
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 281.28 +/- 19.63
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
30 |
|
31 |
|
32 |
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
from huggingface_sb3 import load_from_hub
|
|
|
|
|
|
|
|
|
35 |
|
36 |
...
|
37 |
```
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f957857ae60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f957857aef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f957857af80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f957857b010>", "_build": "<function ActorCriticPolicy._build at 0x7f957857b0a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f957857b130>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f957857b1c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f957857b250>", "_predict": "<function ActorCriticPolicy._predict at 0x7f957857b2e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f957857b370>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f957857b400>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f957857b490>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9578576580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683740198978717017, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABEazxjz58++FLZvbAurL7cHhW9+2OSvQAAAAAAAAAAM1s1vRRIvLpkHzo87RWOPJN6YbuV1nY9AACAPwAAgD/NGZm9GpqXP7PEsb7jHQO/iObjvUa0Or4AAAAAAAAAAKADOT4OmV0/2Lk0POr3ur55cCg+2XaNvQAAAAAAAAAAs0iXPUhDlbqiYWayZpVuqcDwxjrPoMQyAACAPwAAAAAmDdk9RCedPxkWmD6DGci+Dq1dPpq6jD0AAAAAAAAAANqpqr326Bk5So2Du579dDvT/3874uUQuwAAAAAAAIA/ZosTvWnqN7yuBIu80sjGPNHNnD1OFKG9AACAPwAAgD/A3BI+DCIbP4goUr6Mks++H97oumTdtbwAAAAAAAAAAM0Ux7tuFcC85rlKPJSZiD2ej1c7DSDxOQAAgD8AAIA/AEYVvvuKuj2iiUU+BgCVvhWMl7y6OZg7AAAAAAAAAAAa53o99mxIuqgac7PmvGGs1+5GO9+WtTMAAIA/AACAP5q/VzwLv5g+rJcpvv0ox75mRoK9DT8BvgAAAAAAAAAA5j0sPuPEID8jmc2+FCnEvhKhSj6SH+6+AAAAAAAAAAAzJly9nHlTPom9or0Oqai+Iq7Nvfo0j70AAAAAAAAAAJtMsr4YXh4/UzPMu4O91b6sq4G+mfAbPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK0xFNL12+MAWyUTS8BjAF0lEdAoTaHFR51NnV9lChoBkdAcxTZxJd0JWgHTSMBaAhHQKE24ob4rSV1fZQoaAZHQHMKwi/wiJRoB0vyaAhHQKE28BdUsFt1fZQoaAZHQHGCg08/2TRoB01BAWgIR0ChNvg4n4O+dX2UKGgGR0BiCgO2AoXsaAdN6ANoCEdAoTcUx9G7SXV9lChoBkdAUxBRvWH1vmgHS9toCEdAoTdYIBzV+nV9lChoBkdAciPlkpZwGWgHTTABaAhHQKE3tar3j+91fZQoaAZHQHCmPNiYsupoB00JAWgIR0ChOCTfaYeDdX2UKGgGR0BwmbW+XZ5BaAdNAwFoCEdAoTkn+ERJ3HV9lChoBkdAcw18s+V1OmgHS+1oCEdAoTlYHVwxWXV9lChoBkdAcjmoWHk92WgHS/toCEdAoTl2Il+mWXV9lChoBkdAckqzuF6Av2gHTSgBaAhHQKE5nt9hJAd1fZQoaAZHQHEj+MAFPi1oB00eAWgIR0ChObYSYgJUdX2UKGgGR0BxVfXVbzK+aAdNHAFoCEdAoTnRyIYWL3V9lChoBkdAcRbMQVbiZWgHTToBaAhHQKE52nDR+jN1fZQoaAZHQHI3Xbuc+aBoB0vcaAhHQKE53gqEvkB1fZQoaAZHQHCd9G3F1jloB00KAWgIR0ChOhyr5qM4dX2UKGgGR0BuMPqC6H0saAdNWQFoCEdAoTpxakhzNnV9lChoBkdAcmEFBY3eemgHTQ4BaAhHQKE6idOIqLF1fZQoaAZHQHC5/3i704BoB0vxaAhHQKE6mrfcesB1fZQoaAZHQHBgk92X9itoB00jAWgIR0ChOrwZwXImdX2UKGgGR0BwdCs8xKxtaAdL/2gIR0ChO6DEehf0dX2UKGgGR0ByFPaIvalDaAdNKQFoCEdAoTu3/3nIQ3V9lChoBkdAb6Gd+5OJtWgHS/JoCEdAoTzE0pEx7HV9lChoBkdAcoDevpyIYWgHS+poCEdAoTzndZaFEnV9lChoBkdAbyWh/RVp9WgHS+RoCEdAoTz0zdk8R3V9lChoBkdAcuzPE87p3WgHTQEBaAhHQKE9LK6Fuel1fZQoaAZHQHBCqCg9NetoB0v5aAhHQKE9QE6kqMF1fZQoaAZHQHJxmNrCWNZoB0v9aAhHQKE9WOjqOcV1fZQoaAZHQHGf0J0GNaRoB03YAWgIR0ChPX0DdP+GdX2UKGgGR0BxPXEETxoaaAdNLwFoCEdAoT2VTWGyonV9lChoBkdAcP3eHBUJfWgHTTsBaAhHQKE9lcHnln11fZQoaAZHQHCxRO58Sf1oB0voaAhHQKE96+RoysV1fZQoaAZHQHHoDNliBoVoB0v/aAhHQKE+FA44p+d1fZQoaAZHQHOvsdLg4wRoB00fAWgIR0ChPlD/lyR0dX2UKGgGR0BwgJ4hUzbfaAdNPQFoCEdAoT5e1ndwenV9lChoBkdAcTCX+2mYSmgHTTEBaAhHQKE+mWqLjxV1fZQoaAZHQHGKmzOX3QFoB0vraAhHQKE+1s6aLGd1fZQoaAZHQHE/ozeoDPpoB0v2aAhHQKE+45uIhyN1fZQoaAZHQFGzte2NNrVoB0u4aAhHQKE/DwrlNlB1fZQoaAZHQDeK6asp5NZoB0vOaAhHQKFJtuiN83N1fZQoaAZHQHJGoAwPAfxoB0viaAhHQKFKPshxHXp1fZQoaAZHQHBPyJfpljFoB00IAWgIR0ChSoggxJumdX2UKGgGR0BwCc1l5GBnaAdNAgFoCEdAoUr1ix3V1HV9lChoBkdAcOxBYmsvI2gHS+hoCEdAoUsedf9gnnV9lChoBkdAbo9Vn27FsGgHTR0BaAhHQKFLfMFEAo51fZQoaAZHQHExHeenQ6ZoB00fAWgIR0ChS4QUxmCidX2UKGgGR0Bwt7ObAk9maAdNAAFoCEdAoUutfG+9J3V9lChoBkdAbu70pVjqfWgHS/VoCEdAoUvLfWMCLnV9lChoBkdAbXbet0V8C2gHTUgBaAhHQKFL2qGUOd51fZQoaAZHQHJXMDGLk0doB0vpaAhHQKFL9+Q2dd51fZQoaAZHQHBhaWLP2PFoB0vdaAhHQKFMGSf16E91fZQoaAZHQHJKLdWQwK1oB01qAWgIR0ChTCEHMUypdX2UKGgGR0Byw1TbWVeKaAdL82gIR0ChTGX18LKFdX2UKGgGR0BwFve40/GEaAdL92gIR0ChTJwco6S1dX2UKGgGR0ByIHMTviLmaAdNUwFoCEdAoUzvzWf9P3V9lChoBkdAcVOAVwgkkmgHS+FoCEdAoU13jyWiUXV9lChoBkdAbc3FsHjZMGgHS/5oCEdAoU2Z1HOKO3V9lChoBkdAcQg8cdYGMWgHTSwBaAhHQKFNplV94NZ1fZQoaAZHQHHxNS/CZWtoB0v+aAhHQKFOOILw4Kh1fZQoaAZHQHIbypiqhlFoB0v1aAhHQKFOPhE0BOp1fZQoaAZHQG69anR9gF5oB0vmaAhHQKFOYkLx7Rh1fZQoaAZHQHJNw9V3ljpoB0v8aAhHQKFO0m4RVZN1fZQoaAZHQG/qxIre67NoB00RAWgIR0ChTvDqW1MNdX2UKGgGR0BvaWAAhje9aAdNBgFoCEdAoU8lfgJkXnV9lChoBkdAcC9NyYG+smgHTREBaAhHQKFPavZAY511fZQoaAZHQHKNABgeA/doB00jAWgIR0ChT3q5sj3VdX2UKGgGR0BxRKi+L3sYaAdL8mgIR0ChT3/a6BiDdX2UKGgGR0BwZk1xbSqmaAdL4mgIR0ChT4s9SuQqdX2UKGgGR0BxMxzfaYeDaAdNJgFoCEdAoU/U1Gb1AnV9lChoBkdAcDioiLVFyGgHTTEBaAhHQKFP7ihnJ1d1fZQoaAZHQHGOlC1JDmdoB0v3aAhHQKFQHSMLncN1fZQoaAZHQHF2y0WuX/poB0v1aAhHQKFQx5LRKHx1fZQoaAZHQHJUrJSzgMtoB00KAWgIR0ChUN961LJ0dX2UKGgGR0BtcbrzGxUvaAdNEQFoCEdAoVEXAmAskXV9lChoBkdAbsIHoHLRr2gHTQMBaAhHQKFRtRLK3d91fZQoaAZHQG64IvrWy1NoB00cAWgIR0ChUePhAGB4dX2UKGgGR0BwlhnGsFMaaAdL9WgIR0ChUfjuKGcndX2UKGgGR0BxPxWeYlY2aAdNJQFoCEdAoVIIU5+6RXV9lChoBkdAcpMos7MgU2gHS+hoCEdAoVIaxHG0eHV9lChoBkdAciIHXEqDsmgHS/toCEdAoVIqoZQ53nV9lChoBkdAchKV6/qPfmgHS9RoCEdAoVI7pmmLtXV9lChoBkdAcPDWOIZZS2gHS+5oCEdAoVJ/eJpFkXV9lChoBkdAb/YDfWMCLmgHS/1oCEdAoVMHqmj0tnV9lChoBkdAcLHsYVIqb2gHTQUBaAhHQKFTQ0/GEPF1fZQoaAZHQHGKyOmzjWFoB0v9aAhHQKFTXseGO+91fZQoaAZHQHGvVOGj9GZoB01MAWgIR0ChU6Kx9oexdX2UKGgGR0Bujgc94eLfaAdNUQFoCEdAoVPDFsHjZXV9lChoBkdAcWZIKMNtqGgHS+5oCEdAoVP1tygf2nV9lChoBkdAcE/pQUHpr2gHS95oCEdAoVP4zDXOGHV9lChoBkdAclPzeXRgJGgHS9loCEdAoVSNUyYXwnV9lChoBkdAcej/y5I6KmgHS9ZoCEdAoVSzf1pTM3V9lChoBkdAS8KEpRXOnmgHS8ZoCEdAoVTCVKPGQ3V9lChoBkdAcb41stTUAmgHTTYBaAhHQKFU3DsMRYl1fZQoaAZHQHABuGfwqiJoB0v1aAhHQKFVNefI0ZZ1fZQoaAZHQHBSBOLzf79oB00FAWgIR0ChVaBKL877dX2UKGgGR0ByJeMqBmPHaAdNEwFoCEdAoVWtopQUH3V9lChoBkdAQtYO8TSLImgHS7hoCEdAoVXLXHzYmXV9lChoBkdAbsO9pyp71WgHS+hoCEdAoVZW8AaNuXV9lChoBkdAcIGmJFb3XmgHTS0BaAhHQKFWelbeMyd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 300, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f957857ae60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f957857aef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f957857af80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f957857b010>", "_build": "<function ActorCriticPolicy._build at 0x7f957857b0a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f957857b130>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f957857b1c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f957857b250>", "_predict": "<function ActorCriticPolicy._predict at 0x7f957857b2e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f957857b370>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f957857b400>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f957857b490>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9578576580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683742357089126323, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGavM71cMzC6ZtTnOlJzFzZAygU6aKkJugAAgD8AAIA/TQsTvmb0ND9e3B2+ZNoEv5QnRr6A61E9AAAAAAAAAACaN+Y8aYB9vLksGjx6/lu9LAigvYKkmL4AAIA/AACAP5qskrw0ibk/JnTevmJ7xz7orQU8MA6qvAAAAAAAAAAApk4XPsEpHj8+KGe+qze3vskD+zwu9MW9AAAAAAAAAAAz9368AYtOPqZgTb5CO/a+LhOIviCGOz0AAAAAAAAAAADW6LzfQCM+2B2BvFNto75lgc28tu1IvQAAAAAAAAAAeuNPPl7kbT+da+u9Iauzvvbv5j7JBhC+AAAAAAAAAAAtGGw+d+CFP6tf3b25Ht2++JDyPqkjDb4AAAAAAAAAAE2H0b1nfxQ+K9uHPpJ2pL5jhKq8Oga7PQAAAAAAAAAAM9+1u/ianDxmsl4+PqtMvs1ROj1TTTo8AAAAAAAAAAAN5eS9TOYwPpLInT5QvXG+sCKzPMIs0z0AAAAAAAAAAIDBm70hnAw/kTsRPucb1r7ZqKq9pqOYPQAAAAAAAAAAzcZLPfbYG7quKSUzKVR6MCuTerttoMWzAACAPwAAgD+zJxy97YWUPzuu473xwPe+0UVbvXGtG70AAAAAAAAAAJp+NT2f7sq7BaVougCuDj1lBjQ9EOXqvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJKf6O5rgyMAWyUS+KMAXSUR0CvDZ2gezUrdX2UKGgGR0Bx7WiqQzUJaAdNEQFoCEdArw28GRmseXV9lChoBkdAcmCRJEpiJGgHS9poCEdArw28Fr2xp3V9lChoBkdAcrc1mapgkWgHS+doCEdArw4Ug8r7O3V9lChoBkdAcE6cTrVvuWgHS9hoCEdArw40B8x9HHV9lChoBkdAcQ7bPhQ3xWgHS+1oCEdArw6TuMMqjXV9lChoBkdAcJNUpuuRtGgHS9hoCEdArw6l83Mpw3V9lChoBkdAcl+kIX0oSmgHS/1oCEdArw89l7MPjHV9lChoBkdAcBBzI3irDWgHS9poCEdArw9wMSbpeXV9lChoBkdActvupS75EmgHS8toCEdArw+GE0zj3nV9lChoBkdAcse0xdpqRGgHS9FoCEdArw+XkPtlZ3V9lChoBkdAcuhiYLLIP2gHS89oCEdArw+a4tpVTHV9lChoBkdAcab1sLv1DmgHS+9oCEdArxBWwiaAnXV9lChoBkdAcA+uxbB42WgHS+xoCEdArxB0oQWepXV9lChoBkdAb9S4bS7XhGgHS/hoCEdArxCEl5WzW3V9lChoBkdAcgNPyTY/V2gHS9poCEdArxCfMY/FBXV9lChoBkdAci7RQaaTfWgHS95oCEdArxD35rP+oHV9lChoBkdAcP8PHT7VKGgHS+VoCEdArxE5NVR1o3V9lChoBkdAc6bzEJjUeGgHS/poCEdArxGJ1vES/XV9lChoBkdAcUZvgWJrL2gHS+doCEdArxGlnVXmvHV9lChoBkdAcM1iKiwjdGgHS+RoCEdArxG04m1IAnV9lChoBkdAcMAqSHM2WWgHS99oCEdArxIM9pyp73V9lChoBkdAcotwpvxYrGgHS+hoCEdArxIdmJ3xF3V9lChoBkdAcijDdP+GXWgHS9BoCEdArxJrel9Br3V9lChoBkdAcfPvhqCYkWgHS+hoCEdArxMTu2JBPnV9lChoBkdAUkXK/20zCWgHS61oCEdArxM5Huqm0nV9lChoBkdAcegbTc6/7GgHS+toCEdArxNQdU83dnV9lChoBkdAcZ3eLNwBHWgHS/FoCEdArxNvT1CgLHV9lChoBkdAcMGRvFWGRGgHS/9oCEdArxOVPk7wKHV9lChoBkdAcm3fQa72+WgHS+VoCEdArx1MTpPhynV9lChoBkdAcSkiWVu76GgHS9NoCEdArx2EJ0GNaXV9lChoBkdAcroTwUg0TGgHS/FoCEdArx2H/7zkIXV9lChoBkdAcqWB8QZn+WgHS/NoCEdArx2biwSrYHV9lChoBkdAccRihFmWdGgHS9poCEdArx3FmFrVOXV9lChoBkdAb/EqtHQQc2gHS9VoCEdArx4SBClabHV9lChoBkdAcD8aTwDvE2gHS+VoCEdArx4gLy+YdHV9lChoBkdAci67rs0HhWgHS8FoCEdArx4o6bONYXV9lChoBkdAcxgUDuBtlGgHS/NoCEdArx5W717IDHV9lChoBkdAcNahqTKT0WgHS9doCEdArx6bjghr33V9lChoBkdAcLsknTiKi2gHS/toCEdArx67gOz6anV9lChoBkdAbaqg9vCMxWgHS9JoCEdArx7zlNlAeXV9lChoBkdAc6MjRlYlp2gHS+hoCEdArx9qSX+l03V9lChoBkdAcVXq94/u9mgHS/5oCEdArx+JSR8tw3V9lChoBkdAcdk4xk/bCmgHS/1oCEdArx+WxKQJX3V9lChoBkdAcmWa1TisGWgHS8loCEdArx+9x+8XenV9lChoBkdAcBjeJHiFTWgHS89oCEdArx/LYqXnhnV9lChoBkdAcbQQ2uPmxWgHS+xoCEdArx/io/A0sXV9lChoBkdAc0gz7/GVA2gHTQgBaAhHQK8f4jlgc951fZQoaAZHQHAACLuQZGdoB0vTaAhHQK8f7uyeI2x1fZQoaAZHQG2ZPMSsbNtoB0vOaAhHQK8gCWLxZuB1fZQoaAZHQG6wIQe3hGZoB0vdaAhHQK8gjxXnyNJ1fZQoaAZHQHJu7PD50r9oB0vuaAhHQK8gqYFaB7N1fZQoaAZHQHCkrQgLZzxoB0vbaAhHQK8gvPmgam51fZQoaAZHQHJfe2E0zj5oB0vzaAhHQK8gxpUPxx11fZQoaAZHQHDudRaX8fpoB0vqaAhHQK8hLfMOf/Z1fZQoaAZHQHKKpmmLtNVoB0vnaAhHQK8hRxMFlkJ1fZQoaAZHQG1ENW2gFotoB0vvaAhHQK8hmOIZZSx1fZQoaAZHQHEnOIyj59FoB0vSaAhHQK8hvvWH1vl1fZQoaAZHQHDt72xptaZoB0vmaAhHQK8iGAksz2x1fZQoaAZHQG51TV2A5JdoB0vlaAhHQK8iJMXaakR1fZQoaAZHQG93CTdLxqhoB0vZaAhHQK8iKnZ00WN1fZQoaAZHQHMYSsr/bTNoB0vbaAhHQK8iPhd+ocd1fZQoaAZHQG7cQyylenhoB0vvaAhHQK8ijzOHFgl1fZQoaAZHQHJSYLofSx9oB0viaAhHQK8ilvn8sMB1fZQoaAZHQHJGphfBvaVoB0vxaAhHQK8iom2LHdZ1fZQoaAZHQHBzZxJd0JZoB0v+aAhHQK8iucT8HfN1fZQoaAZHQHPH1qi48U5oB0vcaAhHQK8jExbjcVR1fZQoaAZHQHK80jxCpm5oB0vdaAhHQK8jSaS9ugp1fZQoaAZHQHHpKSkj5bhoB0vNaAhHQK8jg0Mw1zh1fZQoaAZHQHI/UKJEYwZoB0v6aAhHQK8jkwyIpH91fZQoaAZHQHNA5fYzzmRoB0vNaAhHQK8jmveP7vZ1fZQoaAZHQHHppI6Kcd5oB00GAWgIR0CvI6M+V1OkdX2UKGgGR0Byoe0v4/NaaAdL2mgIR0CvJAWHtWuHdX2UKGgGR0Bv1PrY5DJEaAdL3mgIR0CvJDTHsC1adX2UKGgGR0BzXedCmdiEaAdL1WgIR0CvJHrsrupkdX2UKGgGR0Bv6aLyc0+DaAdL3mgIR0CvJJp/G2kSdX2UKGgGR0BwqRqJuVHGaAdL3mgIR0CvJK2q94/vdX2UKGgGR0BxPRYSxqwhaAdL9mgIR0CvJM6PCEYgdX2UKGgGR0By2NMj/uLKaAdL1GgIR0CvJQrQ5WBCdX2UKGgGR0BzLihwl0HRaAdL42gIR0CvJRI8QqZudX2UKGgGR0BwbP9n9NvgaAdLyWgIR0CvJUUOd5IIdX2UKGgGR0BwC2w3YL9daAdL92gIR0CvJUNwBHTadX2UKGgGR0By/rO4XoC/aAdL/WgIR0CvJWW912aEdX2UKGgGR0Byf6iblRxcaAdL6mgIR0CvJdJPRArydX2UKGgGR0BwtAal1r6+aAdLzmgIR0CvJdvq9oN/dX2UKGgGR0Byy//CIk7faAdL0GgIR0CvJdocinpCdX2UKGgGR0ByMce0Xxe+aAdL5GgIR0CvJgi0ngHedX2UKGgGR0Bu7iUkfLcLaAdNCAFoCEdAryZdCPZIx3V9lChoBkdAcPfk+5e7c2gHS9NoCEdAryaCNKh+OXV9lChoBkdAcAPevpyIYWgHS+loCEdAryaSNwR5DHV9lChoBkdAcVB0f5k9U2gHS9poCEdArybX6KtPpXV9lChoBkdAcFXguh9LH2gHS8xoCEdArycFFz+3pnV9lChoBkdAcGofW+XZ5GgHS9toCEdArycNf/m1Y3V9lChoBkdAcvIFAE+xGGgHS+FoCEdArycLwYtQK3V9lChoBkdAcan+TvAoHGgHS95oCEdAryduRHPNV3V9lChoBkdAceTfZ26kI2gHS85oCEdAryd68L8aXXV9lChoBkdAcZF3LFGXomgHS8doCEdAryeI33pOe3V9lChoBkdAcRNGcWj46GgHS+toCEdAryeYEdNnG3V9lChoBkdAcgs8Cgbp/2gHS/doCEdAryfhi7TUiXV9lChoBkdAcuOe0G/vfGgHS9xoCEdArygsxbjcVXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 548, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9eda5f1116672991926a3bc098bd2f06a7b8e409a9c464b2437c0029e2b01cc5
|
3 |
+
size 146631
|
ppo-LunarLander-v2/data
CHANGED
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,13 +45,13 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1683742357089126323,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGavM71cMzC6ZtTnOlJzFzZAygU6aKkJugAAgD8AAIA/TQsTvmb0ND9e3B2+ZNoEv5QnRr6A61E9AAAAAAAAAACaN+Y8aYB9vLksGjx6/lu9LAigvYKkmL4AAIA/AACAP5qskrw0ibk/JnTevmJ7xz7orQU8MA6qvAAAAAAAAAAApk4XPsEpHj8+KGe+qze3vskD+zwu9MW9AAAAAAAAAAAz9368AYtOPqZgTb5CO/a+LhOIviCGOz0AAAAAAAAAAADW6LzfQCM+2B2BvFNto75lgc28tu1IvQAAAAAAAAAAeuNPPl7kbT+da+u9Iauzvvbv5j7JBhC+AAAAAAAAAAAtGGw+d+CFP6tf3b25Ht2++JDyPqkjDb4AAAAAAAAAAE2H0b1nfxQ+K9uHPpJ2pL5jhKq8Oga7PQAAAAAAAAAAM9+1u/ianDxmsl4+PqtMvs1ROj1TTTo8AAAAAAAAAAAN5eS9TOYwPpLInT5QvXG+sCKzPMIs0z0AAAAAAAAAAIDBm70hnAw/kTsRPucb1r7ZqKq9pqOYPQAAAAAAAAAAzcZLPfbYG7quKSUzKVR6MCuTerttoMWzAACAPwAAgD+zJxy97YWUPzuu473xwPe+0UVbvXGtG70AAAAAAAAAAJp+NT2f7sq7BaVougCuDj1lBjQ9EOXqvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJKf6O5rgyMAWyUS+KMAXSUR0CvDZ2gezUrdX2UKGgGR0Bx7WiqQzUJaAdNEQFoCEdArw28GRmseXV9lChoBkdAcmCRJEpiJGgHS9poCEdArw28Fr2xp3V9lChoBkdAcrc1mapgkWgHS+doCEdArw4Ug8r7O3V9lChoBkdAcE6cTrVvuWgHS9hoCEdArw40B8x9HHV9lChoBkdAcQ7bPhQ3xWgHS+1oCEdArw6TuMMqjXV9lChoBkdAcJNUpuuRtGgHS9hoCEdArw6l83Mpw3V9lChoBkdAcl+kIX0oSmgHS/1oCEdArw89l7MPjHV9lChoBkdAcBBzI3irDWgHS9poCEdArw9wMSbpeXV9lChoBkdActvupS75EmgHS8toCEdArw+GE0zj3nV9lChoBkdAcse0xdpqRGgHS9FoCEdArw+XkPtlZ3V9lChoBkdAcuhiYLLIP2gHS89oCEdArw+a4tpVTHV9lChoBkdAcab1sLv1DmgHS+9oCEdArxBWwiaAnXV9lChoBkdAcA+uxbB42WgHS+xoCEdArxB0oQWepXV9lChoBkdAb9S4bS7XhGgHS/hoCEdArxCEl5WzW3V9lChoBkdAcgNPyTY/V2gHS9poCEdArxCfMY/FBXV9lChoBkdAci7RQaaTfWgHS95oCEdArxD35rP+oHV9lChoBkdAcP8PHT7VKGgHS+VoCEdArxE5NVR1o3V9lChoBkdAc6bzEJjUeGgHS/poCEdArxGJ1vES/XV9lChoBkdAcUZvgWJrL2gHS+doCEdArxGlnVXmvHV9lChoBkdAcM1iKiwjdGgHS+RoCEdArxG04m1IAnV9lChoBkdAcMAqSHM2WWgHS99oCEdArxIM9pyp73V9lChoBkdAcotwpvxYrGgHS+hoCEdArxIdmJ3xF3V9lChoBkdAcijDdP+GXWgHS9BoCEdArxJrel9Br3V9lChoBkdAcfPvhqCYkWgHS+hoCEdArxMTu2JBPnV9lChoBkdAUkXK/20zCWgHS61oCEdArxM5Huqm0nV9lChoBkdAcegbTc6/7GgHS+toCEdArxNQdU83dnV9lChoBkdAcZ3eLNwBHWgHS/FoCEdArxNvT1CgLHV9lChoBkdAcMGRvFWGRGgHS/9oCEdArxOVPk7wKHV9lChoBkdAcm3fQa72+WgHS+VoCEdArx1MTpPhynV9lChoBkdAcSkiWVu76GgHS9NoCEdArx2EJ0GNaXV9lChoBkdAcroTwUg0TGgHS/FoCEdArx2H/7zkIXV9lChoBkdAcqWB8QZn+WgHS/NoCEdArx2biwSrYHV9lChoBkdAccRihFmWdGgHS9poCEdArx3FmFrVOXV9lChoBkdAb/EqtHQQc2gHS9VoCEdArx4SBClabHV9lChoBkdAcD8aTwDvE2gHS+VoCEdArx4gLy+YdHV9lChoBkdAci67rs0HhWgHS8FoCEdArx4o6bONYXV9lChoBkdAcxgUDuBtlGgHS/NoCEdArx5W717IDHV9lChoBkdAcNahqTKT0WgHS9doCEdArx6bjghr33V9lChoBkdAcLsknTiKi2gHS/toCEdArx67gOz6anV9lChoBkdAbaqg9vCMxWgHS9JoCEdArx7zlNlAeXV9lChoBkdAc6MjRlYlp2gHS+hoCEdArx9qSX+l03V9lChoBkdAcVXq94/u9mgHS/5oCEdArx+JSR8tw3V9lChoBkdAcdk4xk/bCmgHS/1oCEdArx+WxKQJX3V9lChoBkdAcmWa1TisGWgHS8loCEdArx+9x+8XenV9lChoBkdAcBjeJHiFTWgHS89oCEdArx/LYqXnhnV9lChoBkdAcbQQ2uPmxWgHS+xoCEdArx/io/A0sXV9lChoBkdAc0gz7/GVA2gHTQgBaAhHQK8f4jlgc951fZQoaAZHQHAACLuQZGdoB0vTaAhHQK8f7uyeI2x1fZQoaAZHQG2ZPMSsbNtoB0vOaAhHQK8gCWLxZuB1fZQoaAZHQG6wIQe3hGZoB0vdaAhHQK8gjxXnyNJ1fZQoaAZHQHJu7PD50r9oB0vuaAhHQK8gqYFaB7N1fZQoaAZHQHCkrQgLZzxoB0vbaAhHQK8gvPmgam51fZQoaAZHQHJfe2E0zj5oB0vzaAhHQK8gxpUPxx11fZQoaAZHQHDudRaX8fpoB0vqaAhHQK8hLfMOf/Z1fZQoaAZHQHKKpmmLtNVoB0vnaAhHQK8hRxMFlkJ1fZQoaAZHQG1ENW2gFotoB0vvaAhHQK8hmOIZZSx1fZQoaAZHQHEnOIyj59FoB0vSaAhHQK8hvvWH1vl1fZQoaAZHQHDt72xptaZoB0vmaAhHQK8iGAksz2x1fZQoaAZHQG51TV2A5JdoB0vlaAhHQK8iJMXaakR1fZQoaAZHQG93CTdLxqhoB0vZaAhHQK8iKnZ00WN1fZQoaAZHQHMYSsr/bTNoB0vbaAhHQK8iPhd+ocd1fZQoaAZHQG7cQyylenhoB0vvaAhHQK8ijzOHFgl1fZQoaAZHQHJSYLofSx9oB0viaAhHQK8ilvn8sMB1fZQoaAZHQHJGphfBvaVoB0vxaAhHQK8iom2LHdZ1fZQoaAZHQHBzZxJd0JZoB0v+aAhHQK8iucT8HfN1fZQoaAZHQHPH1qi48U5oB0vcaAhHQK8jExbjcVR1fZQoaAZHQHK80jxCpm5oB0vdaAhHQK8jSaS9ugp1fZQoaAZHQHHpKSkj5bhoB0vNaAhHQK8jg0Mw1zh1fZQoaAZHQHI/UKJEYwZoB0v6aAhHQK8jkwyIpH91fZQoaAZHQHNA5fYzzmRoB0vNaAhHQK8jmveP7vZ1fZQoaAZHQHHppI6Kcd5oB00GAWgIR0CvI6M+V1OkdX2UKGgGR0Byoe0v4/NaaAdL2mgIR0CvJAWHtWuHdX2UKGgGR0Bv1PrY5DJEaAdL3mgIR0CvJDTHsC1adX2UKGgGR0BzXedCmdiEaAdL1WgIR0CvJHrsrupkdX2UKGgGR0Bv6aLyc0+DaAdL3mgIR0CvJJp/G2kSdX2UKGgGR0BwqRqJuVHGaAdL3mgIR0CvJK2q94/vdX2UKGgGR0BxPRYSxqwhaAdL9mgIR0CvJM6PCEYgdX2UKGgGR0By2NMj/uLKaAdL1GgIR0CvJQrQ5WBCdX2UKGgGR0BzLihwl0HRaAdL42gIR0CvJRI8QqZudX2UKGgGR0BwbP9n9NvgaAdLyWgIR0CvJUUOd5IIdX2UKGgGR0BwC2w3YL9daAdL92gIR0CvJUNwBHTadX2UKGgGR0By/rO4XoC/aAdL/WgIR0CvJWW912aEdX2UKGgGR0Byf6iblRxcaAdL6mgIR0CvJdJPRArydX2UKGgGR0BwtAal1r6+aAdLzmgIR0CvJdvq9oN/dX2UKGgGR0Byy//CIk7faAdL0GgIR0CvJdocinpCdX2UKGgGR0ByMce0Xxe+aAdL5GgIR0CvJgi0ngHedX2UKGgGR0Bu7iUkfLcLaAdNCAFoCEdAryZdCPZIx3V9lChoBkdAcPfk+5e7c2gHS9NoCEdAryaCNKh+OXV9lChoBkdAcAPevpyIYWgHS+loCEdAryaSNwR5DHV9lChoBkdAcVB0f5k9U2gHS9poCEdArybX6KtPpXV9lChoBkdAcFXguh9LH2gHS8xoCEdArycFFz+3pnV9lChoBkdAcGofW+XZ5GgHS9toCEdArycNf/m1Y3V9lChoBkdAcvIFAE+xGGgHS+FoCEdArycLwYtQK3V9lChoBkdAcan+TvAoHGgHS95oCEdAryduRHPNV3V9lChoBkdAceTfZ26kI2gHS85oCEdAryd68L8aXXV9lChoBkdAcZF3LFGXomgHS8doCEdAryeI33pOe3V9lChoBkdAcRNGcWj46GgHS+toCEdAryeYEdNnG3V9lChoBkdAcgs8Cgbp/2gHS/doCEdAryfhi7TUiXV9lChoBkdAcuOe0G/vfGgHS9xoCEdArygsxbjcVXVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 548,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bbccc94d6029ecd74b6697668d27e0d029539bf9b038a3511113be60392846c
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d6838b70c96df367fc9050aa56718ed0d27af09da42e17a0d194485a66db5fd
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 281.2836774126202, "std_reward": 19.633443983218353, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-10T18:26:24.050726"}
|