First training attempt
Browse files- README.md +84 -0
- all_results.json +16 -0
- checkpoint-9000/config.json +27 -0
- checkpoint-9000/global_step9000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-9000/global_step9000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-9000/latest +1 -0
- checkpoint-9000/rng_state.pth +3 -0
- checkpoint-9000/special_tokens_map.json +37 -0
- checkpoint-9000/tokenizer.json +162 -0
- checkpoint-9000/tokenizer_config.json +68 -0
- checkpoint-9000/trainer_state.json +744 -0
- checkpoint-9000/training_args.bin +3 -0
- checkpoint-9000/zero_to_fp32.py +592 -0
- config.json +27 -0
- eval_results.json +10 -0
- global_step9000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step9000/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- special_tokens_map.json +37 -0
- tokenizer.json +162 -0
- tokenizer_config.json +68 -0
- train_results.json +9 -0
- trainer_state.json +753 -0
- training_args.bin +3 -0
- zero_to_fp32.py +592 -0
README.md
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: /src/tanner/chess-roberta-code/model_configs/chess_roberta.json
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
datasets:
|
| 6 |
+
- TannerGladson/chess-roberta-pretraining
|
| 7 |
+
metrics:
|
| 8 |
+
- accuracy
|
| 9 |
+
model-index:
|
| 10 |
+
- name: 2024.09.24-01.27
|
| 11 |
+
results:
|
| 12 |
+
- task:
|
| 13 |
+
name: Masked Language Modeling
|
| 14 |
+
type: fill-mask
|
| 15 |
+
dataset:
|
| 16 |
+
name: TannerGladson/chess-roberta-pretraining
|
| 17 |
+
type: TannerGladson/chess-roberta-pretraining
|
| 18 |
+
metrics:
|
| 19 |
+
- name: Accuracy
|
| 20 |
+
type: accuracy
|
| 21 |
+
value: 0.5445640378503339
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 25 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 26 |
+
|
| 27 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/tanner-gladson/huggingface/runs/cs121ioj)
|
| 28 |
+
# 2024.09.24-01.27
|
| 29 |
+
|
| 30 |
+
This model is a fine-tuned version of [/src/tanner/chess-roberta-code/model_configs/chess_roberta.json](https://huggingface.co//src/tanner/chess-roberta-code/model_configs/chess_roberta.json) on the TannerGladson/chess-roberta-pretraining dataset.
|
| 31 |
+
It achieves the following results on the evaluation set:
|
| 32 |
+
- Loss: 2.1202
|
| 33 |
+
- Accuracy: 0.5446
|
| 34 |
+
|
| 35 |
+
## Model description
|
| 36 |
+
|
| 37 |
+
More information needed
|
| 38 |
+
|
| 39 |
+
## Intended uses & limitations
|
| 40 |
+
|
| 41 |
+
More information needed
|
| 42 |
+
|
| 43 |
+
## Training and evaluation data
|
| 44 |
+
|
| 45 |
+
More information needed
|
| 46 |
+
|
| 47 |
+
## Training procedure
|
| 48 |
+
|
| 49 |
+
### Training hyperparameters
|
| 50 |
+
|
| 51 |
+
The following hyperparameters were used during training:
|
| 52 |
+
- learning_rate: 0.0005
|
| 53 |
+
- train_batch_size: 8
|
| 54 |
+
- eval_batch_size: 8
|
| 55 |
+
- seed: 42
|
| 56 |
+
- distributed_type: multi-GPU
|
| 57 |
+
- gradient_accumulation_steps: 16
|
| 58 |
+
- total_train_batch_size: 128
|
| 59 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-06
|
| 60 |
+
- lr_scheduler_type: linear
|
| 61 |
+
- lr_scheduler_warmup_steps: 200
|
| 62 |
+
- training_steps: 9000
|
| 63 |
+
|
| 64 |
+
### Training results
|
| 65 |
+
|
| 66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 67 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
| 68 |
+
| 2.1201 | 0.0120 | 1000 | 2.1195 | 0.5445 |
|
| 69 |
+
| 2.1222 | 0.0239 | 2000 | 2.1199 | 0.5446 |
|
| 70 |
+
| 2.1179 | 0.0359 | 3000 | 2.1199 | 0.5444 |
|
| 71 |
+
| 2.1215 | 0.0479 | 4000 | 2.1186 | 0.5446 |
|
| 72 |
+
| 2.1176 | 0.0598 | 5000 | 2.1194 | 0.5445 |
|
| 73 |
+
| 2.1189 | 0.0718 | 6000 | 2.1193 | 0.5445 |
|
| 74 |
+
| 2.1184 | 0.0838 | 7000 | 2.1194 | 0.5446 |
|
| 75 |
+
| 2.119 | 0.0957 | 8000 | 2.1190 | 0.5446 |
|
| 76 |
+
| 2.1237 | 0.1077 | 9000 | 2.1201 | 0.5446 |
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
### Framework versions
|
| 80 |
+
|
| 81 |
+
- Transformers 4.42.4
|
| 82 |
+
- Pytorch 2.0.1+cu117
|
| 83 |
+
- Datasets 2.17.1
|
| 84 |
+
- Tokenizers 0.19.1
|
all_results.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 0.10768528974073271,
|
| 3 |
+
"eval_accuracy": 0.5445640378503339,
|
| 4 |
+
"eval_loss": 2.1201696395874023,
|
| 5 |
+
"eval_runtime": 8310.7479,
|
| 6 |
+
"eval_samples": 562811,
|
| 7 |
+
"eval_samples_per_second": 67.721,
|
| 8 |
+
"eval_steps_per_second": 8.465,
|
| 9 |
+
"perplexity": 8.332550898295501,
|
| 10 |
+
"total_flos": 1158274171797504.0,
|
| 11 |
+
"train_loss": 2.120608181423611,
|
| 12 |
+
"train_runtime": 152416.4466,
|
| 13 |
+
"train_samples": 10697834,
|
| 14 |
+
"train_samples_per_second": 7.558,
|
| 15 |
+
"train_steps_per_second": 0.059
|
| 16 |
+
}
|
checkpoint-9000/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/src/tanner/chess-roberta-code/model_configs/chess_roberta.json",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"RobertaForMaskedLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 1,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 1030,
|
| 17 |
+
"model_type": "roberta",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 16,
|
| 20 |
+
"pad_token_id": 2,
|
| 21 |
+
"position_embedding_type": "absolute",
|
| 22 |
+
"torch_dtype": "bfloat16",
|
| 23 |
+
"transformers_version": "4.42.4",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 64
|
| 27 |
+
}
|
checkpoint-9000/global_step9000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c279dc883c0d65945b83146c6a1901c3265ee01b398b33b0e234c652ee2d446
|
| 3 |
+
size 1378093111
|
checkpoint-9000/global_step9000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:78aa760df334a408b1ff1cad6785692d84af6c1c49652716d7cfd0b815914075
|
| 3 |
+
size 140897
|
checkpoint-9000/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step9000
|
checkpoint-9000/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:76bca5d4fb610fbdcd81ca77a69064a3272c24f56e6e5af9d5f760e817a866fe
|
| 3 |
+
size 14575
|
checkpoint-9000/special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
checkpoint-9000/tokenizer.json
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"version": "1.0",
|
| 3 |
+
"truncation": null,
|
| 4 |
+
"padding": null,
|
| 5 |
+
"added_tokens": [
|
| 6 |
+
{
|
| 7 |
+
"id": 0,
|
| 8 |
+
"content": "[CLS]",
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"lstrip": false,
|
| 11 |
+
"rstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"special": true
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"id": 1,
|
| 17 |
+
"content": "[SEP]",
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"normalized": false,
|
| 22 |
+
"special": true
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"id": 2,
|
| 26 |
+
"content": "[PAD]",
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"rstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"special": true
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"id": 3,
|
| 35 |
+
"content": "[UNK]",
|
| 36 |
+
"single_word": false,
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"rstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"special": true
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"id": 4,
|
| 44 |
+
"content": "[MASK]",
|
| 45 |
+
"single_word": false,
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"id": 5,
|
| 53 |
+
"content": "[ILLEGAL]",
|
| 54 |
+
"single_word": false,
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"id": 6,
|
| 62 |
+
"content": "~",
|
| 63 |
+
"single_word": false,
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"normalized": false,
|
| 67 |
+
"special": true
|
| 68 |
+
}
|
| 69 |
+
],
|
| 70 |
+
"normalizer": {
|
| 71 |
+
"type": "Sequence",
|
| 72 |
+
"normalizers": [
|
| 73 |
+
{
|
| 74 |
+
"type": "NFD"
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"type": "StripAccents"
|
| 78 |
+
}
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
"pre_tokenizer": {
|
| 82 |
+
"type": "Split",
|
| 83 |
+
"pattern": {
|
| 84 |
+
"String": ""
|
| 85 |
+
},
|
| 86 |
+
"behavior": "Isolated",
|
| 87 |
+
"invert": false
|
| 88 |
+
},
|
| 89 |
+
"post_processor": {
|
| 90 |
+
"type": "RobertaProcessing",
|
| 91 |
+
"sep": [
|
| 92 |
+
"[SEP]",
|
| 93 |
+
1
|
| 94 |
+
],
|
| 95 |
+
"cls": [
|
| 96 |
+
"[CLS]",
|
| 97 |
+
0
|
| 98 |
+
],
|
| 99 |
+
"trim_offsets": false,
|
| 100 |
+
"add_prefix_space": false
|
| 101 |
+
},
|
| 102 |
+
"decoder": {
|
| 103 |
+
"type": "WordPiece",
|
| 104 |
+
"prefix": "##",
|
| 105 |
+
"cleanup": true
|
| 106 |
+
},
|
| 107 |
+
"model": {
|
| 108 |
+
"type": "WordPiece",
|
| 109 |
+
"unk_token": "[UNK]",
|
| 110 |
+
"continuing_subword_prefix": "##",
|
| 111 |
+
"max_input_chars_per_word": 100,
|
| 112 |
+
"vocab": {
|
| 113 |
+
"[CLS]": 0,
|
| 114 |
+
"[SEP]": 1,
|
| 115 |
+
"[PAD]": 2,
|
| 116 |
+
"[UNK]": 3,
|
| 117 |
+
"[MASK]": 4,
|
| 118 |
+
"[ILLEGAL]": 5,
|
| 119 |
+
"~": 6,
|
| 120 |
+
">": 7,
|
| 121 |
+
" ": 8,
|
| 122 |
+
"#": 9,
|
| 123 |
+
"+": 10,
|
| 124 |
+
"-": 11,
|
| 125 |
+
"/": 12,
|
| 126 |
+
"0": 13,
|
| 127 |
+
"1": 14,
|
| 128 |
+
"2": 15,
|
| 129 |
+
"3": 16,
|
| 130 |
+
"4": 17,
|
| 131 |
+
"5": 18,
|
| 132 |
+
"6": 19,
|
| 133 |
+
"7": 20,
|
| 134 |
+
"8": 21,
|
| 135 |
+
"9": 22,
|
| 136 |
+
"=": 23,
|
| 137 |
+
"B": 24,
|
| 138 |
+
"K": 25,
|
| 139 |
+
"N": 26,
|
| 140 |
+
"O": 27,
|
| 141 |
+
"P": 28,
|
| 142 |
+
"Q": 29,
|
| 143 |
+
"R": 30,
|
| 144 |
+
"a": 31,
|
| 145 |
+
"b": 32,
|
| 146 |
+
"c": 33,
|
| 147 |
+
"d": 34,
|
| 148 |
+
"e": 35,
|
| 149 |
+
"f": 36,
|
| 150 |
+
"g": 37,
|
| 151 |
+
"h": 38,
|
| 152 |
+
"k": 39,
|
| 153 |
+
"n": 40,
|
| 154 |
+
"p": 41,
|
| 155 |
+
"q": 42,
|
| 156 |
+
"r": 43,
|
| 157 |
+
"w": 44,
|
| 158 |
+
"x": 45,
|
| 159 |
+
"_": 46
|
| 160 |
+
}
|
| 161 |
+
}
|
| 162 |
+
}
|
checkpoint-9000/tokenizer_config.json
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[CLS]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[SEP]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[PAD]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[UNK]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"5": {
|
| 44 |
+
"content": "[ILLEGAL]",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"6": {
|
| 52 |
+
"content": "~",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
}
|
| 59 |
+
},
|
| 60 |
+
"clean_up_tokenization_spaces": true,
|
| 61 |
+
"cls_token": "[CLS]",
|
| 62 |
+
"mask_token": "[MASK]",
|
| 63 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 64 |
+
"pad_token": "[PAD]",
|
| 65 |
+
"sep_token": "[SEP]",
|
| 66 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 67 |
+
"unk_token": "[UNK]"
|
| 68 |
+
}
|
checkpoint-9000/trainer_state.json
ADDED
|
@@ -0,0 +1,744 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.10768528974073271,
|
| 5 |
+
"eval_steps": 1000,
|
| 6 |
+
"global_step": 9000,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0011965032193414745,
|
| 13 |
+
"grad_norm": 0.4959045114979248,
|
| 14 |
+
"learning_rate": 0.0002475,
|
| 15 |
+
"loss": 2.2052,
|
| 16 |
+
"step": 100
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.002393006438682949,
|
| 20 |
+
"grad_norm": 0.5957897298098443,
|
| 21 |
+
"learning_rate": 0.0004975,
|
| 22 |
+
"loss": 2.1236,
|
| 23 |
+
"step": 200
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.0035895096580244234,
|
| 27 |
+
"grad_norm": 0.5462649355396835,
|
| 28 |
+
"learning_rate": 0.000494375,
|
| 29 |
+
"loss": 2.123,
|
| 30 |
+
"step": 300
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.004786012877365898,
|
| 34 |
+
"grad_norm": 0.479307539013867,
|
| 35 |
+
"learning_rate": 0.0004886931818181818,
|
| 36 |
+
"loss": 2.1201,
|
| 37 |
+
"step": 400
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.005982516096707372,
|
| 41 |
+
"grad_norm": 0.4702932661295846,
|
| 42 |
+
"learning_rate": 0.0004830113636363637,
|
| 43 |
+
"loss": 2.1218,
|
| 44 |
+
"step": 500
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.007179019316048847,
|
| 48 |
+
"grad_norm": 0.4536330377549505,
|
| 49 |
+
"learning_rate": 0.0004773295454545455,
|
| 50 |
+
"loss": 2.1199,
|
| 51 |
+
"step": 600
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.008375522535390322,
|
| 55 |
+
"grad_norm": 0.30397230580627244,
|
| 56 |
+
"learning_rate": 0.00047164772727272724,
|
| 57 |
+
"loss": 2.122,
|
| 58 |
+
"step": 700
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.009572025754731796,
|
| 62 |
+
"grad_norm": 0.5497084490461644,
|
| 63 |
+
"learning_rate": 0.0004659659090909091,
|
| 64 |
+
"loss": 2.1195,
|
| 65 |
+
"step": 800
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.010768528974073271,
|
| 69 |
+
"grad_norm": 0.31265244740901976,
|
| 70 |
+
"learning_rate": 0.0004602840909090909,
|
| 71 |
+
"loss": 2.1214,
|
| 72 |
+
"step": 900
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.011965032193414745,
|
| 76 |
+
"grad_norm": 0.38764126785839226,
|
| 77 |
+
"learning_rate": 0.0004546022727272727,
|
| 78 |
+
"loss": 2.1201,
|
| 79 |
+
"step": 1000
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.011965032193414745,
|
| 83 |
+
"eval_accuracy": 0.544493419943561,
|
| 84 |
+
"eval_loss": 2.119503974914551,
|
| 85 |
+
"eval_runtime": 14498.4824,
|
| 86 |
+
"eval_samples_per_second": 38.819,
|
| 87 |
+
"eval_steps_per_second": 4.852,
|
| 88 |
+
"step": 1000
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"epoch": 0.01316153541275622,
|
| 92 |
+
"grad_norm": 0.37861216335098746,
|
| 93 |
+
"learning_rate": 0.00044892045454545456,
|
| 94 |
+
"loss": 2.1179,
|
| 95 |
+
"step": 1100
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"epoch": 0.014358038632097694,
|
| 99 |
+
"grad_norm": 0.3244816871915935,
|
| 100 |
+
"learning_rate": 0.00044323863636363636,
|
| 101 |
+
"loss": 2.123,
|
| 102 |
+
"step": 1200
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"epoch": 0.015554541851439169,
|
| 106 |
+
"grad_norm": 0.39134094432184025,
|
| 107 |
+
"learning_rate": 0.0004375568181818182,
|
| 108 |
+
"loss": 2.1192,
|
| 109 |
+
"step": 1300
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"epoch": 0.016751045070780644,
|
| 113 |
+
"grad_norm": 0.31850239786818274,
|
| 114 |
+
"learning_rate": 0.000431875,
|
| 115 |
+
"loss": 2.1195,
|
| 116 |
+
"step": 1400
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"epoch": 0.017947548290122118,
|
| 120 |
+
"grad_norm": 0.3353874978413676,
|
| 121 |
+
"learning_rate": 0.0004261931818181818,
|
| 122 |
+
"loss": 2.1187,
|
| 123 |
+
"step": 1500
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"epoch": 0.01914405150946359,
|
| 127 |
+
"grad_norm": 0.3666941040198008,
|
| 128 |
+
"learning_rate": 0.0004205113636363637,
|
| 129 |
+
"loss": 2.1208,
|
| 130 |
+
"step": 1600
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"epoch": 0.02034055472880507,
|
| 134 |
+
"grad_norm": 0.2874688345676318,
|
| 135 |
+
"learning_rate": 0.0004148295454545455,
|
| 136 |
+
"loss": 2.1182,
|
| 137 |
+
"step": 1700
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"epoch": 0.021537057948146542,
|
| 141 |
+
"grad_norm": 0.28829546768632713,
|
| 142 |
+
"learning_rate": 0.00040914772727272723,
|
| 143 |
+
"loss": 2.1202,
|
| 144 |
+
"step": 1800
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"epoch": 0.022733561167488016,
|
| 148 |
+
"grad_norm": 0.3462480959698083,
|
| 149 |
+
"learning_rate": 0.0004034659090909091,
|
| 150 |
+
"loss": 2.1185,
|
| 151 |
+
"step": 1900
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"epoch": 0.02393006438682949,
|
| 155 |
+
"grad_norm": 0.32146933893861385,
|
| 156 |
+
"learning_rate": 0.0003977840909090909,
|
| 157 |
+
"loss": 2.1222,
|
| 158 |
+
"step": 2000
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 0.02393006438682949,
|
| 162 |
+
"eval_accuracy": 0.5445787464391751,
|
| 163 |
+
"eval_loss": 2.1198692321777344,
|
| 164 |
+
"eval_runtime": 8324.5002,
|
| 165 |
+
"eval_samples_per_second": 67.609,
|
| 166 |
+
"eval_steps_per_second": 8.451,
|
| 167 |
+
"step": 2000
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"epoch": 0.025126567606170967,
|
| 171 |
+
"grad_norm": 0.3383598719071586,
|
| 172 |
+
"learning_rate": 0.0003921022727272727,
|
| 173 |
+
"loss": 2.1181,
|
| 174 |
+
"step": 2100
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"epoch": 0.02632307082551244,
|
| 178 |
+
"grad_norm": 0.23870777428521156,
|
| 179 |
+
"learning_rate": 0.00038642045454545456,
|
| 180 |
+
"loss": 2.1201,
|
| 181 |
+
"step": 2200
|
| 182 |
+
},
|
| 183 |
+
{
|
| 184 |
+
"epoch": 0.027519574044853914,
|
| 185 |
+
"grad_norm": 0.26512869204988454,
|
| 186 |
+
"learning_rate": 0.00038073863636363636,
|
| 187 |
+
"loss": 2.1181,
|
| 188 |
+
"step": 2300
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"epoch": 0.028716077264195387,
|
| 192 |
+
"grad_norm": 0.38291085278916004,
|
| 193 |
+
"learning_rate": 0.0003750568181818182,
|
| 194 |
+
"loss": 2.1214,
|
| 195 |
+
"step": 2400
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"epoch": 0.029912580483536864,
|
| 199 |
+
"grad_norm": 0.2922237601337328,
|
| 200 |
+
"learning_rate": 0.000369375,
|
| 201 |
+
"loss": 2.1178,
|
| 202 |
+
"step": 2500
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"epoch": 0.031109083702878338,
|
| 206 |
+
"grad_norm": 0.28007930758064187,
|
| 207 |
+
"learning_rate": 0.0003636931818181818,
|
| 208 |
+
"loss": 2.1174,
|
| 209 |
+
"step": 2600
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"epoch": 0.03230558692221981,
|
| 213 |
+
"grad_norm": 0.37650924862735796,
|
| 214 |
+
"learning_rate": 0.0003580113636363637,
|
| 215 |
+
"loss": 2.1202,
|
| 216 |
+
"step": 2700
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"epoch": 0.03350209014156129,
|
| 220 |
+
"grad_norm": 0.32087380641998864,
|
| 221 |
+
"learning_rate": 0.0003523295454545455,
|
| 222 |
+
"loss": 2.1205,
|
| 223 |
+
"step": 2800
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"epoch": 0.03469859336090276,
|
| 227 |
+
"grad_norm": 0.3065591070785156,
|
| 228 |
+
"learning_rate": 0.00034664772727272723,
|
| 229 |
+
"loss": 2.1219,
|
| 230 |
+
"step": 2900
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 0.035895096580244236,
|
| 234 |
+
"grad_norm": 0.4973396205464692,
|
| 235 |
+
"learning_rate": 0.0003409659090909091,
|
| 236 |
+
"loss": 2.1179,
|
| 237 |
+
"step": 3000
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"epoch": 0.035895096580244236,
|
| 241 |
+
"eval_accuracy": 0.5444474125165799,
|
| 242 |
+
"eval_loss": 2.119871139526367,
|
| 243 |
+
"eval_runtime": 14003.3046,
|
| 244 |
+
"eval_samples_per_second": 40.191,
|
| 245 |
+
"eval_steps_per_second": 5.024,
|
| 246 |
+
"step": 3000
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"epoch": 0.03709159979958571,
|
| 250 |
+
"grad_norm": 0.36054926026192535,
|
| 251 |
+
"learning_rate": 0.0003352840909090909,
|
| 252 |
+
"loss": 2.1207,
|
| 253 |
+
"step": 3100
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"epoch": 0.03828810301892718,
|
| 257 |
+
"grad_norm": 0.2609329016792503,
|
| 258 |
+
"learning_rate": 0.0003296022727272727,
|
| 259 |
+
"loss": 2.1187,
|
| 260 |
+
"step": 3200
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"epoch": 0.03948460623826866,
|
| 264 |
+
"grad_norm": 0.4377934640382202,
|
| 265 |
+
"learning_rate": 0.00032392045454545455,
|
| 266 |
+
"loss": 2.1183,
|
| 267 |
+
"step": 3300
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"epoch": 0.04068110945761014,
|
| 271 |
+
"grad_norm": 0.30040663333811507,
|
| 272 |
+
"learning_rate": 0.00031823863636363636,
|
| 273 |
+
"loss": 2.1207,
|
| 274 |
+
"step": 3400
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"epoch": 0.04187761267695161,
|
| 278 |
+
"grad_norm": 0.4058031327319446,
|
| 279 |
+
"learning_rate": 0.0003125568181818182,
|
| 280 |
+
"loss": 2.1175,
|
| 281 |
+
"step": 3500
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"epoch": 0.043074115896293085,
|
| 285 |
+
"grad_norm": 0.2221276357895751,
|
| 286 |
+
"learning_rate": 0.000306875,
|
| 287 |
+
"loss": 2.1191,
|
| 288 |
+
"step": 3600
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"epoch": 0.044270619115634555,
|
| 292 |
+
"grad_norm": 0.2171065800667589,
|
| 293 |
+
"learning_rate": 0.0003011931818181818,
|
| 294 |
+
"loss": 2.1222,
|
| 295 |
+
"step": 3700
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"epoch": 0.04546712233497603,
|
| 299 |
+
"grad_norm": 0.24009215814108797,
|
| 300 |
+
"learning_rate": 0.0002955113636363637,
|
| 301 |
+
"loss": 2.1206,
|
| 302 |
+
"step": 3800
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"epoch": 0.04666362555431751,
|
| 306 |
+
"grad_norm": 0.23325080103491874,
|
| 307 |
+
"learning_rate": 0.0002898295454545455,
|
| 308 |
+
"loss": 2.1219,
|
| 309 |
+
"step": 3900
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"epoch": 0.04786012877365898,
|
| 313 |
+
"grad_norm": 0.38496953527087835,
|
| 314 |
+
"learning_rate": 0.00028414772727272723,
|
| 315 |
+
"loss": 2.1215,
|
| 316 |
+
"step": 4000
|
| 317 |
+
},
|
| 318 |
+
{
|
| 319 |
+
"epoch": 0.04786012877365898,
|
| 320 |
+
"eval_accuracy": 0.5445841718354034,
|
| 321 |
+
"eval_loss": 2.1186254024505615,
|
| 322 |
+
"eval_runtime": 14020.6018,
|
| 323 |
+
"eval_samples_per_second": 40.142,
|
| 324 |
+
"eval_steps_per_second": 5.018,
|
| 325 |
+
"step": 4000
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.049056631993000456,
|
| 329 |
+
"grad_norm": 0.2049052054281515,
|
| 330 |
+
"learning_rate": 0.0002784659090909091,
|
| 331 |
+
"loss": 2.1184,
|
| 332 |
+
"step": 4100
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.05025313521234193,
|
| 336 |
+
"grad_norm": 0.2458322734082573,
|
| 337 |
+
"learning_rate": 0.0002727840909090909,
|
| 338 |
+
"loss": 2.1196,
|
| 339 |
+
"step": 4200
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.0514496384316834,
|
| 343 |
+
"grad_norm": 0.1995524240389471,
|
| 344 |
+
"learning_rate": 0.0002671022727272727,
|
| 345 |
+
"loss": 2.1188,
|
| 346 |
+
"step": 4300
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.05264614165102488,
|
| 350 |
+
"grad_norm": 0.25790141869897587,
|
| 351 |
+
"learning_rate": 0.00026142045454545455,
|
| 352 |
+
"loss": 2.1184,
|
| 353 |
+
"step": 4400
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.05384264487036636,
|
| 357 |
+
"grad_norm": 0.28730537897175445,
|
| 358 |
+
"learning_rate": 0.00025573863636363636,
|
| 359 |
+
"loss": 2.1202,
|
| 360 |
+
"step": 4500
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.05503914808970783,
|
| 364 |
+
"grad_norm": 0.32493426349642957,
|
| 365 |
+
"learning_rate": 0.0002500568181818182,
|
| 366 |
+
"loss": 2.118,
|
| 367 |
+
"step": 4600
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.056235651309049305,
|
| 371 |
+
"grad_norm": 0.29535898171610375,
|
| 372 |
+
"learning_rate": 0.000244375,
|
| 373 |
+
"loss": 2.1206,
|
| 374 |
+
"step": 4700
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.057432154528390775,
|
| 378 |
+
"grad_norm": 0.22683681078434978,
|
| 379 |
+
"learning_rate": 0.00023869318181818182,
|
| 380 |
+
"loss": 2.117,
|
| 381 |
+
"step": 4800
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.05862865774773225,
|
| 385 |
+
"grad_norm": 0.3053349551242291,
|
| 386 |
+
"learning_rate": 0.00023301136363636362,
|
| 387 |
+
"loss": 2.1179,
|
| 388 |
+
"step": 4900
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.05982516096707373,
|
| 392 |
+
"grad_norm": 0.1948263427424577,
|
| 393 |
+
"learning_rate": 0.00022732954545454545,
|
| 394 |
+
"loss": 2.1176,
|
| 395 |
+
"step": 5000
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.05982516096707373,
|
| 399 |
+
"eval_accuracy": 0.5445371572840895,
|
| 400 |
+
"eval_loss": 2.119377613067627,
|
| 401 |
+
"eval_runtime": 12119.2615,
|
| 402 |
+
"eval_samples_per_second": 46.439,
|
| 403 |
+
"eval_steps_per_second": 5.805,
|
| 404 |
+
"step": 5000
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"epoch": 0.0610216641864152,
|
| 408 |
+
"grad_norm": 0.29200116272624654,
|
| 409 |
+
"learning_rate": 0.00022164772727272728,
|
| 410 |
+
"loss": 2.1192,
|
| 411 |
+
"step": 5100
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"epoch": 0.062218167405756676,
|
| 415 |
+
"grad_norm": 0.25843746999947237,
|
| 416 |
+
"learning_rate": 0.00021596590909090912,
|
| 417 |
+
"loss": 2.1193,
|
| 418 |
+
"step": 5200
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"epoch": 0.06341467062509815,
|
| 422 |
+
"grad_norm": 0.23460770073478823,
|
| 423 |
+
"learning_rate": 0.00021028409090909092,
|
| 424 |
+
"loss": 2.1196,
|
| 425 |
+
"step": 5300
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"epoch": 0.06461117384443962,
|
| 429 |
+
"grad_norm": 0.2143373312023261,
|
| 430 |
+
"learning_rate": 0.00020460227272727272,
|
| 431 |
+
"loss": 2.1194,
|
| 432 |
+
"step": 5400
|
| 433 |
+
},
|
| 434 |
+
{
|
| 435 |
+
"epoch": 0.0658076770637811,
|
| 436 |
+
"grad_norm": 0.2738612197646279,
|
| 437 |
+
"learning_rate": 0.00019892045454545455,
|
| 438 |
+
"loss": 2.1215,
|
| 439 |
+
"step": 5500
|
| 440 |
+
},
|
| 441 |
+
{
|
| 442 |
+
"epoch": 0.06700418028312258,
|
| 443 |
+
"grad_norm": 0.22066659063762534,
|
| 444 |
+
"learning_rate": 0.00019323863636363636,
|
| 445 |
+
"loss": 2.1185,
|
| 446 |
+
"step": 5600
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"epoch": 0.06820068350246405,
|
| 450 |
+
"grad_norm": 0.2649683554628019,
|
| 451 |
+
"learning_rate": 0.00018755681818181819,
|
| 452 |
+
"loss": 2.117,
|
| 453 |
+
"step": 5700
|
| 454 |
+
},
|
| 455 |
+
{
|
| 456 |
+
"epoch": 0.06939718672180552,
|
| 457 |
+
"grad_norm": 0.36660584937802804,
|
| 458 |
+
"learning_rate": 0.00018187500000000002,
|
| 459 |
+
"loss": 2.1179,
|
| 460 |
+
"step": 5800
|
| 461 |
+
},
|
| 462 |
+
{
|
| 463 |
+
"epoch": 0.070593689941147,
|
| 464 |
+
"grad_norm": 0.2683451066571477,
|
| 465 |
+
"learning_rate": 0.00017619318181818182,
|
| 466 |
+
"loss": 2.1201,
|
| 467 |
+
"step": 5900
|
| 468 |
+
},
|
| 469 |
+
{
|
| 470 |
+
"epoch": 0.07179019316048847,
|
| 471 |
+
"grad_norm": 0.1943497599849036,
|
| 472 |
+
"learning_rate": 0.00017051136363636362,
|
| 473 |
+
"loss": 2.1189,
|
| 474 |
+
"step": 6000
|
| 475 |
+
},
|
| 476 |
+
{
|
| 477 |
+
"epoch": 0.07179019316048847,
|
| 478 |
+
"eval_accuracy": 0.5445187284838173,
|
| 479 |
+
"eval_loss": 2.1193103790283203,
|
| 480 |
+
"eval_runtime": 8292.7883,
|
| 481 |
+
"eval_samples_per_second": 67.868,
|
| 482 |
+
"eval_steps_per_second": 8.484,
|
| 483 |
+
"step": 6000
|
| 484 |
+
},
|
| 485 |
+
{
|
| 486 |
+
"epoch": 0.07298669637982995,
|
| 487 |
+
"grad_norm": 0.2698036045598882,
|
| 488 |
+
"learning_rate": 0.00016482954545454545,
|
| 489 |
+
"loss": 2.1196,
|
| 490 |
+
"step": 6100
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"epoch": 0.07418319959917143,
|
| 494 |
+
"grad_norm": 0.22553506284296373,
|
| 495 |
+
"learning_rate": 0.00015914772727272728,
|
| 496 |
+
"loss": 2.1195,
|
| 497 |
+
"step": 6200
|
| 498 |
+
},
|
| 499 |
+
{
|
| 500 |
+
"epoch": 0.07537970281851289,
|
| 501 |
+
"grad_norm": 0.21994704816511382,
|
| 502 |
+
"learning_rate": 0.00015346590909090911,
|
| 503 |
+
"loss": 2.119,
|
| 504 |
+
"step": 6300
|
| 505 |
+
},
|
| 506 |
+
{
|
| 507 |
+
"epoch": 0.07657620603785437,
|
| 508 |
+
"grad_norm": 0.20519656139775935,
|
| 509 |
+
"learning_rate": 0.00014778409090909092,
|
| 510 |
+
"loss": 2.1184,
|
| 511 |
+
"step": 6400
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"epoch": 0.07777270925719584,
|
| 515 |
+
"grad_norm": 0.3246545352385696,
|
| 516 |
+
"learning_rate": 0.00014210227272727272,
|
| 517 |
+
"loss": 2.1181,
|
| 518 |
+
"step": 6500
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"epoch": 0.07896921247653732,
|
| 522 |
+
"grad_norm": 0.25066878379158264,
|
| 523 |
+
"learning_rate": 0.00013642045454545455,
|
| 524 |
+
"loss": 2.1196,
|
| 525 |
+
"step": 6600
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"epoch": 0.0801657156958788,
|
| 529 |
+
"grad_norm": 0.24038943677884456,
|
| 530 |
+
"learning_rate": 0.00013073863636363635,
|
| 531 |
+
"loss": 2.118,
|
| 532 |
+
"step": 6700
|
| 533 |
+
},
|
| 534 |
+
{
|
| 535 |
+
"epoch": 0.08136221891522027,
|
| 536 |
+
"grad_norm": 0.21920956719889126,
|
| 537 |
+
"learning_rate": 0.00012505681818181818,
|
| 538 |
+
"loss": 2.1188,
|
| 539 |
+
"step": 6800
|
| 540 |
+
},
|
| 541 |
+
{
|
| 542 |
+
"epoch": 0.08255872213456174,
|
| 543 |
+
"grad_norm": 0.2013303206012115,
|
| 544 |
+
"learning_rate": 0.000119375,
|
| 545 |
+
"loss": 2.1201,
|
| 546 |
+
"step": 6900
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"epoch": 0.08375522535390321,
|
| 550 |
+
"grad_norm": 0.17865191614703033,
|
| 551 |
+
"learning_rate": 0.00011369318181818182,
|
| 552 |
+
"loss": 2.1184,
|
| 553 |
+
"step": 7000
|
| 554 |
+
},
|
| 555 |
+
{
|
| 556 |
+
"epoch": 0.08375522535390321,
|
| 557 |
+
"eval_accuracy": 0.5445597073721878,
|
| 558 |
+
"eval_loss": 2.119361400604248,
|
| 559 |
+
"eval_runtime": 8286.5111,
|
| 560 |
+
"eval_samples_per_second": 67.919,
|
| 561 |
+
"eval_steps_per_second": 8.49,
|
| 562 |
+
"step": 7000
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.08495172857324469,
|
| 566 |
+
"grad_norm": 0.2242220420058521,
|
| 567 |
+
"learning_rate": 0.00010801136363636365,
|
| 568 |
+
"loss": 2.1206,
|
| 569 |
+
"step": 7100
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.08614823179258617,
|
| 573 |
+
"grad_norm": 0.2361418777976826,
|
| 574 |
+
"learning_rate": 0.00010232954545454545,
|
| 575 |
+
"loss": 2.1223,
|
| 576 |
+
"step": 7200
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.08734473501192765,
|
| 580 |
+
"grad_norm": 0.2251269866404104,
|
| 581 |
+
"learning_rate": 9.664772727272728e-05,
|
| 582 |
+
"loss": 2.1188,
|
| 583 |
+
"step": 7300
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.08854123823126911,
|
| 587 |
+
"grad_norm": 0.2650506829716411,
|
| 588 |
+
"learning_rate": 9.09659090909091e-05,
|
| 589 |
+
"loss": 2.1204,
|
| 590 |
+
"step": 7400
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.08973774145061059,
|
| 594 |
+
"grad_norm": 0.2960065490838976,
|
| 595 |
+
"learning_rate": 8.52840909090909e-05,
|
| 596 |
+
"loss": 2.1166,
|
| 597 |
+
"step": 7500
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.09093424466995206,
|
| 601 |
+
"grad_norm": 0.2513130989479583,
|
| 602 |
+
"learning_rate": 7.960227272727273e-05,
|
| 603 |
+
"loss": 2.1191,
|
| 604 |
+
"step": 7600
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.09213074788929354,
|
| 608 |
+
"grad_norm": 0.23550646079468862,
|
| 609 |
+
"learning_rate": 7.392045454545454e-05,
|
| 610 |
+
"loss": 2.1207,
|
| 611 |
+
"step": 7700
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.09332725110863502,
|
| 615 |
+
"grad_norm": 0.20425354689020786,
|
| 616 |
+
"learning_rate": 6.823863636363637e-05,
|
| 617 |
+
"loss": 2.1196,
|
| 618 |
+
"step": 7800
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.0945237543279765,
|
| 622 |
+
"grad_norm": 0.27000259463730636,
|
| 623 |
+
"learning_rate": 6.255681818181818e-05,
|
| 624 |
+
"loss": 2.1208,
|
| 625 |
+
"step": 7900
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.09572025754731796,
|
| 629 |
+
"grad_norm": 0.23680396479288449,
|
| 630 |
+
"learning_rate": 5.6875e-05,
|
| 631 |
+
"loss": 2.119,
|
| 632 |
+
"step": 8000
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.09572025754731796,
|
| 636 |
+
"eval_accuracy": 0.54459064011865,
|
| 637 |
+
"eval_loss": 2.1189937591552734,
|
| 638 |
+
"eval_runtime": 8311.026,
|
| 639 |
+
"eval_samples_per_second": 67.719,
|
| 640 |
+
"eval_steps_per_second": 8.465,
|
| 641 |
+
"step": 8000
|
| 642 |
+
},
|
| 643 |
+
{
|
| 644 |
+
"epoch": 0.09691676076665943,
|
| 645 |
+
"grad_norm": 0.2356498019575465,
|
| 646 |
+
"learning_rate": 5.119318181818182e-05,
|
| 647 |
+
"loss": 2.117,
|
| 648 |
+
"step": 8100
|
| 649 |
+
},
|
| 650 |
+
{
|
| 651 |
+
"epoch": 0.09811326398600091,
|
| 652 |
+
"grad_norm": 0.2452139474957504,
|
| 653 |
+
"learning_rate": 4.5511363636363634e-05,
|
| 654 |
+
"loss": 2.1191,
|
| 655 |
+
"step": 8200
|
| 656 |
+
},
|
| 657 |
+
{
|
| 658 |
+
"epoch": 0.09930976720534239,
|
| 659 |
+
"grad_norm": 0.2570095681654715,
|
| 660 |
+
"learning_rate": 3.982954545454546e-05,
|
| 661 |
+
"loss": 2.1182,
|
| 662 |
+
"step": 8300
|
| 663 |
+
},
|
| 664 |
+
{
|
| 665 |
+
"epoch": 0.10050627042468387,
|
| 666 |
+
"grad_norm": 0.2928491115350356,
|
| 667 |
+
"learning_rate": 3.4147727272727274e-05,
|
| 668 |
+
"loss": 2.119,
|
| 669 |
+
"step": 8400
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"epoch": 0.10170277364402533,
|
| 673 |
+
"grad_norm": 0.2534123898084123,
|
| 674 |
+
"learning_rate": 2.846590909090909e-05,
|
| 675 |
+
"loss": 2.1227,
|
| 676 |
+
"step": 8500
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"epoch": 0.1028992768633668,
|
| 680 |
+
"grad_norm": 0.29376855634271687,
|
| 681 |
+
"learning_rate": 2.278409090909091e-05,
|
| 682 |
+
"loss": 2.1198,
|
| 683 |
+
"step": 8600
|
| 684 |
+
},
|
| 685 |
+
{
|
| 686 |
+
"epoch": 0.10409578008270828,
|
| 687 |
+
"grad_norm": 0.3837678078363553,
|
| 688 |
+
"learning_rate": 1.7102272727272728e-05,
|
| 689 |
+
"loss": 2.1206,
|
| 690 |
+
"step": 8700
|
| 691 |
+
},
|
| 692 |
+
{
|
| 693 |
+
"epoch": 0.10529228330204976,
|
| 694 |
+
"grad_norm": 0.24342629903402227,
|
| 695 |
+
"learning_rate": 1.1420454545454547e-05,
|
| 696 |
+
"loss": 2.12,
|
| 697 |
+
"step": 8800
|
| 698 |
+
},
|
| 699 |
+
{
|
| 700 |
+
"epoch": 0.10648878652139124,
|
| 701 |
+
"grad_norm": 0.18367698561178294,
|
| 702 |
+
"learning_rate": 5.7386363636363634e-06,
|
| 703 |
+
"loss": 2.1197,
|
| 704 |
+
"step": 8900
|
| 705 |
+
},
|
| 706 |
+
{
|
| 707 |
+
"epoch": 0.10768528974073271,
|
| 708 |
+
"grad_norm": 0.27943165556655064,
|
| 709 |
+
"learning_rate": 5.681818181818182e-08,
|
| 710 |
+
"loss": 2.1237,
|
| 711 |
+
"step": 9000
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"epoch": 0.10768528974073271,
|
| 715 |
+
"eval_accuracy": 0.544624927857023,
|
| 716 |
+
"eval_loss": 2.12009596824646,
|
| 717 |
+
"eval_runtime": 8298.0507,
|
| 718 |
+
"eval_samples_per_second": 67.824,
|
| 719 |
+
"eval_steps_per_second": 8.478,
|
| 720 |
+
"step": 9000
|
| 721 |
+
}
|
| 722 |
+
],
|
| 723 |
+
"logging_steps": 100,
|
| 724 |
+
"max_steps": 9000,
|
| 725 |
+
"num_input_tokens_seen": 0,
|
| 726 |
+
"num_train_epochs": 1,
|
| 727 |
+
"save_steps": 450,
|
| 728 |
+
"stateful_callbacks": {
|
| 729 |
+
"TrainerControl": {
|
| 730 |
+
"args": {
|
| 731 |
+
"should_epoch_stop": false,
|
| 732 |
+
"should_evaluate": false,
|
| 733 |
+
"should_log": false,
|
| 734 |
+
"should_save": true,
|
| 735 |
+
"should_training_stop": true
|
| 736 |
+
},
|
| 737 |
+
"attributes": {}
|
| 738 |
+
}
|
| 739 |
+
},
|
| 740 |
+
"total_flos": 1158274171797504.0,
|
| 741 |
+
"train_batch_size": 8,
|
| 742 |
+
"trial_name": null,
|
| 743 |
+
"trial_params": null
|
| 744 |
+
}
|
checkpoint-9000/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cef530fb4e1d2e9334e368a9556d9eb4c37e254304636d9458c4b52855ca4d03
|
| 3 |
+
size 6459
|
checkpoint-9000/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
+
elif zero_stage == 3:
|
| 216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
+
|
| 226 |
+
if debug:
|
| 227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
+
|
| 230 |
+
wanted_params = len(frozen_param_shapes)
|
| 231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
+
|
| 236 |
+
total_params = 0
|
| 237 |
+
total_numel = 0
|
| 238 |
+
for name, shape in frozen_param_shapes.items():
|
| 239 |
+
total_params += 1
|
| 240 |
+
unpartitioned_numel = shape.numel()
|
| 241 |
+
total_numel += unpartitioned_numel
|
| 242 |
+
|
| 243 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
+
|
| 245 |
+
if debug:
|
| 246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
+
|
| 248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _has_callable(obj, fn):
|
| 252 |
+
attr = getattr(obj, fn, None)
|
| 253 |
+
return callable(attr)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 257 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 258 |
+
|
| 259 |
+
# Reconstruction protocol:
|
| 260 |
+
#
|
| 261 |
+
# XXX: document this
|
| 262 |
+
|
| 263 |
+
if debug:
|
| 264 |
+
for i in range(world_size):
|
| 265 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 267 |
+
|
| 268 |
+
# XXX: memory usage doubles here (zero2)
|
| 269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 270 |
+
merged_single_partition_of_fp32_groups = []
|
| 271 |
+
for i in range(num_param_groups):
|
| 272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 275 |
+
avail_numel = sum(
|
| 276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 277 |
+
|
| 278 |
+
if debug:
|
| 279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 281 |
+
# not asserting if there is a mismatch due to possible padding
|
| 282 |
+
print(f"Have {avail_numel} numels to process.")
|
| 283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 284 |
+
|
| 285 |
+
# params
|
| 286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 287 |
+
# out-of-core computing solution
|
| 288 |
+
total_numel = 0
|
| 289 |
+
total_params = 0
|
| 290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 291 |
+
offset = 0
|
| 292 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 293 |
+
for name, shape in shapes.items():
|
| 294 |
+
|
| 295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 296 |
+
total_numel += unpartitioned_numel
|
| 297 |
+
total_params += 1
|
| 298 |
+
|
| 299 |
+
if debug:
|
| 300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 302 |
+
offset += unpartitioned_numel
|
| 303 |
+
|
| 304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 308 |
+
align_to = 2 * world_size
|
| 309 |
+
|
| 310 |
+
def zero2_align(x):
|
| 311 |
+
return align_to * math.ceil(x / align_to)
|
| 312 |
+
|
| 313 |
+
if debug:
|
| 314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 315 |
+
|
| 316 |
+
offset = zero2_align(offset)
|
| 317 |
+
avail_numel = zero2_align(avail_numel)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
# Sanity check
|
| 323 |
+
if offset != avail_numel:
|
| 324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 325 |
+
|
| 326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 330 |
+
state_dict = OrderedDict()
|
| 331 |
+
|
| 332 |
+
# buffers
|
| 333 |
+
buffers = zero_model_states[0].buffers
|
| 334 |
+
state_dict.update(buffers)
|
| 335 |
+
if debug:
|
| 336 |
+
print(f"added {len(buffers)} buffers")
|
| 337 |
+
|
| 338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 339 |
+
|
| 340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 341 |
+
|
| 342 |
+
# recover shared parameters
|
| 343 |
+
for pair in zero_model_states[0].shared_params:
|
| 344 |
+
if pair[1] in state_dict:
|
| 345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 346 |
+
|
| 347 |
+
return state_dict
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 351 |
+
remainder = unpartitioned_numel % world_size
|
| 352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 354 |
+
return partitioned_numel, padding_numel
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 359 |
+
return
|
| 360 |
+
|
| 361 |
+
if debug:
|
| 362 |
+
for i in range(world_size):
|
| 363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 365 |
+
|
| 366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 367 |
+
wanted_params = len(frozen_param_shapes)
|
| 368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 372 |
+
|
| 373 |
+
total_params = 0
|
| 374 |
+
total_numel = 0
|
| 375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 376 |
+
total_params += 1
|
| 377 |
+
unpartitioned_numel = shape.numel()
|
| 378 |
+
total_numel += unpartitioned_numel
|
| 379 |
+
|
| 380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 382 |
+
|
| 383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 384 |
+
|
| 385 |
+
if debug:
|
| 386 |
+
print(
|
| 387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 394 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 398 |
+
|
| 399 |
+
# merge list of dicts, preserving order
|
| 400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 401 |
+
|
| 402 |
+
if debug:
|
| 403 |
+
for i in range(world_size):
|
| 404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 405 |
+
|
| 406 |
+
wanted_params = len(param_shapes)
|
| 407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 408 |
+
# not asserting if there is a mismatch due to possible padding
|
| 409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 412 |
+
|
| 413 |
+
# params
|
| 414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 415 |
+
# out-of-core computing solution
|
| 416 |
+
offset = 0
|
| 417 |
+
total_numel = 0
|
| 418 |
+
total_params = 0
|
| 419 |
+
for name, shape in param_shapes.items():
|
| 420 |
+
|
| 421 |
+
unpartitioned_numel = shape.numel()
|
| 422 |
+
total_numel += unpartitioned_numel
|
| 423 |
+
total_params += 1
|
| 424 |
+
|
| 425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 426 |
+
|
| 427 |
+
if debug:
|
| 428 |
+
print(
|
| 429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
# XXX: memory usage doubles here
|
| 433 |
+
state_dict[name] = torch.cat(
|
| 434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 436 |
+
offset += partitioned_numel
|
| 437 |
+
|
| 438 |
+
offset *= world_size
|
| 439 |
+
|
| 440 |
+
# Sanity check
|
| 441 |
+
if offset != avail_numel:
|
| 442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 443 |
+
|
| 444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 448 |
+
state_dict = OrderedDict()
|
| 449 |
+
|
| 450 |
+
# buffers
|
| 451 |
+
buffers = zero_model_states[0].buffers
|
| 452 |
+
state_dict.update(buffers)
|
| 453 |
+
if debug:
|
| 454 |
+
print(f"added {len(buffers)} buffers")
|
| 455 |
+
|
| 456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 457 |
+
|
| 458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 459 |
+
|
| 460 |
+
# recover shared parameters
|
| 461 |
+
for pair in zero_model_states[0].shared_params:
|
| 462 |
+
if pair[1] in state_dict:
|
| 463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 464 |
+
|
| 465 |
+
return state_dict
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 469 |
+
"""
|
| 470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 472 |
+
via a model hub.
|
| 473 |
+
|
| 474 |
+
Args:
|
| 475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 477 |
+
|
| 478 |
+
Returns:
|
| 479 |
+
- pytorch ``state_dict``
|
| 480 |
+
|
| 481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 483 |
+
the checkpoint.
|
| 484 |
+
|
| 485 |
+
A typical usage might be ::
|
| 486 |
+
|
| 487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 488 |
+
# do the training and checkpoint saving
|
| 489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 490 |
+
model = model.cpu() # move to cpu
|
| 491 |
+
model.load_state_dict(state_dict)
|
| 492 |
+
# submit to model hub or save the model to share with others
|
| 493 |
+
|
| 494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 497 |
+
|
| 498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 499 |
+
|
| 500 |
+
"""
|
| 501 |
+
if tag is None:
|
| 502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 503 |
+
if os.path.isfile(latest_path):
|
| 504 |
+
with open(latest_path, 'r') as fd:
|
| 505 |
+
tag = fd.read().strip()
|
| 506 |
+
else:
|
| 507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 508 |
+
|
| 509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 510 |
+
|
| 511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 513 |
+
|
| 514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 518 |
+
"""
|
| 519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 521 |
+
|
| 522 |
+
Args:
|
| 523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 526 |
+
"""
|
| 527 |
+
|
| 528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 530 |
+
torch.save(state_dict, output_file)
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 534 |
+
"""
|
| 535 |
+
1. Put the provided model to cpu
|
| 536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 537 |
+
3. Load it into the provided model
|
| 538 |
+
|
| 539 |
+
Args:
|
| 540 |
+
- ``model``: the model object to update
|
| 541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 543 |
+
|
| 544 |
+
Returns:
|
| 545 |
+
- ``model`: modified model
|
| 546 |
+
|
| 547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 549 |
+
conveniently placed for you in the checkpoint folder.
|
| 550 |
+
|
| 551 |
+
A typical usage might be ::
|
| 552 |
+
|
| 553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 555 |
+
# submit to model hub or save the model to share with others
|
| 556 |
+
|
| 557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 560 |
+
|
| 561 |
+
"""
|
| 562 |
+
logger.info(f"Extracting fp32 weights")
|
| 563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 564 |
+
|
| 565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 566 |
+
model = model.cpu()
|
| 567 |
+
model.load_state_dict(state_dict, strict=False)
|
| 568 |
+
|
| 569 |
+
return model
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
if __name__ == "__main__":
|
| 573 |
+
|
| 574 |
+
parser = argparse.ArgumentParser()
|
| 575 |
+
parser.add_argument("checkpoint_dir",
|
| 576 |
+
type=str,
|
| 577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 578 |
+
parser.add_argument(
|
| 579 |
+
"output_file",
|
| 580 |
+
type=str,
|
| 581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 582 |
+
parser.add_argument("-t",
|
| 583 |
+
"--tag",
|
| 584 |
+
type=str,
|
| 585 |
+
default=None,
|
| 586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 588 |
+
args = parser.parse_args()
|
| 589 |
+
|
| 590 |
+
debug = args.debug
|
| 591 |
+
|
| 592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/src/tanner/chess-roberta-code/model_configs/chess_roberta.json",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"RobertaForMaskedLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 1,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 768,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 1030,
|
| 17 |
+
"model_type": "roberta",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 16,
|
| 20 |
+
"pad_token_id": 2,
|
| 21 |
+
"position_embedding_type": "absolute",
|
| 22 |
+
"torch_dtype": "bfloat16",
|
| 23 |
+
"transformers_version": "4.42.4",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 64
|
| 27 |
+
}
|
eval_results.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 0.10768528974073271,
|
| 3 |
+
"eval_accuracy": 0.5445640378503339,
|
| 4 |
+
"eval_loss": 2.1201696395874023,
|
| 5 |
+
"eval_runtime": 8310.7479,
|
| 6 |
+
"eval_samples": 562811,
|
| 7 |
+
"eval_samples_per_second": 67.721,
|
| 8 |
+
"eval_steps_per_second": 8.465,
|
| 9 |
+
"perplexity": 8.332550898295501
|
| 10 |
+
}
|
global_step9000/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c279dc883c0d65945b83146c6a1901c3265ee01b398b33b0e234c652ee2d446
|
| 3 |
+
size 1378093111
|
global_step9000/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:78aa760df334a408b1ff1cad6785692d84af6c1c49652716d7cfd0b815914075
|
| 3 |
+
size 140897
|
latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step9000
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"version": "1.0",
|
| 3 |
+
"truncation": null,
|
| 4 |
+
"padding": null,
|
| 5 |
+
"added_tokens": [
|
| 6 |
+
{
|
| 7 |
+
"id": 0,
|
| 8 |
+
"content": "[CLS]",
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"lstrip": false,
|
| 11 |
+
"rstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"special": true
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"id": 1,
|
| 17 |
+
"content": "[SEP]",
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"normalized": false,
|
| 22 |
+
"special": true
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"id": 2,
|
| 26 |
+
"content": "[PAD]",
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"rstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"special": true
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"id": 3,
|
| 35 |
+
"content": "[UNK]",
|
| 36 |
+
"single_word": false,
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"rstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"special": true
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"id": 4,
|
| 44 |
+
"content": "[MASK]",
|
| 45 |
+
"single_word": false,
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"id": 5,
|
| 53 |
+
"content": "[ILLEGAL]",
|
| 54 |
+
"single_word": false,
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"id": 6,
|
| 62 |
+
"content": "~",
|
| 63 |
+
"single_word": false,
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"normalized": false,
|
| 67 |
+
"special": true
|
| 68 |
+
}
|
| 69 |
+
],
|
| 70 |
+
"normalizer": {
|
| 71 |
+
"type": "Sequence",
|
| 72 |
+
"normalizers": [
|
| 73 |
+
{
|
| 74 |
+
"type": "NFD"
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"type": "StripAccents"
|
| 78 |
+
}
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
"pre_tokenizer": {
|
| 82 |
+
"type": "Split",
|
| 83 |
+
"pattern": {
|
| 84 |
+
"String": ""
|
| 85 |
+
},
|
| 86 |
+
"behavior": "Isolated",
|
| 87 |
+
"invert": false
|
| 88 |
+
},
|
| 89 |
+
"post_processor": {
|
| 90 |
+
"type": "RobertaProcessing",
|
| 91 |
+
"sep": [
|
| 92 |
+
"[SEP]",
|
| 93 |
+
1
|
| 94 |
+
],
|
| 95 |
+
"cls": [
|
| 96 |
+
"[CLS]",
|
| 97 |
+
0
|
| 98 |
+
],
|
| 99 |
+
"trim_offsets": false,
|
| 100 |
+
"add_prefix_space": false
|
| 101 |
+
},
|
| 102 |
+
"decoder": {
|
| 103 |
+
"type": "WordPiece",
|
| 104 |
+
"prefix": "##",
|
| 105 |
+
"cleanup": true
|
| 106 |
+
},
|
| 107 |
+
"model": {
|
| 108 |
+
"type": "WordPiece",
|
| 109 |
+
"unk_token": "[UNK]",
|
| 110 |
+
"continuing_subword_prefix": "##",
|
| 111 |
+
"max_input_chars_per_word": 100,
|
| 112 |
+
"vocab": {
|
| 113 |
+
"[CLS]": 0,
|
| 114 |
+
"[SEP]": 1,
|
| 115 |
+
"[PAD]": 2,
|
| 116 |
+
"[UNK]": 3,
|
| 117 |
+
"[MASK]": 4,
|
| 118 |
+
"[ILLEGAL]": 5,
|
| 119 |
+
"~": 6,
|
| 120 |
+
">": 7,
|
| 121 |
+
" ": 8,
|
| 122 |
+
"#": 9,
|
| 123 |
+
"+": 10,
|
| 124 |
+
"-": 11,
|
| 125 |
+
"/": 12,
|
| 126 |
+
"0": 13,
|
| 127 |
+
"1": 14,
|
| 128 |
+
"2": 15,
|
| 129 |
+
"3": 16,
|
| 130 |
+
"4": 17,
|
| 131 |
+
"5": 18,
|
| 132 |
+
"6": 19,
|
| 133 |
+
"7": 20,
|
| 134 |
+
"8": 21,
|
| 135 |
+
"9": 22,
|
| 136 |
+
"=": 23,
|
| 137 |
+
"B": 24,
|
| 138 |
+
"K": 25,
|
| 139 |
+
"N": 26,
|
| 140 |
+
"O": 27,
|
| 141 |
+
"P": 28,
|
| 142 |
+
"Q": 29,
|
| 143 |
+
"R": 30,
|
| 144 |
+
"a": 31,
|
| 145 |
+
"b": 32,
|
| 146 |
+
"c": 33,
|
| 147 |
+
"d": 34,
|
| 148 |
+
"e": 35,
|
| 149 |
+
"f": 36,
|
| 150 |
+
"g": 37,
|
| 151 |
+
"h": 38,
|
| 152 |
+
"k": 39,
|
| 153 |
+
"n": 40,
|
| 154 |
+
"p": 41,
|
| 155 |
+
"q": 42,
|
| 156 |
+
"r": 43,
|
| 157 |
+
"w": 44,
|
| 158 |
+
"x": 45,
|
| 159 |
+
"_": 46
|
| 160 |
+
}
|
| 161 |
+
}
|
| 162 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[CLS]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[SEP]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[PAD]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[UNK]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"5": {
|
| 44 |
+
"content": "[ILLEGAL]",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"6": {
|
| 52 |
+
"content": "~",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
}
|
| 59 |
+
},
|
| 60 |
+
"clean_up_tokenization_spaces": true,
|
| 61 |
+
"cls_token": "[CLS]",
|
| 62 |
+
"mask_token": "[MASK]",
|
| 63 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 64 |
+
"pad_token": "[PAD]",
|
| 65 |
+
"sep_token": "[SEP]",
|
| 66 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
| 67 |
+
"unk_token": "[UNK]"
|
| 68 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 0.10768528974073271,
|
| 3 |
+
"total_flos": 1158274171797504.0,
|
| 4 |
+
"train_loss": 2.120608181423611,
|
| 5 |
+
"train_runtime": 152416.4466,
|
| 6 |
+
"train_samples": 10697834,
|
| 7 |
+
"train_samples_per_second": 7.558,
|
| 8 |
+
"train_steps_per_second": 0.059
|
| 9 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,753 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.10768528974073271,
|
| 5 |
+
"eval_steps": 1000,
|
| 6 |
+
"global_step": 9000,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0011965032193414745,
|
| 13 |
+
"grad_norm": 0.4959045114979248,
|
| 14 |
+
"learning_rate": 0.0002475,
|
| 15 |
+
"loss": 2.2052,
|
| 16 |
+
"step": 100
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.002393006438682949,
|
| 20 |
+
"grad_norm": 0.5957897298098443,
|
| 21 |
+
"learning_rate": 0.0004975,
|
| 22 |
+
"loss": 2.1236,
|
| 23 |
+
"step": 200
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.0035895096580244234,
|
| 27 |
+
"grad_norm": 0.5462649355396835,
|
| 28 |
+
"learning_rate": 0.000494375,
|
| 29 |
+
"loss": 2.123,
|
| 30 |
+
"step": 300
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.004786012877365898,
|
| 34 |
+
"grad_norm": 0.479307539013867,
|
| 35 |
+
"learning_rate": 0.0004886931818181818,
|
| 36 |
+
"loss": 2.1201,
|
| 37 |
+
"step": 400
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.005982516096707372,
|
| 41 |
+
"grad_norm": 0.4702932661295846,
|
| 42 |
+
"learning_rate": 0.0004830113636363637,
|
| 43 |
+
"loss": 2.1218,
|
| 44 |
+
"step": 500
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.007179019316048847,
|
| 48 |
+
"grad_norm": 0.4536330377549505,
|
| 49 |
+
"learning_rate": 0.0004773295454545455,
|
| 50 |
+
"loss": 2.1199,
|
| 51 |
+
"step": 600
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.008375522535390322,
|
| 55 |
+
"grad_norm": 0.30397230580627244,
|
| 56 |
+
"learning_rate": 0.00047164772727272724,
|
| 57 |
+
"loss": 2.122,
|
| 58 |
+
"step": 700
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.009572025754731796,
|
| 62 |
+
"grad_norm": 0.5497084490461644,
|
| 63 |
+
"learning_rate": 0.0004659659090909091,
|
| 64 |
+
"loss": 2.1195,
|
| 65 |
+
"step": 800
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.010768528974073271,
|
| 69 |
+
"grad_norm": 0.31265244740901976,
|
| 70 |
+
"learning_rate": 0.0004602840909090909,
|
| 71 |
+
"loss": 2.1214,
|
| 72 |
+
"step": 900
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.011965032193414745,
|
| 76 |
+
"grad_norm": 0.38764126785839226,
|
| 77 |
+
"learning_rate": 0.0004546022727272727,
|
| 78 |
+
"loss": 2.1201,
|
| 79 |
+
"step": 1000
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.011965032193414745,
|
| 83 |
+
"eval_accuracy": 0.544493419943561,
|
| 84 |
+
"eval_loss": 2.119503974914551,
|
| 85 |
+
"eval_runtime": 14498.4824,
|
| 86 |
+
"eval_samples_per_second": 38.819,
|
| 87 |
+
"eval_steps_per_second": 4.852,
|
| 88 |
+
"step": 1000
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"epoch": 0.01316153541275622,
|
| 92 |
+
"grad_norm": 0.37861216335098746,
|
| 93 |
+
"learning_rate": 0.00044892045454545456,
|
| 94 |
+
"loss": 2.1179,
|
| 95 |
+
"step": 1100
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"epoch": 0.014358038632097694,
|
| 99 |
+
"grad_norm": 0.3244816871915935,
|
| 100 |
+
"learning_rate": 0.00044323863636363636,
|
| 101 |
+
"loss": 2.123,
|
| 102 |
+
"step": 1200
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"epoch": 0.015554541851439169,
|
| 106 |
+
"grad_norm": 0.39134094432184025,
|
| 107 |
+
"learning_rate": 0.0004375568181818182,
|
| 108 |
+
"loss": 2.1192,
|
| 109 |
+
"step": 1300
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"epoch": 0.016751045070780644,
|
| 113 |
+
"grad_norm": 0.31850239786818274,
|
| 114 |
+
"learning_rate": 0.000431875,
|
| 115 |
+
"loss": 2.1195,
|
| 116 |
+
"step": 1400
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"epoch": 0.017947548290122118,
|
| 120 |
+
"grad_norm": 0.3353874978413676,
|
| 121 |
+
"learning_rate": 0.0004261931818181818,
|
| 122 |
+
"loss": 2.1187,
|
| 123 |
+
"step": 1500
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"epoch": 0.01914405150946359,
|
| 127 |
+
"grad_norm": 0.3666941040198008,
|
| 128 |
+
"learning_rate": 0.0004205113636363637,
|
| 129 |
+
"loss": 2.1208,
|
| 130 |
+
"step": 1600
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"epoch": 0.02034055472880507,
|
| 134 |
+
"grad_norm": 0.2874688345676318,
|
| 135 |
+
"learning_rate": 0.0004148295454545455,
|
| 136 |
+
"loss": 2.1182,
|
| 137 |
+
"step": 1700
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"epoch": 0.021537057948146542,
|
| 141 |
+
"grad_norm": 0.28829546768632713,
|
| 142 |
+
"learning_rate": 0.00040914772727272723,
|
| 143 |
+
"loss": 2.1202,
|
| 144 |
+
"step": 1800
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"epoch": 0.022733561167488016,
|
| 148 |
+
"grad_norm": 0.3462480959698083,
|
| 149 |
+
"learning_rate": 0.0004034659090909091,
|
| 150 |
+
"loss": 2.1185,
|
| 151 |
+
"step": 1900
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"epoch": 0.02393006438682949,
|
| 155 |
+
"grad_norm": 0.32146933893861385,
|
| 156 |
+
"learning_rate": 0.0003977840909090909,
|
| 157 |
+
"loss": 2.1222,
|
| 158 |
+
"step": 2000
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 0.02393006438682949,
|
| 162 |
+
"eval_accuracy": 0.5445787464391751,
|
| 163 |
+
"eval_loss": 2.1198692321777344,
|
| 164 |
+
"eval_runtime": 8324.5002,
|
| 165 |
+
"eval_samples_per_second": 67.609,
|
| 166 |
+
"eval_steps_per_second": 8.451,
|
| 167 |
+
"step": 2000
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"epoch": 0.025126567606170967,
|
| 171 |
+
"grad_norm": 0.3383598719071586,
|
| 172 |
+
"learning_rate": 0.0003921022727272727,
|
| 173 |
+
"loss": 2.1181,
|
| 174 |
+
"step": 2100
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"epoch": 0.02632307082551244,
|
| 178 |
+
"grad_norm": 0.23870777428521156,
|
| 179 |
+
"learning_rate": 0.00038642045454545456,
|
| 180 |
+
"loss": 2.1201,
|
| 181 |
+
"step": 2200
|
| 182 |
+
},
|
| 183 |
+
{
|
| 184 |
+
"epoch": 0.027519574044853914,
|
| 185 |
+
"grad_norm": 0.26512869204988454,
|
| 186 |
+
"learning_rate": 0.00038073863636363636,
|
| 187 |
+
"loss": 2.1181,
|
| 188 |
+
"step": 2300
|
| 189 |
+
},
|
| 190 |
+
{
|
| 191 |
+
"epoch": 0.028716077264195387,
|
| 192 |
+
"grad_norm": 0.38291085278916004,
|
| 193 |
+
"learning_rate": 0.0003750568181818182,
|
| 194 |
+
"loss": 2.1214,
|
| 195 |
+
"step": 2400
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"epoch": 0.029912580483536864,
|
| 199 |
+
"grad_norm": 0.2922237601337328,
|
| 200 |
+
"learning_rate": 0.000369375,
|
| 201 |
+
"loss": 2.1178,
|
| 202 |
+
"step": 2500
|
| 203 |
+
},
|
| 204 |
+
{
|
| 205 |
+
"epoch": 0.031109083702878338,
|
| 206 |
+
"grad_norm": 0.28007930758064187,
|
| 207 |
+
"learning_rate": 0.0003636931818181818,
|
| 208 |
+
"loss": 2.1174,
|
| 209 |
+
"step": 2600
|
| 210 |
+
},
|
| 211 |
+
{
|
| 212 |
+
"epoch": 0.03230558692221981,
|
| 213 |
+
"grad_norm": 0.37650924862735796,
|
| 214 |
+
"learning_rate": 0.0003580113636363637,
|
| 215 |
+
"loss": 2.1202,
|
| 216 |
+
"step": 2700
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"epoch": 0.03350209014156129,
|
| 220 |
+
"grad_norm": 0.32087380641998864,
|
| 221 |
+
"learning_rate": 0.0003523295454545455,
|
| 222 |
+
"loss": 2.1205,
|
| 223 |
+
"step": 2800
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"epoch": 0.03469859336090276,
|
| 227 |
+
"grad_norm": 0.3065591070785156,
|
| 228 |
+
"learning_rate": 0.00034664772727272723,
|
| 229 |
+
"loss": 2.1219,
|
| 230 |
+
"step": 2900
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 0.035895096580244236,
|
| 234 |
+
"grad_norm": 0.4973396205464692,
|
| 235 |
+
"learning_rate": 0.0003409659090909091,
|
| 236 |
+
"loss": 2.1179,
|
| 237 |
+
"step": 3000
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"epoch": 0.035895096580244236,
|
| 241 |
+
"eval_accuracy": 0.5444474125165799,
|
| 242 |
+
"eval_loss": 2.119871139526367,
|
| 243 |
+
"eval_runtime": 14003.3046,
|
| 244 |
+
"eval_samples_per_second": 40.191,
|
| 245 |
+
"eval_steps_per_second": 5.024,
|
| 246 |
+
"step": 3000
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"epoch": 0.03709159979958571,
|
| 250 |
+
"grad_norm": 0.36054926026192535,
|
| 251 |
+
"learning_rate": 0.0003352840909090909,
|
| 252 |
+
"loss": 2.1207,
|
| 253 |
+
"step": 3100
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"epoch": 0.03828810301892718,
|
| 257 |
+
"grad_norm": 0.2609329016792503,
|
| 258 |
+
"learning_rate": 0.0003296022727272727,
|
| 259 |
+
"loss": 2.1187,
|
| 260 |
+
"step": 3200
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"epoch": 0.03948460623826866,
|
| 264 |
+
"grad_norm": 0.4377934640382202,
|
| 265 |
+
"learning_rate": 0.00032392045454545455,
|
| 266 |
+
"loss": 2.1183,
|
| 267 |
+
"step": 3300
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"epoch": 0.04068110945761014,
|
| 271 |
+
"grad_norm": 0.30040663333811507,
|
| 272 |
+
"learning_rate": 0.00031823863636363636,
|
| 273 |
+
"loss": 2.1207,
|
| 274 |
+
"step": 3400
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"epoch": 0.04187761267695161,
|
| 278 |
+
"grad_norm": 0.4058031327319446,
|
| 279 |
+
"learning_rate": 0.0003125568181818182,
|
| 280 |
+
"loss": 2.1175,
|
| 281 |
+
"step": 3500
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"epoch": 0.043074115896293085,
|
| 285 |
+
"grad_norm": 0.2221276357895751,
|
| 286 |
+
"learning_rate": 0.000306875,
|
| 287 |
+
"loss": 2.1191,
|
| 288 |
+
"step": 3600
|
| 289 |
+
},
|
| 290 |
+
{
|
| 291 |
+
"epoch": 0.044270619115634555,
|
| 292 |
+
"grad_norm": 0.2171065800667589,
|
| 293 |
+
"learning_rate": 0.0003011931818181818,
|
| 294 |
+
"loss": 2.1222,
|
| 295 |
+
"step": 3700
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"epoch": 0.04546712233497603,
|
| 299 |
+
"grad_norm": 0.24009215814108797,
|
| 300 |
+
"learning_rate": 0.0002955113636363637,
|
| 301 |
+
"loss": 2.1206,
|
| 302 |
+
"step": 3800
|
| 303 |
+
},
|
| 304 |
+
{
|
| 305 |
+
"epoch": 0.04666362555431751,
|
| 306 |
+
"grad_norm": 0.23325080103491874,
|
| 307 |
+
"learning_rate": 0.0002898295454545455,
|
| 308 |
+
"loss": 2.1219,
|
| 309 |
+
"step": 3900
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"epoch": 0.04786012877365898,
|
| 313 |
+
"grad_norm": 0.38496953527087835,
|
| 314 |
+
"learning_rate": 0.00028414772727272723,
|
| 315 |
+
"loss": 2.1215,
|
| 316 |
+
"step": 4000
|
| 317 |
+
},
|
| 318 |
+
{
|
| 319 |
+
"epoch": 0.04786012877365898,
|
| 320 |
+
"eval_accuracy": 0.5445841718354034,
|
| 321 |
+
"eval_loss": 2.1186254024505615,
|
| 322 |
+
"eval_runtime": 14020.6018,
|
| 323 |
+
"eval_samples_per_second": 40.142,
|
| 324 |
+
"eval_steps_per_second": 5.018,
|
| 325 |
+
"step": 4000
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"epoch": 0.049056631993000456,
|
| 329 |
+
"grad_norm": 0.2049052054281515,
|
| 330 |
+
"learning_rate": 0.0002784659090909091,
|
| 331 |
+
"loss": 2.1184,
|
| 332 |
+
"step": 4100
|
| 333 |
+
},
|
| 334 |
+
{
|
| 335 |
+
"epoch": 0.05025313521234193,
|
| 336 |
+
"grad_norm": 0.2458322734082573,
|
| 337 |
+
"learning_rate": 0.0002727840909090909,
|
| 338 |
+
"loss": 2.1196,
|
| 339 |
+
"step": 4200
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.0514496384316834,
|
| 343 |
+
"grad_norm": 0.1995524240389471,
|
| 344 |
+
"learning_rate": 0.0002671022727272727,
|
| 345 |
+
"loss": 2.1188,
|
| 346 |
+
"step": 4300
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"epoch": 0.05264614165102488,
|
| 350 |
+
"grad_norm": 0.25790141869897587,
|
| 351 |
+
"learning_rate": 0.00026142045454545455,
|
| 352 |
+
"loss": 2.1184,
|
| 353 |
+
"step": 4400
|
| 354 |
+
},
|
| 355 |
+
{
|
| 356 |
+
"epoch": 0.05384264487036636,
|
| 357 |
+
"grad_norm": 0.28730537897175445,
|
| 358 |
+
"learning_rate": 0.00025573863636363636,
|
| 359 |
+
"loss": 2.1202,
|
| 360 |
+
"step": 4500
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 0.05503914808970783,
|
| 364 |
+
"grad_norm": 0.32493426349642957,
|
| 365 |
+
"learning_rate": 0.0002500568181818182,
|
| 366 |
+
"loss": 2.118,
|
| 367 |
+
"step": 4600
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 0.056235651309049305,
|
| 371 |
+
"grad_norm": 0.29535898171610375,
|
| 372 |
+
"learning_rate": 0.000244375,
|
| 373 |
+
"loss": 2.1206,
|
| 374 |
+
"step": 4700
|
| 375 |
+
},
|
| 376 |
+
{
|
| 377 |
+
"epoch": 0.057432154528390775,
|
| 378 |
+
"grad_norm": 0.22683681078434978,
|
| 379 |
+
"learning_rate": 0.00023869318181818182,
|
| 380 |
+
"loss": 2.117,
|
| 381 |
+
"step": 4800
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.05862865774773225,
|
| 385 |
+
"grad_norm": 0.3053349551242291,
|
| 386 |
+
"learning_rate": 0.00023301136363636362,
|
| 387 |
+
"loss": 2.1179,
|
| 388 |
+
"step": 4900
|
| 389 |
+
},
|
| 390 |
+
{
|
| 391 |
+
"epoch": 0.05982516096707373,
|
| 392 |
+
"grad_norm": 0.1948263427424577,
|
| 393 |
+
"learning_rate": 0.00022732954545454545,
|
| 394 |
+
"loss": 2.1176,
|
| 395 |
+
"step": 5000
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"epoch": 0.05982516096707373,
|
| 399 |
+
"eval_accuracy": 0.5445371572840895,
|
| 400 |
+
"eval_loss": 2.119377613067627,
|
| 401 |
+
"eval_runtime": 12119.2615,
|
| 402 |
+
"eval_samples_per_second": 46.439,
|
| 403 |
+
"eval_steps_per_second": 5.805,
|
| 404 |
+
"step": 5000
|
| 405 |
+
},
|
| 406 |
+
{
|
| 407 |
+
"epoch": 0.0610216641864152,
|
| 408 |
+
"grad_norm": 0.29200116272624654,
|
| 409 |
+
"learning_rate": 0.00022164772727272728,
|
| 410 |
+
"loss": 2.1192,
|
| 411 |
+
"step": 5100
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"epoch": 0.062218167405756676,
|
| 415 |
+
"grad_norm": 0.25843746999947237,
|
| 416 |
+
"learning_rate": 0.00021596590909090912,
|
| 417 |
+
"loss": 2.1193,
|
| 418 |
+
"step": 5200
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"epoch": 0.06341467062509815,
|
| 422 |
+
"grad_norm": 0.23460770073478823,
|
| 423 |
+
"learning_rate": 0.00021028409090909092,
|
| 424 |
+
"loss": 2.1196,
|
| 425 |
+
"step": 5300
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"epoch": 0.06461117384443962,
|
| 429 |
+
"grad_norm": 0.2143373312023261,
|
| 430 |
+
"learning_rate": 0.00020460227272727272,
|
| 431 |
+
"loss": 2.1194,
|
| 432 |
+
"step": 5400
|
| 433 |
+
},
|
| 434 |
+
{
|
| 435 |
+
"epoch": 0.0658076770637811,
|
| 436 |
+
"grad_norm": 0.2738612197646279,
|
| 437 |
+
"learning_rate": 0.00019892045454545455,
|
| 438 |
+
"loss": 2.1215,
|
| 439 |
+
"step": 5500
|
| 440 |
+
},
|
| 441 |
+
{
|
| 442 |
+
"epoch": 0.06700418028312258,
|
| 443 |
+
"grad_norm": 0.22066659063762534,
|
| 444 |
+
"learning_rate": 0.00019323863636363636,
|
| 445 |
+
"loss": 2.1185,
|
| 446 |
+
"step": 5600
|
| 447 |
+
},
|
| 448 |
+
{
|
| 449 |
+
"epoch": 0.06820068350246405,
|
| 450 |
+
"grad_norm": 0.2649683554628019,
|
| 451 |
+
"learning_rate": 0.00018755681818181819,
|
| 452 |
+
"loss": 2.117,
|
| 453 |
+
"step": 5700
|
| 454 |
+
},
|
| 455 |
+
{
|
| 456 |
+
"epoch": 0.06939718672180552,
|
| 457 |
+
"grad_norm": 0.36660584937802804,
|
| 458 |
+
"learning_rate": 0.00018187500000000002,
|
| 459 |
+
"loss": 2.1179,
|
| 460 |
+
"step": 5800
|
| 461 |
+
},
|
| 462 |
+
{
|
| 463 |
+
"epoch": 0.070593689941147,
|
| 464 |
+
"grad_norm": 0.2683451066571477,
|
| 465 |
+
"learning_rate": 0.00017619318181818182,
|
| 466 |
+
"loss": 2.1201,
|
| 467 |
+
"step": 5900
|
| 468 |
+
},
|
| 469 |
+
{
|
| 470 |
+
"epoch": 0.07179019316048847,
|
| 471 |
+
"grad_norm": 0.1943497599849036,
|
| 472 |
+
"learning_rate": 0.00017051136363636362,
|
| 473 |
+
"loss": 2.1189,
|
| 474 |
+
"step": 6000
|
| 475 |
+
},
|
| 476 |
+
{
|
| 477 |
+
"epoch": 0.07179019316048847,
|
| 478 |
+
"eval_accuracy": 0.5445187284838173,
|
| 479 |
+
"eval_loss": 2.1193103790283203,
|
| 480 |
+
"eval_runtime": 8292.7883,
|
| 481 |
+
"eval_samples_per_second": 67.868,
|
| 482 |
+
"eval_steps_per_second": 8.484,
|
| 483 |
+
"step": 6000
|
| 484 |
+
},
|
| 485 |
+
{
|
| 486 |
+
"epoch": 0.07298669637982995,
|
| 487 |
+
"grad_norm": 0.2698036045598882,
|
| 488 |
+
"learning_rate": 0.00016482954545454545,
|
| 489 |
+
"loss": 2.1196,
|
| 490 |
+
"step": 6100
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"epoch": 0.07418319959917143,
|
| 494 |
+
"grad_norm": 0.22553506284296373,
|
| 495 |
+
"learning_rate": 0.00015914772727272728,
|
| 496 |
+
"loss": 2.1195,
|
| 497 |
+
"step": 6200
|
| 498 |
+
},
|
| 499 |
+
{
|
| 500 |
+
"epoch": 0.07537970281851289,
|
| 501 |
+
"grad_norm": 0.21994704816511382,
|
| 502 |
+
"learning_rate": 0.00015346590909090911,
|
| 503 |
+
"loss": 2.119,
|
| 504 |
+
"step": 6300
|
| 505 |
+
},
|
| 506 |
+
{
|
| 507 |
+
"epoch": 0.07657620603785437,
|
| 508 |
+
"grad_norm": 0.20519656139775935,
|
| 509 |
+
"learning_rate": 0.00014778409090909092,
|
| 510 |
+
"loss": 2.1184,
|
| 511 |
+
"step": 6400
|
| 512 |
+
},
|
| 513 |
+
{
|
| 514 |
+
"epoch": 0.07777270925719584,
|
| 515 |
+
"grad_norm": 0.3246545352385696,
|
| 516 |
+
"learning_rate": 0.00014210227272727272,
|
| 517 |
+
"loss": 2.1181,
|
| 518 |
+
"step": 6500
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"epoch": 0.07896921247653732,
|
| 522 |
+
"grad_norm": 0.25066878379158264,
|
| 523 |
+
"learning_rate": 0.00013642045454545455,
|
| 524 |
+
"loss": 2.1196,
|
| 525 |
+
"step": 6600
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"epoch": 0.0801657156958788,
|
| 529 |
+
"grad_norm": 0.24038943677884456,
|
| 530 |
+
"learning_rate": 0.00013073863636363635,
|
| 531 |
+
"loss": 2.118,
|
| 532 |
+
"step": 6700
|
| 533 |
+
},
|
| 534 |
+
{
|
| 535 |
+
"epoch": 0.08136221891522027,
|
| 536 |
+
"grad_norm": 0.21920956719889126,
|
| 537 |
+
"learning_rate": 0.00012505681818181818,
|
| 538 |
+
"loss": 2.1188,
|
| 539 |
+
"step": 6800
|
| 540 |
+
},
|
| 541 |
+
{
|
| 542 |
+
"epoch": 0.08255872213456174,
|
| 543 |
+
"grad_norm": 0.2013303206012115,
|
| 544 |
+
"learning_rate": 0.000119375,
|
| 545 |
+
"loss": 2.1201,
|
| 546 |
+
"step": 6900
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"epoch": 0.08375522535390321,
|
| 550 |
+
"grad_norm": 0.17865191614703033,
|
| 551 |
+
"learning_rate": 0.00011369318181818182,
|
| 552 |
+
"loss": 2.1184,
|
| 553 |
+
"step": 7000
|
| 554 |
+
},
|
| 555 |
+
{
|
| 556 |
+
"epoch": 0.08375522535390321,
|
| 557 |
+
"eval_accuracy": 0.5445597073721878,
|
| 558 |
+
"eval_loss": 2.119361400604248,
|
| 559 |
+
"eval_runtime": 8286.5111,
|
| 560 |
+
"eval_samples_per_second": 67.919,
|
| 561 |
+
"eval_steps_per_second": 8.49,
|
| 562 |
+
"step": 7000
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 0.08495172857324469,
|
| 566 |
+
"grad_norm": 0.2242220420058521,
|
| 567 |
+
"learning_rate": 0.00010801136363636365,
|
| 568 |
+
"loss": 2.1206,
|
| 569 |
+
"step": 7100
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 0.08614823179258617,
|
| 573 |
+
"grad_norm": 0.2361418777976826,
|
| 574 |
+
"learning_rate": 0.00010232954545454545,
|
| 575 |
+
"loss": 2.1223,
|
| 576 |
+
"step": 7200
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 0.08734473501192765,
|
| 580 |
+
"grad_norm": 0.2251269866404104,
|
| 581 |
+
"learning_rate": 9.664772727272728e-05,
|
| 582 |
+
"loss": 2.1188,
|
| 583 |
+
"step": 7300
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 0.08854123823126911,
|
| 587 |
+
"grad_norm": 0.2650506829716411,
|
| 588 |
+
"learning_rate": 9.09659090909091e-05,
|
| 589 |
+
"loss": 2.1204,
|
| 590 |
+
"step": 7400
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 0.08973774145061059,
|
| 594 |
+
"grad_norm": 0.2960065490838976,
|
| 595 |
+
"learning_rate": 8.52840909090909e-05,
|
| 596 |
+
"loss": 2.1166,
|
| 597 |
+
"step": 7500
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.09093424466995206,
|
| 601 |
+
"grad_norm": 0.2513130989479583,
|
| 602 |
+
"learning_rate": 7.960227272727273e-05,
|
| 603 |
+
"loss": 2.1191,
|
| 604 |
+
"step": 7600
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 0.09213074788929354,
|
| 608 |
+
"grad_norm": 0.23550646079468862,
|
| 609 |
+
"learning_rate": 7.392045454545454e-05,
|
| 610 |
+
"loss": 2.1207,
|
| 611 |
+
"step": 7700
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 0.09332725110863502,
|
| 615 |
+
"grad_norm": 0.20425354689020786,
|
| 616 |
+
"learning_rate": 6.823863636363637e-05,
|
| 617 |
+
"loss": 2.1196,
|
| 618 |
+
"step": 7800
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 0.0945237543279765,
|
| 622 |
+
"grad_norm": 0.27000259463730636,
|
| 623 |
+
"learning_rate": 6.255681818181818e-05,
|
| 624 |
+
"loss": 2.1208,
|
| 625 |
+
"step": 7900
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 0.09572025754731796,
|
| 629 |
+
"grad_norm": 0.23680396479288449,
|
| 630 |
+
"learning_rate": 5.6875e-05,
|
| 631 |
+
"loss": 2.119,
|
| 632 |
+
"step": 8000
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 0.09572025754731796,
|
| 636 |
+
"eval_accuracy": 0.54459064011865,
|
| 637 |
+
"eval_loss": 2.1189937591552734,
|
| 638 |
+
"eval_runtime": 8311.026,
|
| 639 |
+
"eval_samples_per_second": 67.719,
|
| 640 |
+
"eval_steps_per_second": 8.465,
|
| 641 |
+
"step": 8000
|
| 642 |
+
},
|
| 643 |
+
{
|
| 644 |
+
"epoch": 0.09691676076665943,
|
| 645 |
+
"grad_norm": 0.2356498019575465,
|
| 646 |
+
"learning_rate": 5.119318181818182e-05,
|
| 647 |
+
"loss": 2.117,
|
| 648 |
+
"step": 8100
|
| 649 |
+
},
|
| 650 |
+
{
|
| 651 |
+
"epoch": 0.09811326398600091,
|
| 652 |
+
"grad_norm": 0.2452139474957504,
|
| 653 |
+
"learning_rate": 4.5511363636363634e-05,
|
| 654 |
+
"loss": 2.1191,
|
| 655 |
+
"step": 8200
|
| 656 |
+
},
|
| 657 |
+
{
|
| 658 |
+
"epoch": 0.09930976720534239,
|
| 659 |
+
"grad_norm": 0.2570095681654715,
|
| 660 |
+
"learning_rate": 3.982954545454546e-05,
|
| 661 |
+
"loss": 2.1182,
|
| 662 |
+
"step": 8300
|
| 663 |
+
},
|
| 664 |
+
{
|
| 665 |
+
"epoch": 0.10050627042468387,
|
| 666 |
+
"grad_norm": 0.2928491115350356,
|
| 667 |
+
"learning_rate": 3.4147727272727274e-05,
|
| 668 |
+
"loss": 2.119,
|
| 669 |
+
"step": 8400
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"epoch": 0.10170277364402533,
|
| 673 |
+
"grad_norm": 0.2534123898084123,
|
| 674 |
+
"learning_rate": 2.846590909090909e-05,
|
| 675 |
+
"loss": 2.1227,
|
| 676 |
+
"step": 8500
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"epoch": 0.1028992768633668,
|
| 680 |
+
"grad_norm": 0.29376855634271687,
|
| 681 |
+
"learning_rate": 2.278409090909091e-05,
|
| 682 |
+
"loss": 2.1198,
|
| 683 |
+
"step": 8600
|
| 684 |
+
},
|
| 685 |
+
{
|
| 686 |
+
"epoch": 0.10409578008270828,
|
| 687 |
+
"grad_norm": 0.3837678078363553,
|
| 688 |
+
"learning_rate": 1.7102272727272728e-05,
|
| 689 |
+
"loss": 2.1206,
|
| 690 |
+
"step": 8700
|
| 691 |
+
},
|
| 692 |
+
{
|
| 693 |
+
"epoch": 0.10529228330204976,
|
| 694 |
+
"grad_norm": 0.24342629903402227,
|
| 695 |
+
"learning_rate": 1.1420454545454547e-05,
|
| 696 |
+
"loss": 2.12,
|
| 697 |
+
"step": 8800
|
| 698 |
+
},
|
| 699 |
+
{
|
| 700 |
+
"epoch": 0.10648878652139124,
|
| 701 |
+
"grad_norm": 0.18367698561178294,
|
| 702 |
+
"learning_rate": 5.7386363636363634e-06,
|
| 703 |
+
"loss": 2.1197,
|
| 704 |
+
"step": 8900
|
| 705 |
+
},
|
| 706 |
+
{
|
| 707 |
+
"epoch": 0.10768528974073271,
|
| 708 |
+
"grad_norm": 0.27943165556655064,
|
| 709 |
+
"learning_rate": 5.681818181818182e-08,
|
| 710 |
+
"loss": 2.1237,
|
| 711 |
+
"step": 9000
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"epoch": 0.10768528974073271,
|
| 715 |
+
"eval_accuracy": 0.544624927857023,
|
| 716 |
+
"eval_loss": 2.12009596824646,
|
| 717 |
+
"eval_runtime": 8298.0507,
|
| 718 |
+
"eval_samples_per_second": 67.824,
|
| 719 |
+
"eval_steps_per_second": 8.478,
|
| 720 |
+
"step": 9000
|
| 721 |
+
},
|
| 722 |
+
{
|
| 723 |
+
"epoch": 0.10768528974073271,
|
| 724 |
+
"step": 9000,
|
| 725 |
+
"total_flos": 1158274171797504.0,
|
| 726 |
+
"train_loss": 2.120608181423611,
|
| 727 |
+
"train_runtime": 152416.4466,
|
| 728 |
+
"train_samples_per_second": 7.558,
|
| 729 |
+
"train_steps_per_second": 0.059
|
| 730 |
+
}
|
| 731 |
+
],
|
| 732 |
+
"logging_steps": 100,
|
| 733 |
+
"max_steps": 9000,
|
| 734 |
+
"num_input_tokens_seen": 0,
|
| 735 |
+
"num_train_epochs": 1,
|
| 736 |
+
"save_steps": 450,
|
| 737 |
+
"stateful_callbacks": {
|
| 738 |
+
"TrainerControl": {
|
| 739 |
+
"args": {
|
| 740 |
+
"should_epoch_stop": false,
|
| 741 |
+
"should_evaluate": false,
|
| 742 |
+
"should_log": false,
|
| 743 |
+
"should_save": true,
|
| 744 |
+
"should_training_stop": true
|
| 745 |
+
},
|
| 746 |
+
"attributes": {}
|
| 747 |
+
}
|
| 748 |
+
},
|
| 749 |
+
"total_flos": 1158274171797504.0,
|
| 750 |
+
"train_batch_size": 8,
|
| 751 |
+
"trial_name": null,
|
| 752 |
+
"trial_params": null
|
| 753 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cef530fb4e1d2e9334e368a9556d9eb4c37e254304636d9458c4b52855ca4d03
|
| 3 |
+
size 6459
|
zero_to_fp32.py
ADDED
|
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
+
elif zero_stage == 3:
|
| 216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
+
|
| 226 |
+
if debug:
|
| 227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
+
|
| 230 |
+
wanted_params = len(frozen_param_shapes)
|
| 231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
+
|
| 236 |
+
total_params = 0
|
| 237 |
+
total_numel = 0
|
| 238 |
+
for name, shape in frozen_param_shapes.items():
|
| 239 |
+
total_params += 1
|
| 240 |
+
unpartitioned_numel = shape.numel()
|
| 241 |
+
total_numel += unpartitioned_numel
|
| 242 |
+
|
| 243 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
+
|
| 245 |
+
if debug:
|
| 246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
+
|
| 248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _has_callable(obj, fn):
|
| 252 |
+
attr = getattr(obj, fn, None)
|
| 253 |
+
return callable(attr)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 257 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 258 |
+
|
| 259 |
+
# Reconstruction protocol:
|
| 260 |
+
#
|
| 261 |
+
# XXX: document this
|
| 262 |
+
|
| 263 |
+
if debug:
|
| 264 |
+
for i in range(world_size):
|
| 265 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 267 |
+
|
| 268 |
+
# XXX: memory usage doubles here (zero2)
|
| 269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 270 |
+
merged_single_partition_of_fp32_groups = []
|
| 271 |
+
for i in range(num_param_groups):
|
| 272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 275 |
+
avail_numel = sum(
|
| 276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 277 |
+
|
| 278 |
+
if debug:
|
| 279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 281 |
+
# not asserting if there is a mismatch due to possible padding
|
| 282 |
+
print(f"Have {avail_numel} numels to process.")
|
| 283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 284 |
+
|
| 285 |
+
# params
|
| 286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 287 |
+
# out-of-core computing solution
|
| 288 |
+
total_numel = 0
|
| 289 |
+
total_params = 0
|
| 290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 291 |
+
offset = 0
|
| 292 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 293 |
+
for name, shape in shapes.items():
|
| 294 |
+
|
| 295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 296 |
+
total_numel += unpartitioned_numel
|
| 297 |
+
total_params += 1
|
| 298 |
+
|
| 299 |
+
if debug:
|
| 300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 302 |
+
offset += unpartitioned_numel
|
| 303 |
+
|
| 304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 308 |
+
align_to = 2 * world_size
|
| 309 |
+
|
| 310 |
+
def zero2_align(x):
|
| 311 |
+
return align_to * math.ceil(x / align_to)
|
| 312 |
+
|
| 313 |
+
if debug:
|
| 314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 315 |
+
|
| 316 |
+
offset = zero2_align(offset)
|
| 317 |
+
avail_numel = zero2_align(avail_numel)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
# Sanity check
|
| 323 |
+
if offset != avail_numel:
|
| 324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 325 |
+
|
| 326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 330 |
+
state_dict = OrderedDict()
|
| 331 |
+
|
| 332 |
+
# buffers
|
| 333 |
+
buffers = zero_model_states[0].buffers
|
| 334 |
+
state_dict.update(buffers)
|
| 335 |
+
if debug:
|
| 336 |
+
print(f"added {len(buffers)} buffers")
|
| 337 |
+
|
| 338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 339 |
+
|
| 340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 341 |
+
|
| 342 |
+
# recover shared parameters
|
| 343 |
+
for pair in zero_model_states[0].shared_params:
|
| 344 |
+
if pair[1] in state_dict:
|
| 345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 346 |
+
|
| 347 |
+
return state_dict
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 351 |
+
remainder = unpartitioned_numel % world_size
|
| 352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 354 |
+
return partitioned_numel, padding_numel
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 359 |
+
return
|
| 360 |
+
|
| 361 |
+
if debug:
|
| 362 |
+
for i in range(world_size):
|
| 363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 365 |
+
|
| 366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 367 |
+
wanted_params = len(frozen_param_shapes)
|
| 368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 372 |
+
|
| 373 |
+
total_params = 0
|
| 374 |
+
total_numel = 0
|
| 375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 376 |
+
total_params += 1
|
| 377 |
+
unpartitioned_numel = shape.numel()
|
| 378 |
+
total_numel += unpartitioned_numel
|
| 379 |
+
|
| 380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 382 |
+
|
| 383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 384 |
+
|
| 385 |
+
if debug:
|
| 386 |
+
print(
|
| 387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 394 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 398 |
+
|
| 399 |
+
# merge list of dicts, preserving order
|
| 400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 401 |
+
|
| 402 |
+
if debug:
|
| 403 |
+
for i in range(world_size):
|
| 404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 405 |
+
|
| 406 |
+
wanted_params = len(param_shapes)
|
| 407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 408 |
+
# not asserting if there is a mismatch due to possible padding
|
| 409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 412 |
+
|
| 413 |
+
# params
|
| 414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 415 |
+
# out-of-core computing solution
|
| 416 |
+
offset = 0
|
| 417 |
+
total_numel = 0
|
| 418 |
+
total_params = 0
|
| 419 |
+
for name, shape in param_shapes.items():
|
| 420 |
+
|
| 421 |
+
unpartitioned_numel = shape.numel()
|
| 422 |
+
total_numel += unpartitioned_numel
|
| 423 |
+
total_params += 1
|
| 424 |
+
|
| 425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 426 |
+
|
| 427 |
+
if debug:
|
| 428 |
+
print(
|
| 429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
# XXX: memory usage doubles here
|
| 433 |
+
state_dict[name] = torch.cat(
|
| 434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 436 |
+
offset += partitioned_numel
|
| 437 |
+
|
| 438 |
+
offset *= world_size
|
| 439 |
+
|
| 440 |
+
# Sanity check
|
| 441 |
+
if offset != avail_numel:
|
| 442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 443 |
+
|
| 444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 448 |
+
state_dict = OrderedDict()
|
| 449 |
+
|
| 450 |
+
# buffers
|
| 451 |
+
buffers = zero_model_states[0].buffers
|
| 452 |
+
state_dict.update(buffers)
|
| 453 |
+
if debug:
|
| 454 |
+
print(f"added {len(buffers)} buffers")
|
| 455 |
+
|
| 456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 457 |
+
|
| 458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 459 |
+
|
| 460 |
+
# recover shared parameters
|
| 461 |
+
for pair in zero_model_states[0].shared_params:
|
| 462 |
+
if pair[1] in state_dict:
|
| 463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 464 |
+
|
| 465 |
+
return state_dict
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 469 |
+
"""
|
| 470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 472 |
+
via a model hub.
|
| 473 |
+
|
| 474 |
+
Args:
|
| 475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 477 |
+
|
| 478 |
+
Returns:
|
| 479 |
+
- pytorch ``state_dict``
|
| 480 |
+
|
| 481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 483 |
+
the checkpoint.
|
| 484 |
+
|
| 485 |
+
A typical usage might be ::
|
| 486 |
+
|
| 487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 488 |
+
# do the training and checkpoint saving
|
| 489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 490 |
+
model = model.cpu() # move to cpu
|
| 491 |
+
model.load_state_dict(state_dict)
|
| 492 |
+
# submit to model hub or save the model to share with others
|
| 493 |
+
|
| 494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 497 |
+
|
| 498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 499 |
+
|
| 500 |
+
"""
|
| 501 |
+
if tag is None:
|
| 502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 503 |
+
if os.path.isfile(latest_path):
|
| 504 |
+
with open(latest_path, 'r') as fd:
|
| 505 |
+
tag = fd.read().strip()
|
| 506 |
+
else:
|
| 507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 508 |
+
|
| 509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 510 |
+
|
| 511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 513 |
+
|
| 514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 518 |
+
"""
|
| 519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 521 |
+
|
| 522 |
+
Args:
|
| 523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 526 |
+
"""
|
| 527 |
+
|
| 528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 530 |
+
torch.save(state_dict, output_file)
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 534 |
+
"""
|
| 535 |
+
1. Put the provided model to cpu
|
| 536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 537 |
+
3. Load it into the provided model
|
| 538 |
+
|
| 539 |
+
Args:
|
| 540 |
+
- ``model``: the model object to update
|
| 541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 543 |
+
|
| 544 |
+
Returns:
|
| 545 |
+
- ``model`: modified model
|
| 546 |
+
|
| 547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 549 |
+
conveniently placed for you in the checkpoint folder.
|
| 550 |
+
|
| 551 |
+
A typical usage might be ::
|
| 552 |
+
|
| 553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 555 |
+
# submit to model hub or save the model to share with others
|
| 556 |
+
|
| 557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 560 |
+
|
| 561 |
+
"""
|
| 562 |
+
logger.info(f"Extracting fp32 weights")
|
| 563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 564 |
+
|
| 565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 566 |
+
model = model.cpu()
|
| 567 |
+
model.load_state_dict(state_dict, strict=False)
|
| 568 |
+
|
| 569 |
+
return model
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
if __name__ == "__main__":
|
| 573 |
+
|
| 574 |
+
parser = argparse.ArgumentParser()
|
| 575 |
+
parser.add_argument("checkpoint_dir",
|
| 576 |
+
type=str,
|
| 577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 578 |
+
parser.add_argument(
|
| 579 |
+
"output_file",
|
| 580 |
+
type=str,
|
| 581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 582 |
+
parser.add_argument("-t",
|
| 583 |
+
"--tag",
|
| 584 |
+
type=str,
|
| 585 |
+
default=None,
|
| 586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 588 |
+
args = parser.parse_args()
|
| 589 |
+
|
| 590 |
+
debug = args.debug
|
| 591 |
+
|
| 592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|