scheiblr commited on
Commit
a2ef7c7
1 Parent(s): 92cb884

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -3
README.md CHANGED
@@ -1,3 +1,109 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - de
5
+ tags:
6
+ - RoBERTa
7
+ - GottBERT
8
+ - BERT
9
+ ---
10
+ # GottBERT: A pure German language model
11
+
12
+ GottBERT is the first German-only RoBERTa model, pre-trained on the German portion of the first released OSCAR dataset. This model aims to provide enhanced natural language processing (NLP) performance for the German language across various tasks, including Named Entity Recognition (NER), text classification, and natural language inference (NLI). GottBERT has been developed in two versions: a **base model** and a **large model**, tailored specifically for German-language tasks.
13
+
14
+ - **Model Type**: RoBERTa
15
+ - **Language**: German
16
+ - **Base Model**: 12 layers, 125 million parameters
17
+ - **Large Model**: 24 layers, 355 million parameters
18
+ - **License**: MIT
19
+
20
+ ---
21
+
22
+ ## Pretraining Details
23
+
24
+ - **Corpus**: German portion of the OSCAR dataset (Common Crawl).
25
+ - **Data Size**:
26
+ - Unfiltered: 145GB (~459 million documents)
27
+ - Filtered: 121GB (~382 million documents)
28
+ - **Preprocessing**: Filtering included correcting encoding errors (e.g., erroneous umlauts), removing spam and non-German documents using language detection and syntactic filtering.
29
+
30
+ ### Filtering Metrics
31
+ - **Stopword Ratio**: Detects spam and meaningless content.
32
+ - **Punctuation Ratio**: Detects abnormal punctuation patterns.
33
+ - **Upper Token Ratio**: Identifies documents with excessive uppercase tokens (often noisy content).
34
+
35
+ ## **Training Configuration**
36
+ - **Framework**: [Fairseq](https://github.com/scheiblr/fairseq/tree/TPUv4_very_old)
37
+ - **Hardware**:
38
+ - Base Model: 256 TPUv3 pod/128 TPUv4 pod
39
+ - Large Model: 128 TPUv4 pod
40
+ - **Training Time**:
41
+ - Base Model: 1.2 days
42
+ - Large Model: 5.7 days
43
+ - **Batch Size**: 8k tokens
44
+ - **Learning Rate**:
45
+ - Base: Peak LR = 0.0004
46
+ - Large: Peak LR = 0.00015
47
+ - **Training Iterations**: 100k steps with a 10k warm-up phase
48
+
49
+ ## Evaluation and Results
50
+ GottBERT was evaluated across various downstream tasks:
51
+ - **NER**: CoNLL 2003, GermEval 2014
52
+ - **Text Classification**: GermEval 2018 (coarse & fine), 10kGNAD
53
+ - **NLI**: German subset of XNLI
54
+
55
+ Mertics:
56
+ - **NER and Text Classification**: F1 Score
57
+ - **NLI**: Accuracy
58
+
59
+
60
+ Details:
61
+ - **bold** values indicate the best performing model within one architecure (base, large), <ins>undescored</ins> values the second best.
62
+
63
+
64
+ | Model | Accuracy NLI | GermEval\_14 F1 | CoNLL F1 | Coarse F1 | Fine F1 | 10kGNAD F1 |
65
+ |-------------------------------------|--------------|----------------|----------|-----------|---------|------------|
66
+ | [GottBERT_base_best](https://huggingface.co/TUM/GottBERT_base_best) | 80.82 | 87.55 | <ins>85.93</ins> | 78.17 | 53.30 | 89.64 |
67
+ | [GottBERT_base_last](https://huggingface.co/TUM/GottBERT_base_last) | 81.04 | 87.48 | 85.61 | <ins>78.18</ins> | **53.92** | 90.27 |
68
+ | [GottBERT_filtered_base_best](https://huggingface.co/TUM/GottBERT_filtered_base_best) | 80.56 | <ins>87.57</ins> | **86.14** | **78.65** | 52.82 | 89.79 |
69
+ | [GottBERT_filtered_base_last](https://huggingface.co/TUM/GottBERT_filtered_base_last) | 80.74 | **87.59** | 85.66 | 78.08 | 52.39 | 89.92 |
70
+ | GELECTRA_base | **81.70** | 86.91 | 85.37 | 77.26 | 50.07 | 89.02 |
71
+ | GBERT_base | 80.06 | 87.24 | 85.16 | 77.37 | 51.51 | **90.30** |
72
+ | dbmdzBERT | 68.12 | 86.82 | 85.15 | 77.46 | 52.07 | **90.34** |
73
+ | GermanBERT | 78.16 | 86.53 | 83.87 | 74.81 | 47.78 | 90.18 |
74
+ | XLM-R_base | 79.76 | 86.14 | 84.46 | 77.13 | 50.54 | 89.81 |
75
+ | mBERT | 77.03 | 86.67 | 83.18 | 73.54 | 48.32 | 88.90 |
76
+ | [GottBERT_large](https://huggingface.co/TUM/GottBERT_large) | 82.46 | 88.20 | <ins>86.78</ins> | 79.40 | 54.61 | 90.24 |
77
+ | [GottBERT_filtered_large_best](https://huggingface.co/TUM/GottBERT_filtered_large_best) | 83.31 | 88.13 | 86.30 | 79.32 | 54.70 | 90.31 |
78
+ | [GottBERT_filtered_large_last](https://huggingface.co/TUM/GottBERT_filtered_large_last) | 82.79 | <ins>88.27</ins> | 86.28 | 78.96 | 54.72 | 90.17 |
79
+ | GELECTRA_large | **86.33** | <ins>88.72</ins> | <ins>86.78</ins> | **81.28** | <ins>56.17</ins> | **90.97** |
80
+ | GBERT_large | <ins>84.21</ins> | <ins>88.72</ins> | **87.19** | <ins>80.84</ins> | **57.37** | <ins>90.74</ins> |
81
+ | XLM-R_large | 84.07 | **88.83** | 86.54 | 79.05 | 55.06 | 90.17 |
82
+
83
+
84
+ ## Model Architecture
85
+ - **Base Model**: 12 layers, 125M parameters, 52k token vocabulary.
86
+ - **Large Model**: 24 layers, 355M parameters, 52k token vocabulary.
87
+
88
+ ### Tokenizer
89
+ - **Type**: GPT-2 Byte-Pair Encoding (BPE)
90
+ - **Vocabulary Size**: 52k subword tokens
91
+ - **Trained on**: 40GB subsample of the unfiltered German OSCAR corpus.
92
+
93
+ ## Limitations
94
+ - **Filtered vs Unfiltered Data**: Minor improvements seen with filtered data, but not significant enough to justify filtering in every case.
95
+ - **Computation Limitations**: Fixed memory allocation on TPUs required processing data as a single stream, unlike GPU training which preserves document boundaries. Training was performed in 32-bit mode due to framework limitations, increasing memory usage.
96
+
97
+ ## Citations
98
+ If you use GottBERT in your research, please cite the following paper:
99
+ ```bibtex
100
+ @misc{scheible2020gottbertpuregermanlanguage,
101
+ title={GottBERT: a pure German Language Model},
102
+ author={Raphael Scheible and Fabian Thomczyk and Patric Tippmann and Victor Jaravine and Martin Boeker},
103
+ year={2020},
104
+ eprint={2012.02110},
105
+ archivePrefix={arXiv},
106
+ primaryClass={cs.CL},
107
+ url={https://arxiv.org/abs/2012.02110},
108
+ }
109
+ ```