upload lunar lander model
Browse files- README.md +1 -1
- config.json +1 -1
- lunar_lander_model.zip +2 -2
- lunar_lander_model/data +7 -7
- lunar_lander_model/policy.optimizer.pth +1 -1
- lunar_lander_model/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 288.08 +/- 17.74
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efc9aaa30d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efc9aaa3160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efc9aaa31f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efc9aaa3280>", "_build": "<function ActorCriticPolicy._build at 0x7efc9aaa3310>", "forward": "<function ActorCriticPolicy.forward at 0x7efc9aaa33a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efc9aaa3430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efc9aaa34c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efc9aaa3550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efc9aaa35e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efc9aaa3670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efc9aaa3700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efc9aa9b7e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 229376, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677979655764751135, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA6Zkb6jwnM/4sslvgKxm767ooS+HqAbvAAAAAAAAAAAk6DQPqwHsL01+rA7f5LaOw3UeT1rLgU8AACAPwAAgD8ykoW+pPQ3u4sB5zvZAIk4ExB+PIt4K7kAAIA/AACAP/3n7D6wtI294EaovMIBa7ySPv096gAtvQAAAAAAAAAAwKGbvYWh7DrOU9+8IEwPvRneZ7yiijW8AAAAAAAAAACKeHc/JPy+vdU2yj5CAWS9GzVavpikyb0AAAAAAAAAAAAluLwpmBW6jQL/O5JakLijp7W6pviJtwAAgD8AAIA/5lzqvaSkejqYflc8PEEauwoVJ7wYyfE7AACAPwAAgD9Z2gK/4v2avRGIorwqdze6YGaVPWKD9LgAAIA/AACAP+YjNr0qkkI/bSI/PRvyeb5feK29k21xvAAAAAAAAAAAM5F2PeyzrDqTW7I7DqCFPKXWrjpeAsg7AAAAAAAAAACWpxs/3FhKPf4DgDqCFr23UOwSvJe+qDkAAIA/AACAP2PEjD6Tpmw/yyzjPlLyIL4JuPE9xg0dPQAAAAAAAAAAMwUuvH6Lsj89tQe/5UKwvjN5VzwDTg0+AAAAAAAAAABNw8i9hfu7udIMrztOk644ITgZu95fsjcAAIA/AACAPwqz2D4BTQ+9fl9MvVR/Br7Tp6C8yO5rPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv4I0Y9EUE0CUhpRSlIwBbJRLnYwBdJRHQGyhRD1Gsmx1fZQoaAZoCWgPQwgErcCQ1cVBQJSGlFKUaBVNBQFoFkdAbKpKKYRdyHV9lChoBmgJaA9DCJ2gTQ6fVCxAlIaUUpRoFU0+AWgWR0BsrLB0p3HJdX2UKGgGaAloD0MISgwCK4eW5L+UhpRSlGgVS5VoFkdAbK8cTakAP3V9lChoBmgJaA9DCI9VSs/0qjBAlIaUUpRoFUtwaBZHQGy2BLwnYxt1fZQoaAZoCWgPQwjOjlTf+UWZP5SGlFKUaBVLvWgWR0Bst2seXAuadX2UKGgGaAloD0MIg8KgTKMZP8CUhpRSlGgVS4FoFkdAbMUo8ZDRdHV9lChoBmgJaA9DCJfFxObj9jZAlIaUUpRoFUuQaBZHQGzQlF2FFlV1fZQoaAZoCWgPQwjz4sRXO7FSwJSGlFKUaBVLzGgWR0Bs0PSDyvs7dX2UKGgGaAloD0MI+yMMA5YoNsCUhpRSlGgVS5doFkdAbNPPJq7AcnV9lChoBmgJaA9DCGFREaeTPB7AlIaUUpRoFUtwaBZHQGzfJ0W/JvJ1fZQoaAZoCWgPQwgu46YGmtc7QJSGlFKUaBVL+GgWR0Bs4dg+hXbNdX2UKGgGaAloD0MIY9F0djJgL8CUhpRSlGgVS7JoFkdAbOhqEeyRjnV9lChoBmgJaA9DCLAEUmLXrjlAlIaUUpRoFUu8aBZHQGzvFwLmZE51fZQoaAZoCWgPQwgSZ0XURH8CQJSGlFKUaBVLyGgWR0Bs9vuqm0mddX2UKGgGaAloD0MI8x/Sb19/K8CUhpRSlGgVS41oFkdAbPogGr0aqHV9lChoBmgJaA9DCFUwKqkTQCJAlIaUUpRoFUt1aBZHQG0Ady925hB1fZQoaAZoCWgPQwjulA7W//lHQJSGlFKUaBVN6ANoFkdAbQDcqvvBrXV9lChoBmgJaA9DCFN2+kFd9BPAlIaUUpRoFU3oA2gWR0BtAWZAprk9dX2UKGgGaAloD0MI6BTkZyOPKECUhpRSlGgVS5RoFkdAbQelnAZbZHV9lChoBmgJaA9DCIIDWrqCkTzAlIaUUpRoFU0EAWgWR0BtEvvMKTjedX2UKGgGaAloD0MIcHfWbrs+QMCUhpRSlGgVS71oFkdAbRVFQVKwp3V9lChoBmgJaA9DCJolAWpqdTJAlIaUUpRoFUuUaBZHQG0WiHZbpvB1fZQoaAZoCWgPQwhCl3DoLT4cQJSGlFKUaBVLdWgWR0BtF8V1wHZ9dX2UKGgGaAloD0MIOne7Xpr6QMCUhpRSlGgVS35oFkdAbSPAgxJumHV9lChoBmgJaA9DCGObVDTWPiBAlIaUUpRoFUuGaBZHQG0tFpXZGrl1fZQoaAZoCWgPQwi3RZkNMllIwJSGlFKUaBVL1GgWR0BtMziVB2OidX2UKGgGaAloD0MIIhtIF5vqTsCUhpRSlGgVS6FoFkdAbTdf4REncHV9lChoBmgJaA9DCOsdboeGF0/AlIaUUpRoFUu9aBZHQG046Ei+tbN1fZQoaAZoCWgPQwjja88sCXxOwJSGlFKUaBVLZmgWR0BtOaeI2wV1dX2UKGgGaAloD0MIt/C8VGzgPcCUhpRSlGgVS5NoFkdAbTq40dilSHV9lChoBmgJaA9DCK8I/reSDRTAlIaUUpRoFUuqaBZHQG07hXr+o991fZQoaAZoCWgPQwgsvMtFfGlTQJSGlFKUaBVN6ANoFkdAbUskN4JNTXV9lChoBmgJaA9DCLN8XYb/BDjAlIaUUpRoFUtqaBZHQG1Lh/iHZbp1fZQoaAZoCWgPQwjdQlciUC0vwJSGlFKUaBVLVGgWR0BtTGoYNy5qdX2UKGgGaAloD0MIgnFw6ZgnQ8CUhpRSlGgVS6FoFkdAbU+KfnOjZnV9lChoBmgJaA9DCK8LPzif1FHAlIaUUpRoFUu+aBZHQG1U7961LJ11fZQoaAZoCWgPQwiBXyNJEK5DwJSGlFKUaBVLw2gWR0BtWtRP420idX2UKGgGaAloD0MI2C5tOCypMsCUhpRSlGgVS3doFkdAbVssiB5HE3V9lChoBmgJaA9DCDgu46YGzFjAlIaUUpRoFUttaBZHQG1bgmJFb3Z1fZQoaAZoCWgPQwhExM2pZKg4QJSGlFKUaBVLfWgWR0BtYc8JUo8ZdX2UKGgGaAloD0MIu0c2V82TGUCUhpRSlGgVS7NoFkdAcHb74zrNW3V9lChoBmgJaA9DCENVTKWfoC3AlIaUUpRoFUuEaBZHQHB3oQnQY1p1fZQoaAZoCWgPQwgvpMNDGLdCQJSGlFKUaBVLuGgWR0BweKXTmW+odX2UKGgGaAloD0MI5ULlX8tTP0CUhpRSlGgVS7hoFkdAcHj/hESdv3V9lChoBmgJaA9DCO7PRUPGEx3AlIaUUpRoFUudaBZHQHCBzziCJ411fZQoaAZoCWgPQwgK9l/nprUhwJSGlFKUaBVN6ANoFkdAcIJfnOjZc3V9lChoBmgJaA9DCB9nmrD9sDrAlIaUUpRoFUvVaBZHQHCGDc6/7BR1fZQoaAZoCWgPQwhaLbDHRK4+wJSGlFKUaBVL42gWR0Bwh5yaNMoMdX2UKGgGaAloD0MIhV/q500NSsCUhpRSlGgVS85oFkdAcIz2YfGMoHV9lChoBmgJaA9DCLddaK7TBDHAlIaUUpRoFU0FAWgWR0BwkNjy4FzNdX2UKGgGaAloD0MIsrtASYGROUCUhpRSlGgVS8toFkdAcKALzPKMenV9lChoBmgJaA9DCFtEFJM3HDjAlIaUUpRoFUudaBZHQHCkCKrJbMZ1fZQoaAZoCWgPQwjE6LmFroJFQJSGlFKUaBVN6ANoFkdAcL0/Lkjop3V9lChoBmgJaA9DCAeaz7nbfUlAlIaUUpRoFU3oA2gWR0Bw3RvjwQUYdX2UKGgGaAloD0MI8u1dg762R8CUhpRSlGgVTSkBaBZHQHDd9f1Hvtt1fZQoaAZoCWgPQwiGH5xPHednwJSGlFKUaBVN0gFoFkdAcOYzq8lHBnV9lChoBmgJaA9DCO/i/bj9XmHAlIaUUpRoFU2lAWgWR0Bw6AcwQDmsdX2UKGgGaAloD0MIhpFe1O49R8CUhpRSlGgVS1JoFkdAcPOHP/rB03V9lChoBmgJaA9DCAnGwaVjpkhAlIaUUpRoFU3oA2gWR0BxEa4/eLvUdX2UKGgGaAloD0MIp86j4v9uIUCUhpRSlGgVTT8BaBZHQHEgCHdoFmp1fZQoaAZoCWgPQwg4TZ8dcLlOwJSGlFKUaBVL5mgWR0BxJwaisXBQdX2UKGgGaAloD0MI8S2sG+9COkCUhpRSlGgVS6ZoFkdAcUTrVvuPWHV9lChoBmgJaA9DCOXyH9Jv/UrAlIaUUpRoFUvZaBZHQHFzIA0bcXZ1fZQoaAZoCWgPQwh0KENVTN5YQJSGlFKUaBVN6ANoFkdAcZHULDye7XV9lChoBmgJaA9DCJyMKsO4mzdAlIaUUpRoFU3oA2gWR0Bxks6fapPzdX2UKGgGaAloD0MIHJWbqCVHZcCUhpRSlGgVTWUBaBZHQHGt6yB06o51fZQoaAZoCWgPQwjM0eP3No1AQJSGlFKUaBVN6ANoFkdAcb8fRu0kW3V9lChoBmgJaA9DCEq2upwSJk1AlIaUUpRoFU3oA2gWR0BxwGq4pc5bdX2UKGgGaAloD0MIuoeE7/0tE8CUhpRSlGgVS75oFkdAcdJplz2ex3V9lChoBmgJaA9DCNxI2SJpg1ZAlIaUUpRoFU3oA2gWR0Bx1gRe1KGtdX2UKGgGaAloD0MIObnfoShyR0CUhpRSlGgVS5NoFkdAcdj4t6HCXXV9lChoBmgJaA9DCEuxo3GoAVRAlIaUUpRoFU3oA2gWR0Bx4SNvOyE+dX2UKGgGaAloD0MIKeeLvRfpR0CUhpRSlGgVTegDaBZHQHHqKYAsCkp1fZQoaAZoCWgPQwhkyRzLu9hGQJSGlFKUaBVN6ANoFkdAce4z67/XG3V9lChoBmgJaA9DCJYgI6DCEQrAlIaUUpRoFUugaBZHQHHzo8lolD51fZQoaAZoCWgPQwicxCCwcgAywJSGlFKUaBVLZWgWR0Bx9BmlImPYdX2UKGgGaAloD0MIpU3VPbKTXECUhpRSlGgVTegDaBZHQHH8l7x/d691fZQoaAZoCWgPQwh8JvvnaZAxQJSGlFKUaBVN6ANoFkdAcf/wn6VMVXV9lChoBmgJaA9DCDIDlfHvEw/AlIaUUpRoFUuIaBZHQHICuxjawll1fZQoaAZoCWgPQwh0CvKzkRlWwJSGlFKUaBVNAgFoFkdAcgLsdT5wfnV9lChoBmgJaA9DCFD9g0iGTDXAlIaUUpRoFUuyaBZHQHIDxyn1nNB1fZQoaAZoCWgPQwjysFBrmts0QJSGlFKUaBVLn2gWR0ByDh8YyfthdX2UKGgGaAloD0MIO8JpwYt2OUCUhpRSlGgVS8VoFkdAciDcjqv/znV9lChoBmgJaA9DCPopjgOvAVVAlIaUUpRoFU3oA2gWR0ByJTBhx5s1dX2UKGgGaAloD0MIAcCxZ89VFECUhpRSlGgVS8ZoFkdAci6a8Hv+fnV9lChoBmgJaA9DCMBatWtCqlhAlIaUUpRoFU3oA2gWR0ByLxnM+u/2dX2UKGgGaAloD0MIb9bgfVVCVcCUhpRSlGgVTQQBaBZHQHI6zlLeyiV1fZQoaAZoCWgPQwjdlzPbFR9TQJSGlFKUaBVN6ANoFkdAcjrbhm5DqnV9lChoBmgJaA9DCFTHKqVnSj7AlIaUUpRoFUv3aBZHQHI/bCzkZJl1fZQoaAZoCWgPQwgRNjy9UlYCQJSGlFKUaBVLvmgWR0ByVh+CsfaIdX2UKGgGaAloD0MIVaaYg6B3O8CUhpRSlGgVS6NoFkdAcllYzSCvo3V9lChoBmgJaA9DCExxVdl3HTPAlIaUUpRoFUuOaBZHQHJhPI8yN4t1fZQoaAZoCWgPQwjX22YqxLsxwJSGlFKUaBVNeQFoFkdAcmIzSThYNnV9lChoBmgJaA9DCFzHuOLiNFdAlIaUUpRoFU3oA2gWR0Bykr3rUsnRdX2UKGgGaAloD0MIbOun/6wdNMCUhpRSlGgVS8loFkdAcqhWpZOi4HV9lChoBmgJaA9DCKgavRqgglBAlIaUUpRoFU3oA2gWR0By4gxvegtfdX2UKGgGaAloD0MIxXQhVn8EQsCUhpRSlGgVS5FoFkdAcuOAz544ZXV9lChoBmgJaA9DCKt2TUhrNCzAlIaUUpRoFUvnaBZHQHLwkbDMvAZ1fZQoaAZoCWgPQwhVhnE3iCxIQJSGlFKUaBVN6ANoFkdAcwDABDG96HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 70, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efc9aaa30d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efc9aaa3160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efc9aaa31f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efc9aaa3280>", "_build": "<function ActorCriticPolicy._build at 0x7efc9aaa3310>", "forward": "<function ActorCriticPolicy.forward at 0x7efc9aaa33a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efc9aaa3430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efc9aaa34c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efc9aaa3550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efc9aaa35e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efc9aaa3670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efc9aaa3700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efc9aa9b7e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677980481946968919, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMDxrxcG0i6soPXOIA3lTPmhDu4W6T3twAAgD8AAIA/mpgqPQqxMrsiByW+UQtwPVTR1ruSwaS8AACAPwAAgD8AmBs+n43duz4TADtns5O4VdcsvXDHG7oAAIA/AACAP8CxV75fGj0/QIgiPbNyOb+e+ri+WPhtPgAAAAAAAAAAcxqAvb3pKDxRtC0+edE6vqh5QrwHVDg9AAAAAAAAAAAgQQI+vM8CP/PqmrxrXCa/yCypPXqywL0AAAAAAAAAAA3miz4InJE//YFUPjP49L5jg9o+m9t2PAAAAAAAAAAAAE05PRRO0bieGIS5CuwmtQ4BtDuBy504AACAPwAAgD8AlQu9KWRvP89Al73kZ1i/F0GDvbx5qzwAAAAAAAAAAAA5br1cjDA9rJk2PkrBqr5xf5w96o64PQAAAAAAAAAA5hy8PXviirp+q4K540LBtPzgz7krYJY4AAAAAAAAgD+aq1a8osa0P8odKL+tRpU85ddWPPAJ4D0AAAAAAAAAAJWXhr7TagY/LtjmPaEQEr/3r5O+vgx3PgAAAAAAAAAAGs6FvV61vT+ecAK/SXjxPepmtLwvTy2+AAAAAAAAAABmo0I9e+iHutVKjDw82Ci+JWS0PKaHw74AAAAAAACAP2YRez24WZ67I5EhvM/vgTy9Lhq9VUZePQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzQLtDunCc0CUhpRSlIwBbJRLrYwBdJRHQK3n6KvV3EB1fZQoaAZoCWgPQwj4qpUJP9BwQJSGlFKUaBVLjWgWR0Ct5/nlnyuqdX2UKGgGaAloD0MI5xcl6G/MckCUhpRSlGgVS69oFkdAregMOqebu3V9lChoBmgJaA9DCOM48Gq5A3JAlIaUUpRoFUu5aBZHQK3oSYyfthN1fZQoaAZoCWgPQwh2pPrOrylzQJSGlFKUaBVLu2gWR0Ct6F/ChvitdX2UKGgGaAloD0MIdsQhG8idb0CUhpRSlGgVS7NoFkdAreheplz2e3V9lChoBmgJaA9DCEzFxryOpHFAlIaUUpRoFUvGaBZHQK3ofQTmGM51fZQoaAZoCWgPQwjrbp7qUKdxQJSGlFKUaBVL0mgWR0Ct6LrKV6eHdX2UKGgGaAloD0MIjh8qjRg8c0CUhpRSlGgVS7doFkdArejP/o7muHV9lChoBmgJaA9DCBFUjV4NunFAlIaUUpRoFUvKaBZHQK3prv60pmV1fZQoaAZoCWgPQwgX83NDk8ZwQJSGlFKUaBVLr2gWR0Ct6bmKqGUOdX2UKGgGaAloD0MImaCGbyG+cECUhpRSlGgVS6toFkdArenMIgNgB3V9lChoBmgJaA9DCE1p/S0BNnBAlIaUUpRoFUukaBZHQK3pz8w5/9Z1fZQoaAZoCWgPQwgoucMm8iZwQJSGlFKUaBVLr2gWR0Ct6gRK6FufdX2UKGgGaAloD0MIYthhTLqxcECUhpRSlGgVS65oFkdAreoqZfD1oXV9lChoBmgJaA9DCI6SV+dY9nFAlIaUUpRoFUvPaBZHQK3qLiVjZth1fZQoaAZoCWgPQwhpHsAifxJzQJSGlFKUaBVL+WgWR0Ct6kchTwUhdX2UKGgGaAloD0MIZVJDG0CIcECUhpRSlGgVS5BoFkdArepJJAdGRXV9lChoBmgJaA9DCMAjKlQ3bm9AlIaUUpRoFUueaBZHQK3qUoNutOp1fZQoaAZoCWgPQwjrVzofHiFvQJSGlFKUaBVLqGgWR0Ct6lwFkhA4dX2UKGgGaAloD0MI0T5W8Bt4c0CUhpRSlGgVS+BoFkdAreqnbRF7U3V9lChoBmgJaA9DCJhNgGG5pnJAlIaUUpRoFUvDaBZHQK3qu1fE4vN1fZQoaAZoCWgPQwjQDriuWPFwQJSGlFKUaBVLqmgWR0Ct6tD0UXYUdX2UKGgGaAloD0MIWTLH8i4bZkCUhpRSlGgVTegDaBZHQK3rbVDrqt51fZQoaAZoCWgPQwjKTj+oi71wQJSGlFKUaBVLn2gWR0Ct65nGKhtcdX2UKGgGaAloD0MI6ZrJN5uNcUCUhpRSlGgVS7RoFkdArevPgLqlg3V9lChoBmgJaA9DCAZINIGivXJAlIaUUpRoFUuuaBZHQK3r2wdsBQx1fZQoaAZoCWgPQwiQSUbOwmpwQJSGlFKUaBVLpmgWR0Ct7BlZgXuWdX2UKGgGaAloD0MIIXNlUK2scECUhpRSlGgVS8poFkdArewqcLBsRHV9lChoBmgJaA9DCBnmBG1yM3FAlIaUUpRoFUuKaBZHQK3sRgMMI/t1fZQoaAZoCWgPQwjqXFFKCO1xQJSGlFKUaBVLrGgWR0Ct7EcPvrnldX2UKGgGaAloD0MIKSUEq2oCcUCUhpRSlGgVS65oFkdArexLV8Ti83V9lChoBmgJaA9DCDCgF+5cK3JAlIaUUpRoFUvFaBZHQK3sUaMrEtN1fZQoaAZoCWgPQwgLJv4oKt5yQJSGlFKUaBVLuWgWR0Ct7FOKoAGTdX2UKGgGaAloD0MITBb3H5lKckCUhpRSlGgVS65oFkdArexeAy2x6nV9lChoBmgJaA9DCIrMXOBylXJAlIaUUpRoFUvBaBZHQK3sgyvcJt11fZQoaAZoCWgPQwgDlIYahUZxQJSGlFKUaBVLsWgWR0Ct7Lj6vaDgdX2UKGgGaAloD0MIluoCXmYMcUCUhpRSlGgVS7poFkdArezlnM+u/3V9lChoBmgJaA9DCCuiJvp80W5AlIaUUpRoFUumaBZHQK3tOfSQYDV1fZQoaAZoCWgPQwhMT1jigUJzQJSGlFKUaBVLrWgWR0Ct7X4zi0fHdX2UKGgGaAloD0MICft2EpE/c0CUhpRSlGgVS61oFkdAre253C9AX3V9lChoBmgJaA9DCH9pUZ8kL3JAlIaUUpRoFUvAaBZHQK3t/jriVB51fZQoaAZoCWgPQwhQGJRp9EZwQJSGlFKUaBVLrGgWR0Ct7hJlBhQWdX2UKGgGaAloD0MIxjU+k70gcUCUhpRSlGgVS7RoFkdAre4ZKaoddXV9lChoBmgJaA9DCEuTUtCtHXNAlIaUUpRoFUuyaBZHQK3uQQr+YMR1fZQoaAZoCWgPQwj9S1KZYpNxQJSGlFKUaBVLp2gWR0Ct7mjD8+A3dX2UKGgGaAloD0MIUu4+x4d5c0CUhpRSlGgVS8NoFkdAre5z4+KTCHV9lChoBmgJaA9DCITx07i30nJAlIaUUpRoFUu/aBZHQK3udd/J/5N1fZQoaAZoCWgPQwjP9X04iElzQJSGlFKUaBVLvGgWR0Ct7njEFW4mdX2UKGgGaAloD0MIcQSpFLsRcUCUhpRSlGgVS8VoFkdAre6EW/JvHnV9lChoBmgJaA9DCGg8EcQ5cXFAlIaUUpRoFUvJaBZHQK3uiOEug6F1fZQoaAZoCWgPQwhnKO54U7VxQJSGlFKUaBVLsGgWR0Ct7zrR8c+8dX2UKGgGaAloD0MI5UUm4Ff8ckCUhpRSlGgVS9JoFkdAre9H2h7E53V9lChoBmgJaA9DCG082GL3JHJAlIaUUpRoFUumaBZHQK3vYyNXHR11fZQoaAZoCWgPQwj5gas8ARxyQJSGlFKUaBVLmWgWR0Ct73JDeCTVdX2UKGgGaAloD0MIXmiu00iRcUCUhpRSlGgVS4xoFkdArfASvHLidnV9lChoBmgJaA9DCMmQY+uZ4m9AlIaUUpRoFUusaBZHQK3wEa8YhuB1fZQoaAZoCWgPQwhUNqyp7MZyQJSGlFKUaBVLuWgWR0Ct8CZfD1oQdX2UKGgGaAloD0MImZzaGWYbcECUhpRSlGgVS6toFkdArfBpYPoV23V9lChoBmgJaA9DCDZaDvRQeXFAlIaUUpRoFUusaBZHQK3weZMtbs51fZQoaAZoCWgPQwiMTSuFwF9zQJSGlFKUaBVLsmgWR0Ct8I7bUPQOdX2UKGgGaAloD0MIHaz/c5jLcUCUhpRSlGgVS7NoFkdArfCfiBGx2XV9lChoBmgJaA9DCBHGT+NeFnBAlIaUUpRoFUuxaBZHQK3wn3Qla8p1fZQoaAZoCWgPQwgPYmcKnQhzQJSGlFKUaBVL4WgWR0Ct8L07Sy+pdX2UKGgGaAloD0MI+5XOh+fpckCUhpRSlGgVS9NoFkdArfC9WXC0nnV9lChoBmgJaA9DCK+YEd6eL3JAlIaUUpRoFUueaBZHQK3xM9XcQAd1fZQoaAZoCWgPQwgQQGoTJ3ZyQJSGlFKUaBVLvmgWR0Ct8Y8Q7LdOdX2UKGgGaAloD0MIX7Uy4ZeeckCUhpRSlGgVS8VoFkdArfHRh2GIsXV9lChoBmgJaA9DCDRlpx9UHXJAlIaUUpRoFUvBaBZHQK3x1TKkl/p1fZQoaAZoCWgPQwjTwI9qWGJvQJSGlFKUaBVLnGgWR0Ct8g21UlzEdX2UKGgGaAloD0MIhjyCG+kGcUCUhpRSlGgVS7NoFkdArfJHAj6eoXV9lChoBmgJaA9DCDcbKzHPpnJAlIaUUpRoFUu6aBZHQK3yX9vS+g11fZQoaAZoCWgPQwhLr83GCklyQJSGlFKUaBVLomgWR0Ct8pTnRsuWdX2UKGgGaAloD0MIkpIehhYUckCUhpRSlGgVS6toFkdArfKbzwtrbnV9lChoBmgJaA9DCGjQ0D9BBG9AlIaUUpRoFUuvaBZHQK3y0DpTuOV1fZQoaAZoCWgPQwhmTpfFRFByQJSGlFKUaBVLyWgWR0Ct8uxL0z0pdX2UKGgGaAloD0MISwM/qqEFckCUhpRSlGgVS7RoFkdArfL/uuzQeHV9lChoBmgJaA9DCKTGhJhLjXNAlIaUUpRoFUvIaBZHQK3zIREF4cF1fZQoaAZoCWgPQwjJIeLmFBB0QJSGlFKUaBVL1GgWR0Ct82HjABT5dX2UKGgGaAloD0MIgXwJFdwLc0CUhpRSlGgVS7RoFkdArfN7UI9kjHV9lChoBmgJaA9DCJsg6j5A3nNAlIaUUpRoFUuraBZHQK3ztAymALB1fZQoaAZoCWgPQwgF4J9SJedwQJSGlFKUaBVLlmgWR0Ct87QzUI9ldX2UKGgGaAloD0MIZw5JLVSIckCUhpRSlGgVS75oFkdArfQxqmCROnV9lChoBmgJaA9DCG/0MR9QJXJAlIaUUpRoFUuYaBZHQK30QSPEKmd1fZQoaAZoCWgPQwiRJ0nXTLVyQJSGlFKUaBVLmGgWR0Ct9HL2pQ1rdX2UKGgGaAloD0MIrDb/rzpJckCUhpRSlGgVS8JoFkdArfR5JEpiJHV9lChoBmgJaA9DCK+YEd6eXGVAlIaUUpRoFU3oA2gWR0Ct9LpHy3CsdX2UKGgGaAloD0MIVaAWg4cxc0CUhpRSlGgVS9FoFkdArfTXYlIEsHV9lChoBmgJaA9DCOj500a15XFAlIaUUpRoFUuRaBZHQK303PLxI8R1fZQoaAZoCWgPQwgb8s8MYgRvQJSGlFKUaBVLtmgWR0Ct9P7n5i3HdX2UKGgGaAloD0MIvyhBf+GkckCUhpRSlGgVS65oFkdArfUQOH31z3V9lChoBmgJaA9DCI0Mchfhq3JAlIaUUpRoFUvPaBZHQK31FnfVI7N1fZQoaAZoCWgPQwigNNQoJBdxQJSGlFKUaBVLt2gWR0Ct9RjRUm2LdX2UKGgGaAloD0MIhUTaxl9vc0CUhpRSlGgVS8VoFkdArfWg/cFhX3V9lChoBmgJaA9DCAjlfRxNNW9AlIaUUpRoFUusaBZHQK31p9AHE/B1fZQoaAZoCWgPQwh4X5ULVQlyQJSGlFKUaBVLxGgWR0Ct9bcd5prUdX2UKGgGaAloD0MIbw1sleCjcUCUhpRSlGgVS7hoFkdArfXIrQPZqXV9lChoBmgJaA9DCAcmN4osSHFAlIaUUpRoFUueaBZHQK318FVT72t1fZQoaAZoCWgPQwhVTKWfsE9xQJSGlFKUaBVLuWgWR0Ct9kq8DjiodX2UKGgGaAloD0MIR+UmainEcUCUhpRSlGgVS7FoFkdArfZmtbLU1HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 690, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
lunar_lander_model.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb247ccf115f98597498c76bedf218256a95357cb77ceec864bb4e218f60a03f
|
3 |
+
size 147295
|
lunar_lander_model/data
CHANGED
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,16 +67,16 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 2031616,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1677980481946968919,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMDxrxcG0i6soPXOIA3lTPmhDu4W6T3twAAgD8AAIA/mpgqPQqxMrsiByW+UQtwPVTR1ruSwaS8AACAPwAAgD8AmBs+n43duz4TADtns5O4VdcsvXDHG7oAAIA/AACAP8CxV75fGj0/QIgiPbNyOb+e+ri+WPhtPgAAAAAAAAAAcxqAvb3pKDxRtC0+edE6vqh5QrwHVDg9AAAAAAAAAAAgQQI+vM8CP/PqmrxrXCa/yCypPXqywL0AAAAAAAAAAA3miz4InJE//YFUPjP49L5jg9o+m9t2PAAAAAAAAAAAAE05PRRO0bieGIS5CuwmtQ4BtDuBy504AACAPwAAgD8AlQu9KWRvP89Al73kZ1i/F0GDvbx5qzwAAAAAAAAAAAA5br1cjDA9rJk2PkrBqr5xf5w96o64PQAAAAAAAAAA5hy8PXviirp+q4K540LBtPzgz7krYJY4AAAAAAAAgD+aq1a8osa0P8odKL+tRpU85ddWPPAJ4D0AAAAAAAAAAJWXhr7TagY/LtjmPaEQEr/3r5O+vgx3PgAAAAAAAAAAGs6FvV61vT+ecAK/SXjxPepmtLwvTy2+AAAAAAAAAABmo0I9e+iHutVKjDw82Ci+JWS0PKaHw74AAAAAAACAP2YRez24WZ67I5EhvM/vgTy9Lhq9VUZePQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzQLtDunCc0CUhpRSlIwBbJRLrYwBdJRHQK3n6KvV3EB1fZQoaAZoCWgPQwj4qpUJP9BwQJSGlFKUaBVLjWgWR0Ct5/nlnyuqdX2UKGgGaAloD0MI5xcl6G/MckCUhpRSlGgVS69oFkdAregMOqebu3V9lChoBmgJaA9DCOM48Gq5A3JAlIaUUpRoFUu5aBZHQK3oSYyfthN1fZQoaAZoCWgPQwh2pPrOrylzQJSGlFKUaBVLu2gWR0Ct6F/ChvitdX2UKGgGaAloD0MIdsQhG8idb0CUhpRSlGgVS7NoFkdAreheplz2e3V9lChoBmgJaA9DCEzFxryOpHFAlIaUUpRoFUvGaBZHQK3ofQTmGM51fZQoaAZoCWgPQwjrbp7qUKdxQJSGlFKUaBVL0mgWR0Ct6LrKV6eHdX2UKGgGaAloD0MIjh8qjRg8c0CUhpRSlGgVS7doFkdArejP/o7muHV9lChoBmgJaA9DCBFUjV4NunFAlIaUUpRoFUvKaBZHQK3prv60pmV1fZQoaAZoCWgPQwgX83NDk8ZwQJSGlFKUaBVLr2gWR0Ct6bmKqGUOdX2UKGgGaAloD0MImaCGbyG+cECUhpRSlGgVS6toFkdArenMIgNgB3V9lChoBmgJaA9DCE1p/S0BNnBAlIaUUpRoFUukaBZHQK3pz8w5/9Z1fZQoaAZoCWgPQwgoucMm8iZwQJSGlFKUaBVLr2gWR0Ct6gRK6FufdX2UKGgGaAloD0MIYthhTLqxcECUhpRSlGgVS65oFkdAreoqZfD1oXV9lChoBmgJaA9DCI6SV+dY9nFAlIaUUpRoFUvPaBZHQK3qLiVjZth1fZQoaAZoCWgPQwhpHsAifxJzQJSGlFKUaBVL+WgWR0Ct6kchTwUhdX2UKGgGaAloD0MIZVJDG0CIcECUhpRSlGgVS5BoFkdArepJJAdGRXV9lChoBmgJaA9DCMAjKlQ3bm9AlIaUUpRoFUueaBZHQK3qUoNutOp1fZQoaAZoCWgPQwjrVzofHiFvQJSGlFKUaBVLqGgWR0Ct6lwFkhA4dX2UKGgGaAloD0MI0T5W8Bt4c0CUhpRSlGgVS+BoFkdAreqnbRF7U3V9lChoBmgJaA9DCJhNgGG5pnJAlIaUUpRoFUvDaBZHQK3qu1fE4vN1fZQoaAZoCWgPQwjQDriuWPFwQJSGlFKUaBVLqmgWR0Ct6tD0UXYUdX2UKGgGaAloD0MIWTLH8i4bZkCUhpRSlGgVTegDaBZHQK3rbVDrqt51fZQoaAZoCWgPQwjKTj+oi71wQJSGlFKUaBVLn2gWR0Ct65nGKhtcdX2UKGgGaAloD0MI6ZrJN5uNcUCUhpRSlGgVS7RoFkdArevPgLqlg3V9lChoBmgJaA9DCAZINIGivXJAlIaUUpRoFUuuaBZHQK3r2wdsBQx1fZQoaAZoCWgPQwiQSUbOwmpwQJSGlFKUaBVLpmgWR0Ct7BlZgXuWdX2UKGgGaAloD0MIIXNlUK2scECUhpRSlGgVS8poFkdArewqcLBsRHV9lChoBmgJaA9DCBnmBG1yM3FAlIaUUpRoFUuKaBZHQK3sRgMMI/t1fZQoaAZoCWgPQwjqXFFKCO1xQJSGlFKUaBVLrGgWR0Ct7EcPvrnldX2UKGgGaAloD0MIKSUEq2oCcUCUhpRSlGgVS65oFkdArexLV8Ti83V9lChoBmgJaA9DCDCgF+5cK3JAlIaUUpRoFUvFaBZHQK3sUaMrEtN1fZQoaAZoCWgPQwgLJv4oKt5yQJSGlFKUaBVLuWgWR0Ct7FOKoAGTdX2UKGgGaAloD0MITBb3H5lKckCUhpRSlGgVS65oFkdArexeAy2x6nV9lChoBmgJaA9DCIrMXOBylXJAlIaUUpRoFUvBaBZHQK3sgyvcJt11fZQoaAZoCWgPQwgDlIYahUZxQJSGlFKUaBVLsWgWR0Ct7Lj6vaDgdX2UKGgGaAloD0MIluoCXmYMcUCUhpRSlGgVS7poFkdArezlnM+u/3V9lChoBmgJaA9DCCuiJvp80W5AlIaUUpRoFUumaBZHQK3tOfSQYDV1fZQoaAZoCWgPQwhMT1jigUJzQJSGlFKUaBVLrWgWR0Ct7X4zi0fHdX2UKGgGaAloD0MICft2EpE/c0CUhpRSlGgVS61oFkdAre253C9AX3V9lChoBmgJaA9DCH9pUZ8kL3JAlIaUUpRoFUvAaBZHQK3t/jriVB51fZQoaAZoCWgPQwhQGJRp9EZwQJSGlFKUaBVLrGgWR0Ct7hJlBhQWdX2UKGgGaAloD0MIxjU+k70gcUCUhpRSlGgVS7RoFkdAre4ZKaoddXV9lChoBmgJaA9DCEuTUtCtHXNAlIaUUpRoFUuyaBZHQK3uQQr+YMR1fZQoaAZoCWgPQwj9S1KZYpNxQJSGlFKUaBVLp2gWR0Ct7mjD8+A3dX2UKGgGaAloD0MIUu4+x4d5c0CUhpRSlGgVS8NoFkdAre5z4+KTCHV9lChoBmgJaA9DCITx07i30nJAlIaUUpRoFUu/aBZHQK3udd/J/5N1fZQoaAZoCWgPQwjP9X04iElzQJSGlFKUaBVLvGgWR0Ct7njEFW4mdX2UKGgGaAloD0MIcQSpFLsRcUCUhpRSlGgVS8VoFkdAre6EW/JvHnV9lChoBmgJaA9DCGg8EcQ5cXFAlIaUUpRoFUvJaBZHQK3uiOEug6F1fZQoaAZoCWgPQwhnKO54U7VxQJSGlFKUaBVLsGgWR0Ct7zrR8c+8dX2UKGgGaAloD0MI5UUm4Ff8ckCUhpRSlGgVS9JoFkdAre9H2h7E53V9lChoBmgJaA9DCG082GL3JHJAlIaUUpRoFUumaBZHQK3vYyNXHR11fZQoaAZoCWgPQwj5gas8ARxyQJSGlFKUaBVLmWgWR0Ct73JDeCTVdX2UKGgGaAloD0MIXmiu00iRcUCUhpRSlGgVS4xoFkdArfASvHLidnV9lChoBmgJaA9DCMmQY+uZ4m9AlIaUUpRoFUusaBZHQK3wEa8YhuB1fZQoaAZoCWgPQwhUNqyp7MZyQJSGlFKUaBVLuWgWR0Ct8CZfD1oQdX2UKGgGaAloD0MImZzaGWYbcECUhpRSlGgVS6toFkdArfBpYPoV23V9lChoBmgJaA9DCDZaDvRQeXFAlIaUUpRoFUusaBZHQK3weZMtbs51fZQoaAZoCWgPQwiMTSuFwF9zQJSGlFKUaBVLsmgWR0Ct8I7bUPQOdX2UKGgGaAloD0MIHaz/c5jLcUCUhpRSlGgVS7NoFkdArfCfiBGx2XV9lChoBmgJaA9DCBHGT+NeFnBAlIaUUpRoFUuxaBZHQK3wn3Qla8p1fZQoaAZoCWgPQwgPYmcKnQhzQJSGlFKUaBVL4WgWR0Ct8L07Sy+pdX2UKGgGaAloD0MI+5XOh+fpckCUhpRSlGgVS9NoFkdArfC9WXC0nnV9lChoBmgJaA9DCK+YEd6eL3JAlIaUUpRoFUueaBZHQK3xM9XcQAd1fZQoaAZoCWgPQwgQQGoTJ3ZyQJSGlFKUaBVLvmgWR0Ct8Y8Q7LdOdX2UKGgGaAloD0MIX7Uy4ZeeckCUhpRSlGgVS8VoFkdArfHRh2GIsXV9lChoBmgJaA9DCDRlpx9UHXJAlIaUUpRoFUvBaBZHQK3x1TKkl/p1fZQoaAZoCWgPQwjTwI9qWGJvQJSGlFKUaBVLnGgWR0Ct8g21UlzEdX2UKGgGaAloD0MIhjyCG+kGcUCUhpRSlGgVS7NoFkdArfJHAj6eoXV9lChoBmgJaA9DCDcbKzHPpnJAlIaUUpRoFUu6aBZHQK3yX9vS+g11fZQoaAZoCWgPQwhLr83GCklyQJSGlFKUaBVLomgWR0Ct8pTnRsuWdX2UKGgGaAloD0MIkpIehhYUckCUhpRSlGgVS6toFkdArfKbzwtrbnV9lChoBmgJaA9DCGjQ0D9BBG9AlIaUUpRoFUuvaBZHQK3y0DpTuOV1fZQoaAZoCWgPQwhmTpfFRFByQJSGlFKUaBVLyWgWR0Ct8uxL0z0pdX2UKGgGaAloD0MISwM/qqEFckCUhpRSlGgVS7RoFkdArfL/uuzQeHV9lChoBmgJaA9DCKTGhJhLjXNAlIaUUpRoFUvIaBZHQK3zIREF4cF1fZQoaAZoCWgPQwjJIeLmFBB0QJSGlFKUaBVL1GgWR0Ct82HjABT5dX2UKGgGaAloD0MIgXwJFdwLc0CUhpRSlGgVS7RoFkdArfN7UI9kjHV9lChoBmgJaA9DCJsg6j5A3nNAlIaUUpRoFUuraBZHQK3ztAymALB1fZQoaAZoCWgPQwgF4J9SJedwQJSGlFKUaBVLlmgWR0Ct87QzUI9ldX2UKGgGaAloD0MIZw5JLVSIckCUhpRSlGgVS75oFkdArfQxqmCROnV9lChoBmgJaA9DCG/0MR9QJXJAlIaUUpRoFUuYaBZHQK30QSPEKmd1fZQoaAZoCWgPQwiRJ0nXTLVyQJSGlFKUaBVLmGgWR0Ct9HL2pQ1rdX2UKGgGaAloD0MIrDb/rzpJckCUhpRSlGgVS8JoFkdArfR5JEpiJHV9lChoBmgJaA9DCK+YEd6eXGVAlIaUUpRoFU3oA2gWR0Ct9LpHy3CsdX2UKGgGaAloD0MIVaAWg4cxc0CUhpRSlGgVS9FoFkdArfTXYlIEsHV9lChoBmgJaA9DCOj500a15XFAlIaUUpRoFUuRaBZHQK303PLxI8R1fZQoaAZoCWgPQwgb8s8MYgRvQJSGlFKUaBVLtmgWR0Ct9P7n5i3HdX2UKGgGaAloD0MIvyhBf+GkckCUhpRSlGgVS65oFkdArfUQOH31z3V9lChoBmgJaA9DCI0Mchfhq3JAlIaUUpRoFUvPaBZHQK31FnfVI7N1fZQoaAZoCWgPQwigNNQoJBdxQJSGlFKUaBVLt2gWR0Ct9RjRUm2LdX2UKGgGaAloD0MIhUTaxl9vc0CUhpRSlGgVS8VoFkdArfWg/cFhX3V9lChoBmgJaA9DCAjlfRxNNW9AlIaUUpRoFUusaBZHQK31p9AHE/B1fZQoaAZoCWgPQwh4X5ULVQlyQJSGlFKUaBVLxGgWR0Ct9bcd5prUdX2UKGgGaAloD0MIbw1sleCjcUCUhpRSlGgVS7hoFkdArfXIrQPZqXV9lChoBmgJaA9DCAcmN4osSHFAlIaUUpRoFUueaBZHQK318FVT72t1fZQoaAZoCWgPQwhVTKWfsE9xQJSGlFKUaBVLuWgWR0Ct9kq8DjiodX2UKGgGaAloD0MIR+UmainEcUCUhpRSlGgVS7FoFkdArfZmtbLU1HVlLg=="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 690,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
lunar_lander_model/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:066a6304ef3363e20482fe97ae8ddf39b7dff6840cda0c2489318e36114699a6
|
3 |
size 87929
|
lunar_lander_model/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b3ae9ed2e468cb5c6e8f14cd676fbbe46363cad349d8d9d9e569e7fb7d64ff5
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 288.0816133787968, "std_reward": 17.743233130397847, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-05T02:31:50.113795"}
|