Takagi-san commited on
Commit
ec80ad6
1 Parent(s): 1669ab4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md CHANGED
@@ -1,3 +1,44 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ We provide both huggingface version and
5
+ [esm version](https://github.com/facebookresearch/esm) of
6
+ SaProt. Users can choose either one to use.
7
+
8
+ ### Huggingface model
9
+ The following code shows how to load the model.
10
+ ```
11
+ from transformers import EsmTokenizer, EsmForMaskedLM
12
+
13
+ model_path = "/your/path/to/SaProt_650M_AF2"
14
+ tokenizer = EsmTokenizer.from_pretrained(model_path)
15
+ model = EsmForMaskedLM.from_pretrained(model_path)
16
+
17
+ #################### Example ####################
18
+ device = "cuda"
19
+ model.to(device)
20
+
21
+ seq = "MdEvVpQpLrVyQdYaKv"
22
+ tokens = tokenizer.tokenize(seq)
23
+ print(tokens)
24
+
25
+ inputs = tokenizer(seq, return_tensors="pt")
26
+ inputs = {k: v.to(device) for k, v in inputs.items()}
27
+
28
+ outputs = model(**inputs)
29
+ print(outputs.logits.shape)
30
+
31
+ """
32
+ ['Md', 'Ev', 'Vp', 'Qp', 'Lr', 'Vy', 'Qd', 'Ya', 'Kv']
33
+ torch.Size([1, 11, 446])
34
+ """
35
+ ```
36
+
37
+ ### esm model
38
+ The esm version is also stored in the same folder, named `SaProt_650M_AF2.pt`. We provide a function to load the model.
39
+ ```
40
+ from utils.esm_loader import load_esm_saprot
41
+
42
+ model_path = "/your/path/to/SaProt_650M_AF2.pt"
43
+ model, alphabet = load_esm_saprot(model_path)
44
+ ```