TaniaSF commited on
Commit
ecec7c4
1 Parent(s): 2790fc8

First Save

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 239.27 +/- 43.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b6dd3d0da20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b6dd3d0dab0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b6dd3d0db40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b6dd3d0dbd0>", "_build": "<function ActorCriticPolicy._build at 0x7b6dd3d0dc60>", "forward": "<function ActorCriticPolicy.forward at 0x7b6dd3d0dcf0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b6dd3d0dd80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b6dd3d0de10>", "_predict": "<function ActorCriticPolicy._predict at 0x7b6dd3d0dea0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b6dd3d0df30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b6dd3d0dfc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b6dd3d0e050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b6dd4c4b480>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713448828237285192, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMz1DjYbTM/6jsWvRYap77sKxK82NpqvAAAAAAAAAAATTVhPhyTc7zr8bm6K8bROJPv0L1+2uE5AACAPwAAgD+zS3w9Q4C1PyK9PD81i1u9v1mxvEsXtT0AAAAAAAAAAE3Rgz1bZv09FRjmPN+oWb5OCiY9Te0yvQAAAAAAAAAA+hEsvvZIRbwhvjQ7RqCKOQ5Bsz12KGK6AACAPwAAgD8zEQ69lDpYPoyeBj0uo3q+jBffPBnqCT0AAAAAAAAAAM3XgTyurc09NkFmvIwYP74iU2M8MG2HPAAAAAAAAAAAzaRTvukoPz955Rs9NO+VvrxlB73Vv3Y9AAAAAAAAAADzn8C9qel+P7PJn7xhN6G+MyhyvduUVD0AAAAAAAAAAIDazT242YU+S5l2vb/CbL744448NVJKvAAAAAAAAAAAgKsSvnYzMrwi2OE68oflODsolz1GNhi6AACAPwAAgD/6shq+p0CHPvAAWT1M6Fa+vU4JurUMBL0AAAAAAAAAADP5ML5S3e27q01juDraCbYfyUo9rDSGNwAAgD8AAIA/zS+gPCPNfz1epnY9AZMmvgwAgTwOGQC9AAAAAAAAAACNLD2+RWyzPE2uaTmQBwG4a41GvggypbgAAIA/AACAP7KNl76snyc/fQbgPRDvhb45sku9lgvSPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJfS4nWrfeMAWyUTegDjAF0lEdAoGv+XZ5AyHV9lChoBkdAcQJzY287IWgHTQkBaAhHQKBsgtPpIMB1fZQoaAZHQHARC9EkSmJoB009AWgIR0CgbSE4FRpDdX2UKGgGR0Bvgm10DEFXaAdNTgFoCEdAoJDZdIGyHHV9lChoBkdAYiGSBbwBo2gHTegDaAhHQKCQ6HjZL7J1fZQoaAZHQG73MWweNkxoB00XAWgIR0CgkbxJmNBGdX2UKGgGR0A0M9L6DXe4aAdNNwFoCEdAoJINe2NNrXV9lChoBkdAb8oQ7tAs1GgHTTEBaAhHQKCSUeV9nbt1fZQoaAZHQHElHm7rcCZoB01/AWgIR0CgkmiHRCyAdX2UKGgGR0BxaWsOoYNzaAdNMgFoCEdAoJJtdNWU8nV9lChoBkdAbbUSJ0nw5WgHTRsBaAhHQKCSgco6S1V1fZQoaAZHQGzHu9eyAx1oB00RAWgIR0CgkocDSw4bdX2UKGgGR0BuSoG4ZuQ7aAdNBgFoCEdAoJMsr08NhHV9lChoBkdAPq75VOsT4GgHTRUBaAhHQKCTVBAOav11fZQoaAZHQGpvcSwnpjdoB00OAWgIR0Cgk1yK3uuzdX2UKGgGR0Btly+HrQgLaAdNIgFoCEdAoJQ8X1rZanV9lChoBkdAcZKvL5h0AGgHTQYBaAhHQKCYQdbxEv11fZQoaAZHQG+5cjZ+QU5oB00yAWgIR0CgmPXKB/ZvdX2UKGgGR0BxKITxoZhsaAdNQAFoCEdAoJmrQkX1rnV9lChoBkdAa+h2Xb/OuGgHTRIBaAhHQKCZ2Lronrp1fZQoaAZHQHD0EIsyzoloB00ZAWgIR0CgmgFmnO0LdX2UKGgGR0Bs2aesgdOqaAdNIAFoCEdAoJpZGFzuGHV9lChoBkdAch2DZUT+N2gHTR0BaAhHQKCadUaQ3gl1fZQoaAZHQG+lSRKYiPhoB00VAWgIR0Cgm2SRB/qgdX2UKGgGR0Bvi2CiAUcoaAdNGwFoCEdAoJtlT5wfhnV9lChoBkdAboxZxrBTGmgHTSIBaAhHQKCb8JcgQpZ1fZQoaAZHQG7cspXp4bFoB01HAWgIR0Cgm+/grH2idX2UKGgGR0BxcWl41P30aAdNNAFoCEdAoJ4VBY3eenV9lChoBkdAXSLThHbypmgHTegDaAhHQKCe1G+bmU51fZQoaAZHQGPouV5a/ypoB03oA2gIR0Cgn27J4jbBdX2UKGgGR0BuBmVNYbKiaAdNNQFoCEdAoKItLi++NHV9lChoBkdAbfv6QeV9nmgHTScBaAhHQKCiNNahYeV1fZQoaAZHQHCQRxo7FKloB00RAWgIR0Cgokg1ejVQdX2UKGgGR0BwY28XenAJaAdNFwFoCEdAoKJWqPwNLHV9lChoBkdAcLgdjG1hLGgHTSABaAhHQKCifVvMr3F1fZQoaAZHQHHYXHJcPe5oB00mAWgIR0Cgoyawt8NQdX2UKGgGR0BwwjAsTWXkaAdNHQFoCEdAoKObKgZjx3V9lChoBkdAbY0UeMhoumgHTUMBaAhHQKCj0vtdAxB1fZQoaAZHQHAs4QJ5VwRoB002AWgIR0CgpDQY1pCbdX2UKGgGR0BwePVTaTOgaAdNMAFoCEdAoKRiNOuaF3V9lChoBkdAcNiaGpMpPWgHTT0BaAhHQKCkshaC+UR1fZQoaAZHQHAYObutwJhoB00nAWgIR0CgplLHU+cIdX2UKGgGR0BuKSJ2t+1CaAdNVwFoCEdAoKbAu01IiHV9lChoBkdAbZ2fozN2T2gHTSMBaAhHQKCm0fcvduZ1fZQoaAZHQHCMOWnjyWloB00RAWgIR0CgqPx+az/qdX2UKGgGR0BaDxWkrPMTaAdN6ANoCEdAoKkYNNJvpHV9lChoBkdAchrCu2Zy/GgHTRQBaAhHQKCpZvDxb0R1fZQoaAZHQGyoSy2QXANoB00eAWgIR0CgqW03Ov+wdX2UKGgGR0BvsY176YVqaAdNIgFoCEdAoKmeU0Nz83V9lChoBkdAcKxphF3IMmgHTRABaAhHQKCqlSgoPTZ1fZQoaAZHQHFQ+JgsshBoB00ZAWgIR0CgqpiJwbVCdX2UKGgGR0Bt9OrsByS3aAdNKwFoCEdAoKqYwEhaDHV9lChoBkdAcJcdrftQbmgHTRQBaAhHQKCrPuNxVAB1fZQoaAZHQHGr6L4vexhoB01yAWgIR0Cgq3hVENONdX2UKGgGR0BuNnoaDPGAaAdNOAFoCEdAoM3CkbgjyHV9lChoBkdAcJuEroW56WgHTVQBaAhHQKDN+KTB68h1fZQoaAZHQG1RBybQTmJoB00JAWgIR0CgznOP3i71dX2UKGgGR0BldEmrsByTaAdN6ANoCEdAoM6Bpvgm7nV9lChoBkdAcgX+nqFAV2gHTR8BaAhHQKDPrwEQoTh1fZQoaAZHQHEMeKO1fE5oB01JAWgIR0Cg0PmL9/BndX2UKGgGR0BwW3E2pAD8aAdL+GgIR0Cg0YvUz9CNdX2UKGgGR0Bv1NBIFvAHaAdNEwFoCEdAoNGoUeuFH3V9lChoBkdAcG1qnFYMfGgHTSkBaAhHQKDSf0voNd91fZQoaAZHQHAlRhx5s0poB00FAWgIR0Cg0s/47A+IdX2UKGgGR0BrOW/N7jT8aAdNRQFoCEdAoNM+ARTS9nV9lChoBkdAarI1JDmbLGgHTVcBaAhHQKDTcfSQYDV1fZQoaAZHQGyPdDhLoOhoB00nAWgIR0Cg060kGA09dX2UKGgGR0BwZDvBrN4aaAdNOAFoCEdAoNQQoPTXrnV9lChoBkdAcC8+ocaOxWgHTRcBaAhHQKDUJuuRs/J1fZQoaAZHQHCbYaxX4j9oB008AWgIR0Cg1LFFlTWHdX2UKGgGR0Bwt4XXRPXTaAdNDAFoCEdAoNU87KaG6HV9lChoBkdAb9ijs2NvO2gHTS4BaAhHQKDVbwsGxD91fZQoaAZHQHBWc5CF9KFoB009AWgIR0Cg1eN+9alldX2UKGgGR0BweUMYuTRqaAdNBQFoCEdAoNYAi9qUNnV9lChoBkdAcFppDNQj2WgHTRYBaAhHQKDX1OUMXrN1fZQoaAZHQHCrcZpBX0ZoB00aAWgIR0Cg2A4lQdjodX2UKGgGR0BwBPO5avA5aAdNRAFoCEdAoNhjZOBUaXV9lChoBkdAcQS7UG3WnWgHTQgBaAhHQKDYv4NZvDR1fZQoaAZHQG8R6reZXuFoB00YAWgIR0Cg2gAEdNnHdX2UKGgGR0BxTjZOBUaRaAdNLgFoCEdAoNogW1twaXV9lChoBkdAcXrneSB9TmgHTUwBaAhHQKDaJj5Kvmp1fZQoaAZHQGqz4AbQ1JloB00OAWgIR0Cg2lFjurp8dX2UKGgGR0BuA36be/HpaAdNAgFoCEdAoNqhudf9gnV9lChoBkdAclZgrH2h7GgHTUMBaAhHQKDayTdLxqh1fZQoaAZHQHAuKkVN5+poB005AWgIR0Cg2yG65Gz9dX2UKGgGR0Bx/tkoWpIdaAdL8GgIR0Cg23vTodMkdX2UKGgGR0BrYc3juKGdaAdNKwFoCEdAoNxUVclgMXV9lChoBkdAcICMG5c1O2gHTSMBaAhHQKDcsszVMEl1fZQoaAZHQHCe06gdwNtoB00CAWgIR0Cg3lgWac7RdX2UKGgGR0BxsnPmgam5aAdL+GgIR0Cg4QTqrzXjdX2UKGgGR0BsS37gsK9gaAdNDgFoCEdAoOEOqebut3V9lChoBkdAcJStKIznBGgHTSMBaAhHQKDhUGmk30h1fZQoaAZHQHCvEpiI+GJoB01+AWgIR0Cg4WNIbwSbdX2UKGgGR0BwlX2VVxS6aAdNEAFoCEdAoOGQ2Kl54XV9lChoBkdAcYpDAaef7WgHTU4BaAhHQKDitRgqmTF1fZQoaAZHQHJbNsnAqNJoB01aAWgIR0Cg4xhMSK3vdX2UKGgGR0BxG0AxSHdoaAdNRgFoCEdAoOPUA5q/NHV9lChoBkdAcNBC4jKPn2gHTVYBaAhHQKDkzP8hs691fZQoaAZHQG4KMhgVoHtoB00zAWgIR0Cg5N5uAI6bdX2UKGgGR0BsD4VARkEtaAdNKQFoCEdAoOgkDOkcj3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10467b1ffedacc1349cf775bf38f98dbade1b987ca377373e3803c15e2046af8
3
+ size 148083
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b6dd3d0da20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b6dd3d0dab0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b6dd3d0db40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b6dd3d0dbd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b6dd3d0dc60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b6dd3d0dcf0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b6dd3d0dd80>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b6dd3d0de10>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b6dd3d0dea0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b6dd3d0df30>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b6dd3d0dfc0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b6dd3d0e050>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b6dd4c4b480>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1713448828237285192,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMz1DjYbTM/6jsWvRYap77sKxK82NpqvAAAAAAAAAAATTVhPhyTc7zr8bm6K8bROJPv0L1+2uE5AACAPwAAgD+zS3w9Q4C1PyK9PD81i1u9v1mxvEsXtT0AAAAAAAAAAE3Rgz1bZv09FRjmPN+oWb5OCiY9Te0yvQAAAAAAAAAA+hEsvvZIRbwhvjQ7RqCKOQ5Bsz12KGK6AACAPwAAgD8zEQ69lDpYPoyeBj0uo3q+jBffPBnqCT0AAAAAAAAAAM3XgTyurc09NkFmvIwYP74iU2M8MG2HPAAAAAAAAAAAzaRTvukoPz955Rs9NO+VvrxlB73Vv3Y9AAAAAAAAAADzn8C9qel+P7PJn7xhN6G+MyhyvduUVD0AAAAAAAAAAIDazT242YU+S5l2vb/CbL744448NVJKvAAAAAAAAAAAgKsSvnYzMrwi2OE68oflODsolz1GNhi6AACAPwAAgD/6shq+p0CHPvAAWT1M6Fa+vU4JurUMBL0AAAAAAAAAADP5ML5S3e27q01juDraCbYfyUo9rDSGNwAAgD8AAIA/zS+gPCPNfz1epnY9AZMmvgwAgTwOGQC9AAAAAAAAAACNLD2+RWyzPE2uaTmQBwG4a41GvggypbgAAIA/AACAP7KNl76snyc/fQbgPRDvhb45sku9lgvSPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGJfS4nWrfeMAWyUTegDjAF0lEdAoGv+XZ5AyHV9lChoBkdAcQJzY287IWgHTQkBaAhHQKBsgtPpIMB1fZQoaAZHQHARC9EkSmJoB009AWgIR0CgbSE4FRpDdX2UKGgGR0Bvgm10DEFXaAdNTgFoCEdAoJDZdIGyHHV9lChoBkdAYiGSBbwBo2gHTegDaAhHQKCQ6HjZL7J1fZQoaAZHQG73MWweNkxoB00XAWgIR0CgkbxJmNBGdX2UKGgGR0A0M9L6DXe4aAdNNwFoCEdAoJINe2NNrXV9lChoBkdAb8oQ7tAs1GgHTTEBaAhHQKCSUeV9nbt1fZQoaAZHQHElHm7rcCZoB01/AWgIR0CgkmiHRCyAdX2UKGgGR0BxaWsOoYNzaAdNMgFoCEdAoJJtdNWU8nV9lChoBkdAbbUSJ0nw5WgHTRsBaAhHQKCSgco6S1V1fZQoaAZHQGzHu9eyAx1oB00RAWgIR0CgkocDSw4bdX2UKGgGR0BuSoG4ZuQ7aAdNBgFoCEdAoJMsr08NhHV9lChoBkdAPq75VOsT4GgHTRUBaAhHQKCTVBAOav11fZQoaAZHQGpvcSwnpjdoB00OAWgIR0Cgk1yK3uuzdX2UKGgGR0Btly+HrQgLaAdNIgFoCEdAoJQ8X1rZanV9lChoBkdAcZKvL5h0AGgHTQYBaAhHQKCYQdbxEv11fZQoaAZHQG+5cjZ+QU5oB00yAWgIR0CgmPXKB/ZvdX2UKGgGR0BxKITxoZhsaAdNQAFoCEdAoJmrQkX1rnV9lChoBkdAa+h2Xb/OuGgHTRIBaAhHQKCZ2Lronrp1fZQoaAZHQHD0EIsyzoloB00ZAWgIR0CgmgFmnO0LdX2UKGgGR0Bs2aesgdOqaAdNIAFoCEdAoJpZGFzuGHV9lChoBkdAch2DZUT+N2gHTR0BaAhHQKCadUaQ3gl1fZQoaAZHQG+lSRKYiPhoB00VAWgIR0Cgm2SRB/qgdX2UKGgGR0Bvi2CiAUcoaAdNGwFoCEdAoJtlT5wfhnV9lChoBkdAboxZxrBTGmgHTSIBaAhHQKCb8JcgQpZ1fZQoaAZHQG7cspXp4bFoB01HAWgIR0Cgm+/grH2idX2UKGgGR0BxcWl41P30aAdNNAFoCEdAoJ4VBY3eenV9lChoBkdAXSLThHbypmgHTegDaAhHQKCe1G+bmU51fZQoaAZHQGPouV5a/ypoB03oA2gIR0Cgn27J4jbBdX2UKGgGR0BuBmVNYbKiaAdNNQFoCEdAoKItLi++NHV9lChoBkdAbfv6QeV9nmgHTScBaAhHQKCiNNahYeV1fZQoaAZHQHCQRxo7FKloB00RAWgIR0Cgokg1ejVQdX2UKGgGR0BwY28XenAJaAdNFwFoCEdAoKJWqPwNLHV9lChoBkdAcLgdjG1hLGgHTSABaAhHQKCifVvMr3F1fZQoaAZHQHHYXHJcPe5oB00mAWgIR0Cgoyawt8NQdX2UKGgGR0BwwjAsTWXkaAdNHQFoCEdAoKObKgZjx3V9lChoBkdAbY0UeMhoumgHTUMBaAhHQKCj0vtdAxB1fZQoaAZHQHAs4QJ5VwRoB002AWgIR0CgpDQY1pCbdX2UKGgGR0BwePVTaTOgaAdNMAFoCEdAoKRiNOuaF3V9lChoBkdAcNiaGpMpPWgHTT0BaAhHQKCkshaC+UR1fZQoaAZHQHAYObutwJhoB00nAWgIR0CgplLHU+cIdX2UKGgGR0BuKSJ2t+1CaAdNVwFoCEdAoKbAu01IiHV9lChoBkdAbZ2fozN2T2gHTSMBaAhHQKCm0fcvduZ1fZQoaAZHQHCMOWnjyWloB00RAWgIR0CgqPx+az/qdX2UKGgGR0BaDxWkrPMTaAdN6ANoCEdAoKkYNNJvpHV9lChoBkdAchrCu2Zy/GgHTRQBaAhHQKCpZvDxb0R1fZQoaAZHQGyoSy2QXANoB00eAWgIR0CgqW03Ov+wdX2UKGgGR0BvsY176YVqaAdNIgFoCEdAoKmeU0Nz83V9lChoBkdAcKxphF3IMmgHTRABaAhHQKCqlSgoPTZ1fZQoaAZHQHFQ+JgsshBoB00ZAWgIR0CgqpiJwbVCdX2UKGgGR0Bt9OrsByS3aAdNKwFoCEdAoKqYwEhaDHV9lChoBkdAcJcdrftQbmgHTRQBaAhHQKCrPuNxVAB1fZQoaAZHQHGr6L4vexhoB01yAWgIR0Cgq3hVENONdX2UKGgGR0BuNnoaDPGAaAdNOAFoCEdAoM3CkbgjyHV9lChoBkdAcJuEroW56WgHTVQBaAhHQKDN+KTB68h1fZQoaAZHQG1RBybQTmJoB00JAWgIR0CgznOP3i71dX2UKGgGR0BldEmrsByTaAdN6ANoCEdAoM6Bpvgm7nV9lChoBkdAcgX+nqFAV2gHTR8BaAhHQKDPrwEQoTh1fZQoaAZHQHEMeKO1fE5oB01JAWgIR0Cg0PmL9/BndX2UKGgGR0BwW3E2pAD8aAdL+GgIR0Cg0YvUz9CNdX2UKGgGR0Bv1NBIFvAHaAdNEwFoCEdAoNGoUeuFH3V9lChoBkdAcG1qnFYMfGgHTSkBaAhHQKDSf0voNd91fZQoaAZHQHAlRhx5s0poB00FAWgIR0Cg0s/47A+IdX2UKGgGR0BrOW/N7jT8aAdNRQFoCEdAoNM+ARTS9nV9lChoBkdAarI1JDmbLGgHTVcBaAhHQKDTcfSQYDV1fZQoaAZHQGyPdDhLoOhoB00nAWgIR0Cg060kGA09dX2UKGgGR0BwZDvBrN4aaAdNOAFoCEdAoNQQoPTXrnV9lChoBkdAcC8+ocaOxWgHTRcBaAhHQKDUJuuRs/J1fZQoaAZHQHCbYaxX4j9oB008AWgIR0Cg1LFFlTWHdX2UKGgGR0Bwt4XXRPXTaAdNDAFoCEdAoNU87KaG6HV9lChoBkdAb9ijs2NvO2gHTS4BaAhHQKDVbwsGxD91fZQoaAZHQHBWc5CF9KFoB009AWgIR0Cg1eN+9alldX2UKGgGR0BweUMYuTRqaAdNBQFoCEdAoNYAi9qUNnV9lChoBkdAcFppDNQj2WgHTRYBaAhHQKDX1OUMXrN1fZQoaAZHQHCrcZpBX0ZoB00aAWgIR0Cg2A4lQdjodX2UKGgGR0BwBPO5avA5aAdNRAFoCEdAoNhjZOBUaXV9lChoBkdAcQS7UG3WnWgHTQgBaAhHQKDYv4NZvDR1fZQoaAZHQG8R6reZXuFoB00YAWgIR0Cg2gAEdNnHdX2UKGgGR0BxTjZOBUaRaAdNLgFoCEdAoNogW1twaXV9lChoBkdAcXrneSB9TmgHTUwBaAhHQKDaJj5Kvmp1fZQoaAZHQGqz4AbQ1JloB00OAWgIR0Cg2lFjurp8dX2UKGgGR0BuA36be/HpaAdNAgFoCEdAoNqhudf9gnV9lChoBkdAclZgrH2h7GgHTUMBaAhHQKDayTdLxqh1fZQoaAZHQHAuKkVN5+poB005AWgIR0Cg2yG65Gz9dX2UKGgGR0Bx/tkoWpIdaAdL8GgIR0Cg23vTodMkdX2UKGgGR0BrYc3juKGdaAdNKwFoCEdAoNxUVclgMXV9lChoBkdAcICMG5c1O2gHTSMBaAhHQKDcsszVMEl1fZQoaAZHQHCe06gdwNtoB00CAWgIR0Cg3lgWac7RdX2UKGgGR0BxsnPmgam5aAdL+GgIR0Cg4QTqrzXjdX2UKGgGR0BsS37gsK9gaAdNDgFoCEdAoOEOqebut3V9lChoBkdAcJStKIznBGgHTSMBaAhHQKDhUGmk30h1fZQoaAZHQHCvEpiI+GJoB01+AWgIR0Cg4WNIbwSbdX2UKGgGR0BwlX2VVxS6aAdNEAFoCEdAoOGQ2Kl54XV9lChoBkdAcYpDAaef7WgHTU4BaAhHQKDitRgqmTF1fZQoaAZHQHJbNsnAqNJoB01aAWgIR0Cg4xhMSK3vdX2UKGgGR0BxG0AxSHdoaAdNRgFoCEdAoOPUA5q/NHV9lChoBkdAcNBC4jKPn2gHTVYBaAhHQKDkzP8hs691fZQoaAZHQG4KMhgVoHtoB00zAWgIR0Cg5N5uAI6bdX2UKGgGR0BsD4VARkEtaAdNKQFoCEdAoOgkDOkcj3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 620,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e809f1a7509dd846c00219a355f2dea9b900993945538d71cad3f36bd04c76e
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ddea813600e29061f62cf2a2c59c1cb89aaaa592103fdd4cc9ab06d5295ffe0
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (171 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 239.2706158, "std_reward": 43.306546404841335, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-18T14:45:03.902998"}