English
art
Stable Diffusion
moyanwang commited on
Commit
75c208c
·
1 Parent(s): ddb8777

remove unuse code

Browse files
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ *.un~
2
+ *.pyc
3
+ __pycache__
demo.py CHANGED
@@ -1,11 +1,12 @@
1
  from lyraSD import LyraSD
2
 
3
  t2imodel = LyraSD("text2img", "./sd1.5-engine")
4
- t2imodel.inference(prompt="a red ballon flying in the sky")
5
 
6
 
7
  from PIL import Image
8
  i2imodel = LyraSD("img2img", "./sd1.5-engine")
9
  demo_img = Image.open("output/text2img_demo.jpg")
10
- i2imodel.inference(prompt="comic style", image=demo_img)
 
11
 
 
1
  from lyraSD import LyraSD
2
 
3
  t2imodel = LyraSD("text2img", "./sd1.5-engine")
4
+ t2imodel.inference(prompt="A fantasy landscape, trending on artstation", use_super=True)
5
 
6
 
7
  from PIL import Image
8
  i2imodel = LyraSD("img2img", "./sd1.5-engine")
9
  demo_img = Image.open("output/text2img_demo.jpg")
10
+ i2imodel.inference(prompt="A fantasy landscape, trending on artstation",
11
+ image=demo_img)
12
 
lyraSD/muse_trt/models.py CHANGED
@@ -259,44 +259,6 @@ class VAEEncoder(BaseModel):
259
  batch_size, image_height, image_width)
260
  return torch.randn(batch_size, 3, image_height, image_width, dtype=torch.float32, device=self.device)
261
 
262
- def optimize(self, onnx_graph, minimal_optimization=False):
263
- enable_optimization = not minimal_optimization
264
-
265
- # Decompose InstanceNormalization into primitive Ops
266
- bRemoveInstanceNorm = enable_optimization
267
- # Remove Cast Node to optimize Attention block
268
- bRemoveCastNode = enable_optimization
269
- # Insert GroupNormalization Plugin
270
- bGroupNormPlugin = enable_optimization
271
-
272
- opt = Optimizer(onnx_graph, verbose=self.verbose)
273
- opt.info('VAE Encoder: original')
274
-
275
- if bRemoveInstanceNorm:
276
- num_instancenorm_replaced = opt.decompose_instancenorms()
277
- opt.info('VAE Encoder: replaced ' +
278
- str(num_instancenorm_replaced)+' InstanceNorms')
279
-
280
- if bRemoveCastNode:
281
- num_casts_removed = opt.remove_casts()
282
- opt.info('VAE Encoder: removed '+str(num_casts_removed)+' casts')
283
-
284
- opt.cleanup()
285
- opt.info('VAE Encoder: cleanup')
286
- opt.fold_constants()
287
- opt.info('VAE Encoder: fold constants')
288
- opt.infer_shapes()
289
- opt.info('VAE Encoder: shape inference')
290
-
291
- if bGroupNormPlugin:
292
- num_groupnorm_inserted = opt.insert_groupnorm_plugin()
293
- opt.info('VAE Encoder: inserted '+str(num_groupnorm_inserted) +
294
- ' GroupNorm plugins')
295
-
296
- onnx_opt_graph = opt.cleanup(return_onnx=True)
297
- opt.info('VAE Encoder: final')
298
- return onnx_opt_graph
299
-
300
 
301
  class VAEDecoder(BaseModel):
302
  def get_model(self):
@@ -345,471 +307,4 @@ class VAEDecoder(BaseModel):
345
  def get_sample_input(self, batch_size, image_height, image_width):
346
  latent_height, latent_width = self.check_dims(
347
  batch_size, image_height, image_width)
348
- return torch.randn(batch_size, 4, latent_height, latent_width, dtype=torch.float32, device=self.device)
349
-
350
- def optimize(self, onnx_graph, minimal_optimization=False):
351
- enable_optimization = not minimal_optimization
352
-
353
- # Decompose InstanceNormalization into primitive Ops
354
- bRemoveInstanceNorm = enable_optimization
355
- # Remove Cast Node to optimize Attention block
356
- bRemoveCastNode = enable_optimization
357
- # Insert GroupNormalization Plugin
358
- bGroupNormPlugin = enable_optimization
359
-
360
- opt = Optimizer(onnx_graph, verbose=self.verbose)
361
- opt.info('VAE Decoder: original')
362
-
363
- if bRemoveInstanceNorm:
364
- num_instancenorm_replaced = opt.decompose_instancenorms()
365
- opt.info('VAE Decoder: replaced ' +
366
- str(num_instancenorm_replaced)+' InstanceNorms')
367
-
368
- if bRemoveCastNode:
369
- num_casts_removed = opt.remove_casts()
370
- opt.info('VAE Decoder: removed '+str(num_casts_removed)+' casts')
371
-
372
- opt.cleanup()
373
- opt.info('VAE Decoder: cleanup')
374
- opt.fold_constants()
375
- opt.info('VAE Decoder: fold constants')
376
- opt.infer_shapes()
377
- opt.info('VAE Decoder: shape inference')
378
-
379
- if bGroupNormPlugin:
380
- num_groupnorm_inserted = opt.insert_groupnorm_plugin()
381
- opt.info('VAE Decoder: inserted '+str(num_groupnorm_inserted) +
382
- ' GroupNorm plugins')
383
-
384
- onnx_opt_graph = opt.cleanup(return_onnx=True)
385
- opt.info('VAE Decoder: final')
386
- return onnx_opt_graph
387
-
388
-
389
- class SuperModelX4(nn.Module):
390
- def __init__(self, model_dir, scale=4, pre_pad=0):
391
- super().__init__()
392
- self.scale = scale
393
- self.pre_pad = pre_pad
394
-
395
- rrdb = RealESRGAN(model_dir=model_dir,
396
- model_name="RealESRGAN_x4plus_anime_6B").upsampler.model
397
- self.rrdb = rrdb.eval()
398
-
399
- def forward(self, x):
400
- x = x / 255.
401
- x = F.pad(x, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
402
- x = self.rrdb(x)
403
- _, _, h, w = x.size()
404
- x = x[:, :, 0:h-self.pre_pad * self.scale, 0:w-self.pre_pad*self.scale]
405
- x = x.clamp(0, 1)
406
- x = (x * 255).round()
407
- return x
408
-
409
-
410
- class SuperResX4():
411
- def __init__(
412
- self,
413
- local_model_path=None,
414
- fp16=True,
415
- device='cuda',
416
- verbose=True,
417
- max_batch_size=8
418
- ):
419
- self.fp16 = fp16
420
- self.device = device
421
- self.verbose = verbose
422
- self.local_model_path = local_model_path
423
-
424
- # Defaults
425
- self.min_batch = 1
426
- self.max_batch = max_batch_size
427
- self.min_height = 64
428
- self.max_height = 640
429
- self.min_width = 64
430
- self.max_width = 640
431
-
432
- def get_model(self):
433
- model = SuperModelX4(self.local_model_path, scale=4, pre_pad=0).to(device=self.device)
434
- if self.fp16:
435
- model = model.half()
436
- return model
437
-
438
- def get_input_names(self):
439
- return ['input_image']
440
-
441
- def get_output_names(self):
442
- return ['output_image']
443
-
444
- def get_dynamic_axes(self):
445
- return {
446
- 'input_image': {0: 'B', },
447
- 'output_image': {0: 'B', }
448
- }
449
-
450
- def check_dims(self, batch_size, image_height, image_width):
451
- assert batch_size >= self.min_batch and batch_size <= self.max_batch
452
- return (image_height, image_width)
453
-
454
- def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
455
- min_batch = batch_size if static_batch else self.min_batch
456
- max_batch = batch_size if static_batch else self.max_batch
457
- min_image_height = image_height if static_shape else self.min_height
458
- max_image_height = image_height if static_shape else self.max_height
459
- min_image_width = image_width if static_shape else self.min_width
460
- max_image_width = image_width if static_shape else self.max_width
461
- return (min_batch, max_batch, min_image_height, max_image_height, min_image_width, max_image_width)
462
-
463
- def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
464
- image_height, image_width = self.check_dims(
465
- batch_size, image_height, image_width)
466
- min_batch, max_batch, min_image_height, max_image_height, min_image_width, max_image_width = \
467
- self.get_minmax_dims(batch_size, image_height,
468
- image_width, static_batch, static_shape)
469
- return {
470
- 'input_image': [(min_batch, 3, min_image_height, min_image_width), (batch_size, 3, image_height, image_width), (max_batch, 3, max_image_height, max_image_width)]
471
- }
472
-
473
- def get_shape_dict(self, batch_size, image_height, image_width):
474
- image_height, image_width = self.check_dims(
475
- batch_size, image_height, image_width)
476
- return {
477
- 'input_image': (batch_size, 3, image_height, image_width),
478
- 'output_image': (batch_size, 3, image_height*4, image_width*4),
479
- }
480
-
481
- def get_sample_input(self, batch_size, image_height, image_width):
482
- dtype = torch.float16 if self.fp16 else torch.float32
483
- image_height, image_width = self.check_dims(
484
- batch_size, image_height, image_width)
485
- return torch.randn(batch_size, 3, image_height, image_width, dtype=dtype, device=self.device)
486
-
487
- def optimize(self, onnx_graph, minimal_optimization=False):
488
- enable_optimization = not minimal_optimization
489
-
490
- # Decompose InstanceNormalization into primitive Ops
491
- bRemoveInstanceNorm = enable_optimization
492
- # Remove Cast Node to optimize Attention block
493
- bRemoveCastNode = enable_optimization
494
- # Insert GroupNormalization Plugin
495
- bGroupNormPlugin = enable_optimization
496
-
497
- opt = Optimizer(onnx_graph, verbose=self.verbose)
498
- opt.info('SuperX4: original')
499
-
500
- if bRemoveInstanceNorm:
501
- num_instancenorm_replaced = opt.decompose_instancenorms()
502
- opt.info('SuperX4: replaced ' +
503
- str(num_instancenorm_replaced)+' InstanceNorms')
504
-
505
- if bRemoveCastNode:
506
- num_casts_removed = opt.remove_casts()
507
- opt.info('SuperX4: removed '+str(num_casts_removed)+' casts')
508
-
509
- opt.cleanup()
510
- opt.info('SuperX4: cleanup')
511
- opt.fold_constants()
512
- opt.info('SuperX4: fold constants')
513
- opt.infer_shapes()
514
- opt.info('SuperX4: shape inference')
515
-
516
- if bGroupNormPlugin:
517
- num_groupnorm_inserted = opt.insert_groupnorm_plugin()
518
- opt.info('SuperX4: inserted '+str(num_groupnorm_inserted) +
519
- ' GroupNorm plugins')
520
-
521
- onnx_opt_graph = opt.cleanup(return_onnx=True)
522
- opt.info('SuperX4: final')
523
- return onnx_opt_graph
524
-
525
-
526
- class FusedControlNetModule(nn.Module):
527
- def __init__(self, base_model_dir, control_model_dir, fp16=True) -> None:
528
- super().__init__()
529
- self.device = 'cuda:0'
530
- self.fp16 = fp16
531
- model_opts = {'revision': 'fp16',
532
- 'torch_dtype': torch.float16} if self.fp16 else {}
533
- self.base = UNet2DConditionModel.from_pretrained(
534
- base_model_dir, subfolder="unet",
535
- **model_opts
536
- ).eval().to(self.device)
537
- self.control = ControlNetModel.from_pretrained(
538
- control_model_dir,
539
- **model_opts
540
- ).eval().to(self.device)
541
-
542
- def forward(self, sample, timestep, encoder_hidden_states, controlnet_cond):
543
- controlnet_conditioning_scale: float = 1.0
544
- down_block_res_samples, mid_block_res_sample = self.control(
545
- sample,
546
- timestep,
547
- encoder_hidden_states=encoder_hidden_states,
548
- controlnet_cond=controlnet_cond,
549
- return_dict=False,
550
- )
551
-
552
- down_block_res_samples = [
553
- down_block_res_sample * controlnet_conditioning_scale
554
- for down_block_res_sample in down_block_res_samples
555
- ]
556
- mid_block_res_sample *= controlnet_conditioning_scale
557
-
558
- # predict the noise residual
559
- noise_pred = self.base(
560
- sample,
561
- timestep,
562
- encoder_hidden_states=encoder_hidden_states,
563
- down_block_additional_residuals=down_block_res_samples,
564
- mid_block_additional_residual=mid_block_res_sample,
565
- ).sample
566
-
567
- return noise_pred
568
-
569
-
570
- class FusedControlNet(BaseModel):
571
- def __init__(self, local_model_path=None, controlnet_model_path=None, hf_token=None, text_maxlen=77,
572
- embedding_dim=768, fp16=False, device='cuda', verbose=True, max_batch_size=16):
573
- super().__init__(local_model_path, hf_token, text_maxlen, embedding_dim, fp16, device, verbose, max_batch_size)
574
- # if controlnet_model_path is None:
575
- # raise ValueError("Must give controlnet_model_path for FusedControlNet to load control net")
576
- self.controlnet_model_path = controlnet_model_path
577
- self.min_height = 256
578
- self.max_height = 1024
579
- self.min_width = 256
580
- self.max_width = 1024
581
-
582
- def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
583
- r = list(super().get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape))
584
- min_height = image_height if static_shape else self.min_height
585
- max_height = image_height if static_shape else self.max_height
586
- min_width = image_width if static_shape else self.min_width
587
- max_width = image_width if static_shape else self.max_width
588
- r.extend([min_height, max_height, min_width, max_width])
589
- return r
590
-
591
- def get_model(self):
592
- model = FusedControlNetModule(
593
- base_model_dir=self.local_model_path,
594
- control_model_dir=self.controlnet_model_path,
595
- fp16=self.fp16
596
- )
597
- return model
598
-
599
- def get_input_names(self):
600
- return ['sample', 'timestep', 'encoder_hidden_states', 'controlnet_cond']
601
-
602
- def get_output_names(self):
603
- return ['latent']
604
-
605
- def get_dynamic_axes(self):
606
- return {
607
- 'sample': {0: '2B', 2: 'H', 3: 'W'},
608
- 'encoder_hidden_states': {0: '2B'},
609
- 'controlnet_cond': {0: '2B', 2: '8H', 3: '8W'}, # controlnet_cond is 8X sample and lantent
610
- 'latent': {0: '2B', 2: 'H', 3: 'W'}
611
- }
612
-
613
- def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
614
- latent_height, latent_width = self.check_dims(
615
- batch_size, image_height, image_width)
616
- min_batch, max_batch, min_latent_height, max_latent_height, min_latent_width, max_latent_width, min_height, max_height, min_width, max_width = \
617
- self.get_minmax_dims(batch_size, image_height,
618
- image_width, static_batch, static_shape)
619
- return {
620
- 'sample': [(2*min_batch, 4, min_latent_height, min_latent_width), (2*batch_size, 4, latent_height, latent_width), (2*max_batch, 4, max_latent_height, max_latent_width)],
621
- 'encoder_hidden_states': [(2*min_batch, self.text_maxlen, self.embedding_dim), (2*batch_size, self.text_maxlen, self.embedding_dim), (2*max_batch, self.text_maxlen, self.embedding_dim)],
622
- 'controlnet_cond': [(2*min_batch, 3, min_height, min_width), (2*batch_size, 3, image_height, image_width), (2*max_batch, 3, max_height, max_width)]
623
- }
624
-
625
- def get_shape_dict(self, batch_size, image_height, image_width):
626
- latent_height, latent_width = self.check_dims(
627
- batch_size, image_height, image_width)
628
- return {
629
- 'sample': (2*batch_size, 4, latent_height, latent_width),
630
- 'encoder_hidden_states': (2*batch_size, self.text_maxlen, self.embedding_dim),
631
- 'controlnet_cond': (2*batch_size, 3, image_height, image_width),
632
- 'latent': (2*batch_size, 4, latent_height, latent_width)
633
- }
634
-
635
- def get_sample_input(self, batch_size, image_height, image_width):
636
- latent_height, latent_width = self.check_dims(
637
- batch_size, image_height, image_width)
638
- dtype = torch.float16 if self.fp16 else torch.float32
639
- return (
640
- torch.randn(2*batch_size, 4, latent_height, latent_width,
641
- dtype=torch.float32, device=self.device), # sample
642
- torch.tensor([1.], dtype=torch.float32, device=self.device), # timestep
643
- torch.randn(2*batch_size, self.text_maxlen, # encoder_hidden_states
644
- self.embedding_dim, dtype=dtype, device=self.device),
645
- torch.randn(2*batch_size, 3, image_height, image_width,
646
- dtype=torch.float32, device=self.device) # controlnet_cond
647
- )
648
-
649
- def optimize(self, onnx_graph, minimal_optimization=False):
650
- class_name = self.__class__.__name__
651
-
652
- enable_optimization = not minimal_optimization
653
-
654
- # Decompose InstanceNormalization into primitive Ops
655
- bRemoveInstanceNorm = enable_optimization
656
- # Remove Cast Node to optimize Attention block
657
- bRemoveCastNode = enable_optimization
658
- # Remove parallel Swish ops
659
- bRemoveParallelSwish = enable_optimization
660
- # Adjust the bias to be the second input to the Add ops
661
- bAdjustAddNode = enable_optimization
662
- # Change Resize node to take size instead of scale
663
- bResizeFix = enable_optimization
664
-
665
- # Common override for disabling all plugins below
666
- bDisablePlugins = minimal_optimization
667
- # Use multi-head attention Plugin
668
- bMHAPlugin = True
669
- # Use multi-head cross attention Plugin
670
- bMHCAPlugin = True
671
- # Insert GroupNormalization Plugin
672
- bGroupNormPlugin = True
673
- # Insert LayerNormalization Plugin
674
- bLayerNormPlugin = True
675
- # Insert Split+GeLU Plugin
676
- bSplitGeLUPlugin = True
677
- # Replace BiasAdd+ResidualAdd+SeqLen2Spatial with plugin
678
- bSeqLen2SpatialPlugin = True
679
-
680
- opt = Optimizer(onnx_graph, verbose=self.verbose)
681
- opt.info(f'{class_name}: original')
682
-
683
- if bRemoveInstanceNorm:
684
- num_instancenorm_replaced = opt.decompose_instancenorms()
685
- opt.info(f'{class_name}: replaced ' +
686
- str(num_instancenorm_replaced)+' InstanceNorms')
687
-
688
- if bRemoveCastNode:
689
- num_casts_removed = opt.remove_casts()
690
- opt.info(f'{class_name}: removed '+str(num_casts_removed)+' casts')
691
-
692
- if bRemoveParallelSwish:
693
- num_parallel_swish_removed = opt.remove_parallel_swish()
694
- opt.info(f'{class_name}: removed ' +
695
- str(num_parallel_swish_removed)+' parallel swish ops')
696
-
697
- if bAdjustAddNode:
698
- num_adjust_add = opt.adjustAddNode()
699
- opt.info(f'{class_name}: adjusted '+str(num_adjust_add)+' adds')
700
-
701
- if bResizeFix:
702
- num_resize_fix = opt.resize_fix()
703
- opt.info(f'{class_name}: fixed '+str(num_resize_fix)+' resizes')
704
-
705
- opt.cleanup()
706
- opt.info(f'{class_name}: cleanup')
707
- opt.fold_constants()
708
- opt.info(f'{class_name}: fold constants')
709
- opt.infer_shapes()
710
- opt.info(f'{class_name}: shape inference')
711
-
712
- num_heads = 8
713
- if bMHAPlugin and not bDisablePlugins:
714
- num_fmha_inserted = opt.insert_fmha_plugin(num_heads)
715
- opt.info(f'{class_name}: inserted '+str(num_fmha_inserted)+' fMHA plugins')
716
-
717
- if bMHCAPlugin and not bDisablePlugins:
718
- props = cudart.cudaGetDeviceProperties(0)[1]
719
- sm = props.major * 10 + props.minor
720
- num_fmhca_inserted = opt.insert_fmhca_plugin(num_heads, sm)
721
- opt.info(f'{class_name}: inserted '+str(num_fmhca_inserted)+' fMHCA plugins')
722
-
723
- if bGroupNormPlugin and not bDisablePlugins:
724
- num_groupnorm_inserted = opt.insert_groupnorm_plugin()
725
- opt.info(f'{class_name}: inserted '+str(num_groupnorm_inserted) +
726
- ' GroupNorm plugins')
727
-
728
- if bLayerNormPlugin and not bDisablePlugins:
729
- num_layernorm_inserted = opt.insert_layernorm_plugin()
730
- opt.info(f'{class_name}: inserted '+str(num_layernorm_inserted) +
731
- ' LayerNorm plugins')
732
-
733
- if bSplitGeLUPlugin and not bDisablePlugins:
734
- num_splitgelu_inserted = opt.insert_splitgelu_plugin()
735
- opt.info(f'{class_name}: inserted '+str(num_splitgelu_inserted) +
736
- ' SplitGeLU plugins')
737
-
738
- if bSeqLen2SpatialPlugin and not bDisablePlugins:
739
- num_seq2spatial_inserted = opt.insert_seq2spatial_plugin()
740
- opt.info(f'{class_name}: inserted '+str(num_seq2spatial_inserted) +
741
- ' SeqLen2Spatial plugins')
742
-
743
- onnx_opt_graph = opt.cleanup(return_onnx=True)
744
- opt.info(f'{class_name}: final')
745
- return onnx_opt_graph
746
-
747
-
748
- class ControlNetModule(nn.Module):
749
- def __init__(self, control_model_dir, fp16=True) -> None:
750
- super().__init__()
751
- self.device = 'cuda:0'
752
- self.fp16 = fp16
753
- model_opts = {'revision': 'fp16',
754
- 'torch_dtype': torch.float16} if self.fp16 else {}
755
- self.control = ControlNetModel.from_pretrained(
756
- control_model_dir,
757
- **model_opts
758
- ).eval().to(self.device)
759
-
760
- def forward(self, sample, timestep, encoder_hidden_states, controlnet_cond):
761
- controlnet_conditioning_scale: float = 1.0
762
- down_block_res_samples, mid_block_res_sample = self.control(
763
- sample,
764
- timestep,
765
- encoder_hidden_states=encoder_hidden_states,
766
- controlnet_cond=controlnet_cond,
767
- return_dict=False,
768
- )
769
- down_block_res_samples = [
770
- down_block_res_sample * controlnet_conditioning_scale
771
- for down_block_res_sample in down_block_res_samples
772
- ]
773
- mid_block_res_sample *= controlnet_conditioning_scale
774
- # @vane: currently, only retun mid_blocks_res_sample: (B, 1280, height//8//8, width//8//8)
775
- # down_block_res_samples is a tensor tuple that length is 12.
776
- # it will be flatten to 12 nodes if we return the down_block_res_samples
777
- return mid_block_res_sample
778
-
779
-
780
- class ControlNet(FusedControlNet):
781
- def __init__(self, local_model_path=None, controlnet_model_path=None, hf_token=None, text_maxlen=77,
782
- embedding_dim=768, fp16=False, device='cuda', verbose=True, max_batch_size=16):
783
- super().__init__(local_model_path, controlnet_model_path, hf_token,
784
- text_maxlen, embedding_dim, fp16, device, verbose, max_batch_size)
785
-
786
- def get_model(self):
787
- model = ControlNetModule(
788
- control_model_dir=self.controlnet_model_path,
789
- fp16=self.fp16
790
- )
791
- return model
792
-
793
- def get_input_names(self):
794
- return ['sample', 'timestep', 'encoder_hidden_states', 'controlnet_cond']
795
-
796
- def get_output_names(self):
797
- return ['mids']
798
-
799
- def get_dynamic_axes(self):
800
- return {
801
- 'sample': {0: '2B', 2: '8H', 3: '8W'},
802
- 'encoder_hidden_states': {0: '2B'},
803
- 'controlnet_cond': {0: '2B', 2: '16H', 3: '16W'},
804
- 'mids': {0: '2B', 2: 'H', 3: 'W'}
805
- }
806
-
807
- def get_shape_dict(self, batch_size, image_height, image_width):
808
- latent_height, latent_width = self.check_dims(
809
- batch_size, image_height, image_width)
810
- return {
811
- 'sample': (2*batch_size, 4, latent_height, latent_width),
812
- 'encoder_hidden_states': (2*batch_size, self.text_maxlen, self.embedding_dim),
813
- 'controlnet_cond': (2*batch_size, 3, image_height, image_width),
814
- 'mids': (2*batch_size, 1280, latent_height//8, latent_width//8)
815
- }
 
259
  batch_size, image_height, image_width)
260
  return torch.randn(batch_size, 3, image_height, image_width, dtype=torch.float32, device=self.device)
261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262
 
263
  class VAEDecoder(BaseModel):
264
  def get_model(self):
 
307
  def get_sample_input(self, batch_size, image_height, image_width):
308
  latent_height, latent_width = self.check_dims(
309
  batch_size, image_height, image_width)
310
+ return torch.randn(batch_size, 4, latent_height, latent_width, dtype=torch.float32, device=self.device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
output/sd-img2img-0.jpg CHANGED
output/sd-text2img-0.jpg CHANGED
output/text2img_demo.jpg CHANGED