Tarssio commited on
Commit
7a56028
1 Parent(s): f01ed31

Add SetFit model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: Vem pra Irenil em Paratinga, bonitão
12
+ - text: Salve Salve Senhor Governador JERÔNIMO RODRIGUES olhando para as TRADIÇÕES
13
+ - text: Parabéns meu Governador! O foguete 🚀 não para . Muitas realizações entregue
14
+ em 7 meses , muito trabalho .
15
+ - text: 👏👏👏
16
+ - text: Bom demais governador sobre o piso da enfermagem o que o senhor diz para nos
17
+ pipeline_tag: text-classification
18
+ inference: true
19
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
20
+ model-index:
21
+ - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
22
+ results:
23
+ - task:
24
+ type: text-classification
25
+ name: Text Classification
26
+ dataset:
27
+ name: Unknown
28
+ type: unknown
29
+ split: test
30
+ metrics:
31
+ - type: accuracy
32
+ value: 0.9042553191489362
33
+ name: Accuracy
34
+ ---
35
+
36
+ # SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
37
+
38
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
39
+
40
+ The model has been trained using an efficient few-shot learning technique that involves:
41
+
42
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
43
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
44
+
45
+ ## Model Details
46
+
47
+ ### Model Description
48
+ - **Model Type:** SetFit
49
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2)
50
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
51
+ - **Maximum Sequence Length:** 128 tokens
52
+ - **Number of Classes:** 2 classes
53
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
54
+ <!-- - **Language:** Unknown -->
55
+ <!-- - **License:** Unknown -->
56
+
57
+ ### Model Sources
58
+
59
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
60
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
61
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
62
+
63
+ ### Model Labels
64
+ | Label | Examples |
65
+ |:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
66
+ | Positive | <ul><li>'Enfim,Bonfim 🥳🥳🥳🥳🥳'</li><li>'👏👏👏👏'</li><li>'Pequenas ações fazem sonhos realidades #OhBrabo 💙💙💙'</li></ul> |
67
+ | Negative | <ul><li>'@jeronimorodriguesba quando terá uma segunda convocação do concurso SECBA?'</li><li>'Cadê a MP do piso da enfermagem ministro'</li><li>'Sim !! A escola municipal aqui do bairro liberdade,30 crianças esperando até hoje as profissionais ADI para crianças que necessita acompanhamento..'</li></ul> |
68
+
69
+ ## Evaluation
70
+
71
+ ### Metrics
72
+ | Label | Accuracy |
73
+ |:--------|:---------|
74
+ | **all** | 0.9043 |
75
+
76
+ ## Uses
77
+
78
+ ### Direct Use for Inference
79
+
80
+ First install the SetFit library:
81
+
82
+ ```bash
83
+ pip install setfit
84
+ ```
85
+
86
+ Then you can load this model and run inference.
87
+
88
+ ```python
89
+ from setfit import SetFitModel
90
+
91
+ # Download from the 🤗 Hub
92
+ model = SetFitModel.from_pretrained("Tarssio/modelo_setfit_politica_BA")
93
+ # Run inference
94
+ preds = model("👏👏👏")
95
+ ```
96
+
97
+ <!--
98
+ ### Downstream Use
99
+
100
+ *List how someone could finetune this model on their own dataset.*
101
+ -->
102
+
103
+ <!--
104
+ ### Out-of-Scope Use
105
+
106
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
107
+ -->
108
+
109
+ <!--
110
+ ## Bias, Risks and Limitations
111
+
112
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
113
+ -->
114
+
115
+ <!--
116
+ ### Recommendations
117
+
118
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
119
+ -->
120
+
121
+ ## Training Details
122
+
123
+ ### Training Set Metrics
124
+ | Training set | Min | Median | Max |
125
+ |:-------------|:----|:--------|:----|
126
+ | Word count | 1 | 19.4813 | 313 |
127
+
128
+ | Label | Training Sample Count |
129
+ |:---------|:----------------------|
130
+ | Negative | 175 |
131
+ | Positive | 199 |
132
+
133
+ ### Training Hyperparameters
134
+ - batch_size: (4, 4)
135
+ - num_epochs: (4, 4)
136
+ - max_steps: -1
137
+ - sampling_strategy: oversampling
138
+ - num_iterations: 5
139
+ - body_learning_rate: (2e-05, 1e-05)
140
+ - head_learning_rate: 0.01
141
+ - loss: CosineSimilarityLoss
142
+ - distance_metric: cosine_distance
143
+ - margin: 0.25
144
+ - end_to_end: False
145
+ - use_amp: False
146
+ - warmup_proportion: 0.1
147
+ - seed: 42
148
+ - eval_max_steps: -1
149
+ - load_best_model_at_end: True
150
+
151
+ ### Training Results
152
+ | Epoch | Step | Training Loss | Validation Loss |
153
+ |:-------:|:--------:|:-------------:|:---------------:|
154
+ | 0.0011 | 1 | 0.3616 | - |
155
+ | 0.0535 | 50 | 0.3129 | - |
156
+ | 0.1070 | 100 | 0.2912 | - |
157
+ | 0.1604 | 150 | 0.191 | - |
158
+ | 0.2139 | 200 | 0.0907 | - |
159
+ | 0.2674 | 250 | 0.0086 | - |
160
+ | 0.3209 | 300 | 0.0042 | - |
161
+ | 0.3743 | 350 | 0.0161 | - |
162
+ | 0.4278 | 400 | 0.0007 | - |
163
+ | 0.4813 | 450 | 0.0403 | - |
164
+ | 0.5348 | 500 | 0.0055 | - |
165
+ | 0.5882 | 550 | 0.0057 | - |
166
+ | 0.6417 | 600 | 0.0002 | - |
167
+ | 0.6952 | 650 | 0.0002 | - |
168
+ | 0.7487 | 700 | 0.0 | - |
169
+ | 0.8021 | 750 | 0.0026 | - |
170
+ | 0.8556 | 800 | 0.0002 | - |
171
+ | 0.9091 | 850 | 0.0002 | - |
172
+ | 0.9626 | 900 | 0.0004 | - |
173
+ | 1.0 | 935 | - | 0.1724 |
174
+ | 1.0160 | 950 | 0.0001 | - |
175
+ | 1.0695 | 1000 | 0.0006 | - |
176
+ | 1.1230 | 1050 | 0.0001 | - |
177
+ | 1.1765 | 1100 | 0.0008 | - |
178
+ | 1.2299 | 1150 | 0.0002 | - |
179
+ | 1.2834 | 1200 | 0.0001 | - |
180
+ | 1.3369 | 1250 | 0.0002 | - |
181
+ | 1.3904 | 1300 | 0.0002 | - |
182
+ | 1.4439 | 1350 | 0.0002 | - |
183
+ | 1.4973 | 1400 | 0.0002 | - |
184
+ | 1.5508 | 1450 | 0.0 | - |
185
+ | 1.6043 | 1500 | 0.0002 | - |
186
+ | 1.6578 | 1550 | 0.2178 | - |
187
+ | 1.7112 | 1600 | 0.0002 | - |
188
+ | 1.7647 | 1650 | 0.0001 | - |
189
+ | 1.8182 | 1700 | 0.0001 | - |
190
+ | 1.8717 | 1750 | 0.0003 | - |
191
+ | 1.9251 | 1800 | 0.0359 | - |
192
+ | 1.9786 | 1850 | 0.0001 | - |
193
+ | 2.0 | 1870 | - | 0.1601 |
194
+ | 2.0321 | 1900 | 0.0001 | - |
195
+ | 2.0856 | 1950 | 0.0002 | - |
196
+ | 2.1390 | 2000 | 0.0001 | - |
197
+ | 2.1925 | 2050 | 0.0001 | - |
198
+ | 2.2460 | 2100 | 0.0002 | - |
199
+ | 2.2995 | 2150 | 0.0002 | - |
200
+ | 2.3529 | 2200 | 0.0003 | - |
201
+ | 2.4064 | 2250 | 0.0001 | - |
202
+ | 2.4599 | 2300 | 0.0002 | - |
203
+ | 2.5134 | 2350 | 0.0001 | - |
204
+ | 2.5668 | 2400 | 0.0 | - |
205
+ | 2.6203 | 2450 | 0.0001 | - |
206
+ | 2.6738 | 2500 | 0.0 | - |
207
+ | 2.7273 | 2550 | 0.0001 | - |
208
+ | 2.7807 | 2600 | 0.0001 | - |
209
+ | 2.8342 | 2650 | 0.0 | - |
210
+ | 2.8877 | 2700 | 0.0 | - |
211
+ | 2.9412 | 2750 | 0.0 | - |
212
+ | 2.9947 | 2800 | 0.0001 | - |
213
+ | **3.0** | **2805** | **-** | **0.1568** |
214
+ | 3.0481 | 2850 | 0.0001 | - |
215
+ | 3.1016 | 2900 | 0.0001 | - |
216
+ | 3.1551 | 2950 | 0.0001 | - |
217
+ | 3.2086 | 3000 | 0.0001 | - |
218
+ | 3.2620 | 3050 | 0.0001 | - |
219
+ | 3.3155 | 3100 | 0.0045 | - |
220
+ | 3.3690 | 3150 | 0.0 | - |
221
+ | 3.4225 | 3200 | 0.0001 | - |
222
+ | 3.4759 | 3250 | 0.0002 | - |
223
+ | 3.5294 | 3300 | 0.0 | - |
224
+ | 3.5829 | 3350 | 0.0002 | - |
225
+ | 3.6364 | 3400 | 0.0 | - |
226
+ | 3.6898 | 3450 | 0.0 | - |
227
+ | 3.7433 | 3500 | 0.0002 | - |
228
+ | 3.7968 | 3550 | 0.0 | - |
229
+ | 3.8503 | 3600 | 0.0 | - |
230
+ | 3.9037 | 3650 | 0.0005 | - |
231
+ | 3.9572 | 3700 | 0.0001 | - |
232
+ | 4.0 | 3740 | - | 0.1574 |
233
+
234
+ * The bold row denotes the saved checkpoint.
235
+ ### Framework Versions
236
+ - Python: 3.10.12
237
+ - SetFit: 1.0.3
238
+ - Sentence Transformers: 2.2.2
239
+ - Transformers: 4.35.2
240
+ - PyTorch: 2.1.0+cu121
241
+ - Datasets: 2.16.1
242
+ - Tokenizers: 0.15.0
243
+
244
+ ## Citation
245
+
246
+ ### BibTeX
247
+ ```bibtex
248
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
249
+ doi = {10.48550/ARXIV.2209.11055},
250
+ url = {https://arxiv.org/abs/2209.11055},
251
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
252
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
253
+ title = {Efficient Few-Shot Learning Without Prompts},
254
+ publisher = {arXiv},
255
+ year = {2022},
256
+ copyright = {Creative Commons Attribution 4.0 International}
257
+ }
258
+ ```
259
+
260
+ <!--
261
+ ## Glossary
262
+
263
+ *Clearly define terms in order to be accessible across audiences.*
264
+ -->
265
+
266
+ <!--
267
+ ## Model Card Authors
268
+
269
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
270
+ -->
271
+
272
+ <!--
273
+ ## Model Card Contact
274
+
275
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
276
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_2805/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "Negative",
5
+ "Positive"
6
+ ]
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:486a18c96eabc8f41a14adfab235d3bd6a4cafdc0cb2bc82d1720ab35d43a186
3
+ size 470637416
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eec54b7a68cb573ca4076f82694d497fbdf4cc84ad462e5916f4065aa7f5ef4d
3
+ size 3967
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa685fc160bbdbab64058d4fc91b60e62d207e8dc60b9af5c002c5ab946ded00
3
+ size 17083009
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 512,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da145b5e7700ae40f16691ec32a0b1fdc1ee3298db22a31ea55f57a966c4a65d
3
+ size 14763260