|
import os
|
|
import math
|
|
import numpy as np
|
|
import cv2
|
|
from torchvision.utils import make_grid
|
|
|
|
|
|
def tensor2img(tensor, out_type=np.uint8, min_max=(-1, 1)):
|
|
'''
|
|
Converts a torch Tensor into an image Numpy array
|
|
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
|
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
|
'''
|
|
tensor = tensor.squeeze().float().cpu().clamp_(*min_max)
|
|
tensor = (tensor - min_max[0]) / \
|
|
(min_max[1] - min_max[0])
|
|
n_dim = tensor.dim()
|
|
if n_dim == 4:
|
|
n_img = len(tensor)
|
|
img_np = make_grid(tensor, nrow=int(
|
|
math.sqrt(n_img)), normalize=False).numpy()
|
|
img_np = np.transpose(img_np, (1, 2, 0))
|
|
elif n_dim == 3:
|
|
img_np = tensor.numpy()
|
|
img_np = np.transpose(img_np, (1, 2, 0))
|
|
elif n_dim == 2:
|
|
img_np = tensor.numpy()
|
|
else:
|
|
raise TypeError(
|
|
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
|
if out_type == np.uint8:
|
|
img_np = (img_np * 255.0).round()
|
|
|
|
return img_np.astype(out_type)
|
|
|
|
|
|
def save_img(img, img_path, mode='RGB'):
|
|
cv2.imwrite(img_path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
|
|
|
|
|
|
|
|
def calculate_psnr(img1, img2):
|
|
|
|
img1 = img1.astype(np.float64)
|
|
img2 = img2.astype(np.float64)
|
|
mse = np.mean((img1 - img2)**2)
|
|
if mse == 0:
|
|
return float('inf')
|
|
return 20 * math.log10(255.0 / math.sqrt(mse))
|
|
|
|
|
|
def ssim(img1, img2):
|
|
C1 = (0.01 * 255)**2
|
|
C2 = (0.03 * 255)**2
|
|
|
|
img1 = img1.astype(np.float64)
|
|
img2 = img2.astype(np.float64)
|
|
kernel = cv2.getGaussianKernel(11, 1.5)
|
|
window = np.outer(kernel, kernel.transpose())
|
|
|
|
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]
|
|
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
|
mu1_sq = mu1**2
|
|
mu2_sq = mu2**2
|
|
mu1_mu2 = mu1 * mu2
|
|
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
|
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
|
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
|
(sigma1_sq + sigma2_sq + C2))
|
|
return ssim_map.mean()
|
|
|
|
|
|
def calculate_ssim(img1, img2):
|
|
'''calculate SSIM
|
|
the same outputs as MATLAB's
|
|
img1, img2: [0, 255]
|
|
'''
|
|
if not img1.shape == img2.shape:
|
|
raise ValueError('Input images must have the same dimensions.')
|
|
if img1.ndim == 2:
|
|
return ssim(img1, img2)
|
|
elif img1.ndim == 3:
|
|
if img1.shape[2] == 3:
|
|
ssims = []
|
|
for i in range(3):
|
|
ssims.append(ssim(img1, img2))
|
|
return np.array(ssims).mean()
|
|
elif img1.shape[2] == 1:
|
|
return ssim(np.squeeze(img1), np.squeeze(img2))
|
|
else:
|
|
raise ValueError('Wrong input image dimensions.')
|
|
|