moyanwang
commited on
Commit
·
75c208c
1
Parent(s):
ddb8777
remove unuse code
Browse files- .gitignore +3 -0
- demo.py +3 -2
- lyraSD/muse_trt/models.py +1 -506
- output/sd-img2img-0.jpg +0 -0
- output/sd-text2img-0.jpg +0 -0
- output/text2img_demo.jpg +0 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
*.un~
|
2 |
+
*.pyc
|
3 |
+
__pycache__
|
demo.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
from lyraSD import LyraSD
|
2 |
|
3 |
t2imodel = LyraSD("text2img", "./sd1.5-engine")
|
4 |
-
t2imodel.inference(prompt="
|
5 |
|
6 |
|
7 |
from PIL import Image
|
8 |
i2imodel = LyraSD("img2img", "./sd1.5-engine")
|
9 |
demo_img = Image.open("output/text2img_demo.jpg")
|
10 |
-
i2imodel.inference(prompt="
|
|
|
11 |
|
|
|
1 |
from lyraSD import LyraSD
|
2 |
|
3 |
t2imodel = LyraSD("text2img", "./sd1.5-engine")
|
4 |
+
t2imodel.inference(prompt="A fantasy landscape, trending on artstation", use_super=True)
|
5 |
|
6 |
|
7 |
from PIL import Image
|
8 |
i2imodel = LyraSD("img2img", "./sd1.5-engine")
|
9 |
demo_img = Image.open("output/text2img_demo.jpg")
|
10 |
+
i2imodel.inference(prompt="A fantasy landscape, trending on artstation",
|
11 |
+
image=demo_img)
|
12 |
|
lyraSD/muse_trt/models.py
CHANGED
@@ -259,44 +259,6 @@ class VAEEncoder(BaseModel):
|
|
259 |
batch_size, image_height, image_width)
|
260 |
return torch.randn(batch_size, 3, image_height, image_width, dtype=torch.float32, device=self.device)
|
261 |
|
262 |
-
def optimize(self, onnx_graph, minimal_optimization=False):
|
263 |
-
enable_optimization = not minimal_optimization
|
264 |
-
|
265 |
-
# Decompose InstanceNormalization into primitive Ops
|
266 |
-
bRemoveInstanceNorm = enable_optimization
|
267 |
-
# Remove Cast Node to optimize Attention block
|
268 |
-
bRemoveCastNode = enable_optimization
|
269 |
-
# Insert GroupNormalization Plugin
|
270 |
-
bGroupNormPlugin = enable_optimization
|
271 |
-
|
272 |
-
opt = Optimizer(onnx_graph, verbose=self.verbose)
|
273 |
-
opt.info('VAE Encoder: original')
|
274 |
-
|
275 |
-
if bRemoveInstanceNorm:
|
276 |
-
num_instancenorm_replaced = opt.decompose_instancenorms()
|
277 |
-
opt.info('VAE Encoder: replaced ' +
|
278 |
-
str(num_instancenorm_replaced)+' InstanceNorms')
|
279 |
-
|
280 |
-
if bRemoveCastNode:
|
281 |
-
num_casts_removed = opt.remove_casts()
|
282 |
-
opt.info('VAE Encoder: removed '+str(num_casts_removed)+' casts')
|
283 |
-
|
284 |
-
opt.cleanup()
|
285 |
-
opt.info('VAE Encoder: cleanup')
|
286 |
-
opt.fold_constants()
|
287 |
-
opt.info('VAE Encoder: fold constants')
|
288 |
-
opt.infer_shapes()
|
289 |
-
opt.info('VAE Encoder: shape inference')
|
290 |
-
|
291 |
-
if bGroupNormPlugin:
|
292 |
-
num_groupnorm_inserted = opt.insert_groupnorm_plugin()
|
293 |
-
opt.info('VAE Encoder: inserted '+str(num_groupnorm_inserted) +
|
294 |
-
' GroupNorm plugins')
|
295 |
-
|
296 |
-
onnx_opt_graph = opt.cleanup(return_onnx=True)
|
297 |
-
opt.info('VAE Encoder: final')
|
298 |
-
return onnx_opt_graph
|
299 |
-
|
300 |
|
301 |
class VAEDecoder(BaseModel):
|
302 |
def get_model(self):
|
@@ -345,471 +307,4 @@ class VAEDecoder(BaseModel):
|
|
345 |
def get_sample_input(self, batch_size, image_height, image_width):
|
346 |
latent_height, latent_width = self.check_dims(
|
347 |
batch_size, image_height, image_width)
|
348 |
-
return torch.randn(batch_size, 4, latent_height, latent_width, dtype=torch.float32, device=self.device)
|
349 |
-
|
350 |
-
def optimize(self, onnx_graph, minimal_optimization=False):
|
351 |
-
enable_optimization = not minimal_optimization
|
352 |
-
|
353 |
-
# Decompose InstanceNormalization into primitive Ops
|
354 |
-
bRemoveInstanceNorm = enable_optimization
|
355 |
-
# Remove Cast Node to optimize Attention block
|
356 |
-
bRemoveCastNode = enable_optimization
|
357 |
-
# Insert GroupNormalization Plugin
|
358 |
-
bGroupNormPlugin = enable_optimization
|
359 |
-
|
360 |
-
opt = Optimizer(onnx_graph, verbose=self.verbose)
|
361 |
-
opt.info('VAE Decoder: original')
|
362 |
-
|
363 |
-
if bRemoveInstanceNorm:
|
364 |
-
num_instancenorm_replaced = opt.decompose_instancenorms()
|
365 |
-
opt.info('VAE Decoder: replaced ' +
|
366 |
-
str(num_instancenorm_replaced)+' InstanceNorms')
|
367 |
-
|
368 |
-
if bRemoveCastNode:
|
369 |
-
num_casts_removed = opt.remove_casts()
|
370 |
-
opt.info('VAE Decoder: removed '+str(num_casts_removed)+' casts')
|
371 |
-
|
372 |
-
opt.cleanup()
|
373 |
-
opt.info('VAE Decoder: cleanup')
|
374 |
-
opt.fold_constants()
|
375 |
-
opt.info('VAE Decoder: fold constants')
|
376 |
-
opt.infer_shapes()
|
377 |
-
opt.info('VAE Decoder: shape inference')
|
378 |
-
|
379 |
-
if bGroupNormPlugin:
|
380 |
-
num_groupnorm_inserted = opt.insert_groupnorm_plugin()
|
381 |
-
opt.info('VAE Decoder: inserted '+str(num_groupnorm_inserted) +
|
382 |
-
' GroupNorm plugins')
|
383 |
-
|
384 |
-
onnx_opt_graph = opt.cleanup(return_onnx=True)
|
385 |
-
opt.info('VAE Decoder: final')
|
386 |
-
return onnx_opt_graph
|
387 |
-
|
388 |
-
|
389 |
-
class SuperModelX4(nn.Module):
|
390 |
-
def __init__(self, model_dir, scale=4, pre_pad=0):
|
391 |
-
super().__init__()
|
392 |
-
self.scale = scale
|
393 |
-
self.pre_pad = pre_pad
|
394 |
-
|
395 |
-
rrdb = RealESRGAN(model_dir=model_dir,
|
396 |
-
model_name="RealESRGAN_x4plus_anime_6B").upsampler.model
|
397 |
-
self.rrdb = rrdb.eval()
|
398 |
-
|
399 |
-
def forward(self, x):
|
400 |
-
x = x / 255.
|
401 |
-
x = F.pad(x, (0, self.pre_pad, 0, self.pre_pad), 'reflect')
|
402 |
-
x = self.rrdb(x)
|
403 |
-
_, _, h, w = x.size()
|
404 |
-
x = x[:, :, 0:h-self.pre_pad * self.scale, 0:w-self.pre_pad*self.scale]
|
405 |
-
x = x.clamp(0, 1)
|
406 |
-
x = (x * 255).round()
|
407 |
-
return x
|
408 |
-
|
409 |
-
|
410 |
-
class SuperResX4():
|
411 |
-
def __init__(
|
412 |
-
self,
|
413 |
-
local_model_path=None,
|
414 |
-
fp16=True,
|
415 |
-
device='cuda',
|
416 |
-
verbose=True,
|
417 |
-
max_batch_size=8
|
418 |
-
):
|
419 |
-
self.fp16 = fp16
|
420 |
-
self.device = device
|
421 |
-
self.verbose = verbose
|
422 |
-
self.local_model_path = local_model_path
|
423 |
-
|
424 |
-
# Defaults
|
425 |
-
self.min_batch = 1
|
426 |
-
self.max_batch = max_batch_size
|
427 |
-
self.min_height = 64
|
428 |
-
self.max_height = 640
|
429 |
-
self.min_width = 64
|
430 |
-
self.max_width = 640
|
431 |
-
|
432 |
-
def get_model(self):
|
433 |
-
model = SuperModelX4(self.local_model_path, scale=4, pre_pad=0).to(device=self.device)
|
434 |
-
if self.fp16:
|
435 |
-
model = model.half()
|
436 |
-
return model
|
437 |
-
|
438 |
-
def get_input_names(self):
|
439 |
-
return ['input_image']
|
440 |
-
|
441 |
-
def get_output_names(self):
|
442 |
-
return ['output_image']
|
443 |
-
|
444 |
-
def get_dynamic_axes(self):
|
445 |
-
return {
|
446 |
-
'input_image': {0: 'B', },
|
447 |
-
'output_image': {0: 'B', }
|
448 |
-
}
|
449 |
-
|
450 |
-
def check_dims(self, batch_size, image_height, image_width):
|
451 |
-
assert batch_size >= self.min_batch and batch_size <= self.max_batch
|
452 |
-
return (image_height, image_width)
|
453 |
-
|
454 |
-
def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
|
455 |
-
min_batch = batch_size if static_batch else self.min_batch
|
456 |
-
max_batch = batch_size if static_batch else self.max_batch
|
457 |
-
min_image_height = image_height if static_shape else self.min_height
|
458 |
-
max_image_height = image_height if static_shape else self.max_height
|
459 |
-
min_image_width = image_width if static_shape else self.min_width
|
460 |
-
max_image_width = image_width if static_shape else self.max_width
|
461 |
-
return (min_batch, max_batch, min_image_height, max_image_height, min_image_width, max_image_width)
|
462 |
-
|
463 |
-
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
|
464 |
-
image_height, image_width = self.check_dims(
|
465 |
-
batch_size, image_height, image_width)
|
466 |
-
min_batch, max_batch, min_image_height, max_image_height, min_image_width, max_image_width = \
|
467 |
-
self.get_minmax_dims(batch_size, image_height,
|
468 |
-
image_width, static_batch, static_shape)
|
469 |
-
return {
|
470 |
-
'input_image': [(min_batch, 3, min_image_height, min_image_width), (batch_size, 3, image_height, image_width), (max_batch, 3, max_image_height, max_image_width)]
|
471 |
-
}
|
472 |
-
|
473 |
-
def get_shape_dict(self, batch_size, image_height, image_width):
|
474 |
-
image_height, image_width = self.check_dims(
|
475 |
-
batch_size, image_height, image_width)
|
476 |
-
return {
|
477 |
-
'input_image': (batch_size, 3, image_height, image_width),
|
478 |
-
'output_image': (batch_size, 3, image_height*4, image_width*4),
|
479 |
-
}
|
480 |
-
|
481 |
-
def get_sample_input(self, batch_size, image_height, image_width):
|
482 |
-
dtype = torch.float16 if self.fp16 else torch.float32
|
483 |
-
image_height, image_width = self.check_dims(
|
484 |
-
batch_size, image_height, image_width)
|
485 |
-
return torch.randn(batch_size, 3, image_height, image_width, dtype=dtype, device=self.device)
|
486 |
-
|
487 |
-
def optimize(self, onnx_graph, minimal_optimization=False):
|
488 |
-
enable_optimization = not minimal_optimization
|
489 |
-
|
490 |
-
# Decompose InstanceNormalization into primitive Ops
|
491 |
-
bRemoveInstanceNorm = enable_optimization
|
492 |
-
# Remove Cast Node to optimize Attention block
|
493 |
-
bRemoveCastNode = enable_optimization
|
494 |
-
# Insert GroupNormalization Plugin
|
495 |
-
bGroupNormPlugin = enable_optimization
|
496 |
-
|
497 |
-
opt = Optimizer(onnx_graph, verbose=self.verbose)
|
498 |
-
opt.info('SuperX4: original')
|
499 |
-
|
500 |
-
if bRemoveInstanceNorm:
|
501 |
-
num_instancenorm_replaced = opt.decompose_instancenorms()
|
502 |
-
opt.info('SuperX4: replaced ' +
|
503 |
-
str(num_instancenorm_replaced)+' InstanceNorms')
|
504 |
-
|
505 |
-
if bRemoveCastNode:
|
506 |
-
num_casts_removed = opt.remove_casts()
|
507 |
-
opt.info('SuperX4: removed '+str(num_casts_removed)+' casts')
|
508 |
-
|
509 |
-
opt.cleanup()
|
510 |
-
opt.info('SuperX4: cleanup')
|
511 |
-
opt.fold_constants()
|
512 |
-
opt.info('SuperX4: fold constants')
|
513 |
-
opt.infer_shapes()
|
514 |
-
opt.info('SuperX4: shape inference')
|
515 |
-
|
516 |
-
if bGroupNormPlugin:
|
517 |
-
num_groupnorm_inserted = opt.insert_groupnorm_plugin()
|
518 |
-
opt.info('SuperX4: inserted '+str(num_groupnorm_inserted) +
|
519 |
-
' GroupNorm plugins')
|
520 |
-
|
521 |
-
onnx_opt_graph = opt.cleanup(return_onnx=True)
|
522 |
-
opt.info('SuperX4: final')
|
523 |
-
return onnx_opt_graph
|
524 |
-
|
525 |
-
|
526 |
-
class FusedControlNetModule(nn.Module):
|
527 |
-
def __init__(self, base_model_dir, control_model_dir, fp16=True) -> None:
|
528 |
-
super().__init__()
|
529 |
-
self.device = 'cuda:0'
|
530 |
-
self.fp16 = fp16
|
531 |
-
model_opts = {'revision': 'fp16',
|
532 |
-
'torch_dtype': torch.float16} if self.fp16 else {}
|
533 |
-
self.base = UNet2DConditionModel.from_pretrained(
|
534 |
-
base_model_dir, subfolder="unet",
|
535 |
-
**model_opts
|
536 |
-
).eval().to(self.device)
|
537 |
-
self.control = ControlNetModel.from_pretrained(
|
538 |
-
control_model_dir,
|
539 |
-
**model_opts
|
540 |
-
).eval().to(self.device)
|
541 |
-
|
542 |
-
def forward(self, sample, timestep, encoder_hidden_states, controlnet_cond):
|
543 |
-
controlnet_conditioning_scale: float = 1.0
|
544 |
-
down_block_res_samples, mid_block_res_sample = self.control(
|
545 |
-
sample,
|
546 |
-
timestep,
|
547 |
-
encoder_hidden_states=encoder_hidden_states,
|
548 |
-
controlnet_cond=controlnet_cond,
|
549 |
-
return_dict=False,
|
550 |
-
)
|
551 |
-
|
552 |
-
down_block_res_samples = [
|
553 |
-
down_block_res_sample * controlnet_conditioning_scale
|
554 |
-
for down_block_res_sample in down_block_res_samples
|
555 |
-
]
|
556 |
-
mid_block_res_sample *= controlnet_conditioning_scale
|
557 |
-
|
558 |
-
# predict the noise residual
|
559 |
-
noise_pred = self.base(
|
560 |
-
sample,
|
561 |
-
timestep,
|
562 |
-
encoder_hidden_states=encoder_hidden_states,
|
563 |
-
down_block_additional_residuals=down_block_res_samples,
|
564 |
-
mid_block_additional_residual=mid_block_res_sample,
|
565 |
-
).sample
|
566 |
-
|
567 |
-
return noise_pred
|
568 |
-
|
569 |
-
|
570 |
-
class FusedControlNet(BaseModel):
|
571 |
-
def __init__(self, local_model_path=None, controlnet_model_path=None, hf_token=None, text_maxlen=77,
|
572 |
-
embedding_dim=768, fp16=False, device='cuda', verbose=True, max_batch_size=16):
|
573 |
-
super().__init__(local_model_path, hf_token, text_maxlen, embedding_dim, fp16, device, verbose, max_batch_size)
|
574 |
-
# if controlnet_model_path is None:
|
575 |
-
# raise ValueError("Must give controlnet_model_path for FusedControlNet to load control net")
|
576 |
-
self.controlnet_model_path = controlnet_model_path
|
577 |
-
self.min_height = 256
|
578 |
-
self.max_height = 1024
|
579 |
-
self.min_width = 256
|
580 |
-
self.max_width = 1024
|
581 |
-
|
582 |
-
def get_minmax_dims(self, batch_size, image_height, image_width, static_batch, static_shape):
|
583 |
-
r = list(super().get_minmax_dims(batch_size, image_height, image_width, static_batch, static_shape))
|
584 |
-
min_height = image_height if static_shape else self.min_height
|
585 |
-
max_height = image_height if static_shape else self.max_height
|
586 |
-
min_width = image_width if static_shape else self.min_width
|
587 |
-
max_width = image_width if static_shape else self.max_width
|
588 |
-
r.extend([min_height, max_height, min_width, max_width])
|
589 |
-
return r
|
590 |
-
|
591 |
-
def get_model(self):
|
592 |
-
model = FusedControlNetModule(
|
593 |
-
base_model_dir=self.local_model_path,
|
594 |
-
control_model_dir=self.controlnet_model_path,
|
595 |
-
fp16=self.fp16
|
596 |
-
)
|
597 |
-
return model
|
598 |
-
|
599 |
-
def get_input_names(self):
|
600 |
-
return ['sample', 'timestep', 'encoder_hidden_states', 'controlnet_cond']
|
601 |
-
|
602 |
-
def get_output_names(self):
|
603 |
-
return ['latent']
|
604 |
-
|
605 |
-
def get_dynamic_axes(self):
|
606 |
-
return {
|
607 |
-
'sample': {0: '2B', 2: 'H', 3: 'W'},
|
608 |
-
'encoder_hidden_states': {0: '2B'},
|
609 |
-
'controlnet_cond': {0: '2B', 2: '8H', 3: '8W'}, # controlnet_cond is 8X sample and lantent
|
610 |
-
'latent': {0: '2B', 2: 'H', 3: 'W'}
|
611 |
-
}
|
612 |
-
|
613 |
-
def get_input_profile(self, batch_size, image_height, image_width, static_batch, static_shape):
|
614 |
-
latent_height, latent_width = self.check_dims(
|
615 |
-
batch_size, image_height, image_width)
|
616 |
-
min_batch, max_batch, min_latent_height, max_latent_height, min_latent_width, max_latent_width, min_height, max_height, min_width, max_width = \
|
617 |
-
self.get_minmax_dims(batch_size, image_height,
|
618 |
-
image_width, static_batch, static_shape)
|
619 |
-
return {
|
620 |
-
'sample': [(2*min_batch, 4, min_latent_height, min_latent_width), (2*batch_size, 4, latent_height, latent_width), (2*max_batch, 4, max_latent_height, max_latent_width)],
|
621 |
-
'encoder_hidden_states': [(2*min_batch, self.text_maxlen, self.embedding_dim), (2*batch_size, self.text_maxlen, self.embedding_dim), (2*max_batch, self.text_maxlen, self.embedding_dim)],
|
622 |
-
'controlnet_cond': [(2*min_batch, 3, min_height, min_width), (2*batch_size, 3, image_height, image_width), (2*max_batch, 3, max_height, max_width)]
|
623 |
-
}
|
624 |
-
|
625 |
-
def get_shape_dict(self, batch_size, image_height, image_width):
|
626 |
-
latent_height, latent_width = self.check_dims(
|
627 |
-
batch_size, image_height, image_width)
|
628 |
-
return {
|
629 |
-
'sample': (2*batch_size, 4, latent_height, latent_width),
|
630 |
-
'encoder_hidden_states': (2*batch_size, self.text_maxlen, self.embedding_dim),
|
631 |
-
'controlnet_cond': (2*batch_size, 3, image_height, image_width),
|
632 |
-
'latent': (2*batch_size, 4, latent_height, latent_width)
|
633 |
-
}
|
634 |
-
|
635 |
-
def get_sample_input(self, batch_size, image_height, image_width):
|
636 |
-
latent_height, latent_width = self.check_dims(
|
637 |
-
batch_size, image_height, image_width)
|
638 |
-
dtype = torch.float16 if self.fp16 else torch.float32
|
639 |
-
return (
|
640 |
-
torch.randn(2*batch_size, 4, latent_height, latent_width,
|
641 |
-
dtype=torch.float32, device=self.device), # sample
|
642 |
-
torch.tensor([1.], dtype=torch.float32, device=self.device), # timestep
|
643 |
-
torch.randn(2*batch_size, self.text_maxlen, # encoder_hidden_states
|
644 |
-
self.embedding_dim, dtype=dtype, device=self.device),
|
645 |
-
torch.randn(2*batch_size, 3, image_height, image_width,
|
646 |
-
dtype=torch.float32, device=self.device) # controlnet_cond
|
647 |
-
)
|
648 |
-
|
649 |
-
def optimize(self, onnx_graph, minimal_optimization=False):
|
650 |
-
class_name = self.__class__.__name__
|
651 |
-
|
652 |
-
enable_optimization = not minimal_optimization
|
653 |
-
|
654 |
-
# Decompose InstanceNormalization into primitive Ops
|
655 |
-
bRemoveInstanceNorm = enable_optimization
|
656 |
-
# Remove Cast Node to optimize Attention block
|
657 |
-
bRemoveCastNode = enable_optimization
|
658 |
-
# Remove parallel Swish ops
|
659 |
-
bRemoveParallelSwish = enable_optimization
|
660 |
-
# Adjust the bias to be the second input to the Add ops
|
661 |
-
bAdjustAddNode = enable_optimization
|
662 |
-
# Change Resize node to take size instead of scale
|
663 |
-
bResizeFix = enable_optimization
|
664 |
-
|
665 |
-
# Common override for disabling all plugins below
|
666 |
-
bDisablePlugins = minimal_optimization
|
667 |
-
# Use multi-head attention Plugin
|
668 |
-
bMHAPlugin = True
|
669 |
-
# Use multi-head cross attention Plugin
|
670 |
-
bMHCAPlugin = True
|
671 |
-
# Insert GroupNormalization Plugin
|
672 |
-
bGroupNormPlugin = True
|
673 |
-
# Insert LayerNormalization Plugin
|
674 |
-
bLayerNormPlugin = True
|
675 |
-
# Insert Split+GeLU Plugin
|
676 |
-
bSplitGeLUPlugin = True
|
677 |
-
# Replace BiasAdd+ResidualAdd+SeqLen2Spatial with plugin
|
678 |
-
bSeqLen2SpatialPlugin = True
|
679 |
-
|
680 |
-
opt = Optimizer(onnx_graph, verbose=self.verbose)
|
681 |
-
opt.info(f'{class_name}: original')
|
682 |
-
|
683 |
-
if bRemoveInstanceNorm:
|
684 |
-
num_instancenorm_replaced = opt.decompose_instancenorms()
|
685 |
-
opt.info(f'{class_name}: replaced ' +
|
686 |
-
str(num_instancenorm_replaced)+' InstanceNorms')
|
687 |
-
|
688 |
-
if bRemoveCastNode:
|
689 |
-
num_casts_removed = opt.remove_casts()
|
690 |
-
opt.info(f'{class_name}: removed '+str(num_casts_removed)+' casts')
|
691 |
-
|
692 |
-
if bRemoveParallelSwish:
|
693 |
-
num_parallel_swish_removed = opt.remove_parallel_swish()
|
694 |
-
opt.info(f'{class_name}: removed ' +
|
695 |
-
str(num_parallel_swish_removed)+' parallel swish ops')
|
696 |
-
|
697 |
-
if bAdjustAddNode:
|
698 |
-
num_adjust_add = opt.adjustAddNode()
|
699 |
-
opt.info(f'{class_name}: adjusted '+str(num_adjust_add)+' adds')
|
700 |
-
|
701 |
-
if bResizeFix:
|
702 |
-
num_resize_fix = opt.resize_fix()
|
703 |
-
opt.info(f'{class_name}: fixed '+str(num_resize_fix)+' resizes')
|
704 |
-
|
705 |
-
opt.cleanup()
|
706 |
-
opt.info(f'{class_name}: cleanup')
|
707 |
-
opt.fold_constants()
|
708 |
-
opt.info(f'{class_name}: fold constants')
|
709 |
-
opt.infer_shapes()
|
710 |
-
opt.info(f'{class_name}: shape inference')
|
711 |
-
|
712 |
-
num_heads = 8
|
713 |
-
if bMHAPlugin and not bDisablePlugins:
|
714 |
-
num_fmha_inserted = opt.insert_fmha_plugin(num_heads)
|
715 |
-
opt.info(f'{class_name}: inserted '+str(num_fmha_inserted)+' fMHA plugins')
|
716 |
-
|
717 |
-
if bMHCAPlugin and not bDisablePlugins:
|
718 |
-
props = cudart.cudaGetDeviceProperties(0)[1]
|
719 |
-
sm = props.major * 10 + props.minor
|
720 |
-
num_fmhca_inserted = opt.insert_fmhca_plugin(num_heads, sm)
|
721 |
-
opt.info(f'{class_name}: inserted '+str(num_fmhca_inserted)+' fMHCA plugins')
|
722 |
-
|
723 |
-
if bGroupNormPlugin and not bDisablePlugins:
|
724 |
-
num_groupnorm_inserted = opt.insert_groupnorm_plugin()
|
725 |
-
opt.info(f'{class_name}: inserted '+str(num_groupnorm_inserted) +
|
726 |
-
' GroupNorm plugins')
|
727 |
-
|
728 |
-
if bLayerNormPlugin and not bDisablePlugins:
|
729 |
-
num_layernorm_inserted = opt.insert_layernorm_plugin()
|
730 |
-
opt.info(f'{class_name}: inserted '+str(num_layernorm_inserted) +
|
731 |
-
' LayerNorm plugins')
|
732 |
-
|
733 |
-
if bSplitGeLUPlugin and not bDisablePlugins:
|
734 |
-
num_splitgelu_inserted = opt.insert_splitgelu_plugin()
|
735 |
-
opt.info(f'{class_name}: inserted '+str(num_splitgelu_inserted) +
|
736 |
-
' SplitGeLU plugins')
|
737 |
-
|
738 |
-
if bSeqLen2SpatialPlugin and not bDisablePlugins:
|
739 |
-
num_seq2spatial_inserted = opt.insert_seq2spatial_plugin()
|
740 |
-
opt.info(f'{class_name}: inserted '+str(num_seq2spatial_inserted) +
|
741 |
-
' SeqLen2Spatial plugins')
|
742 |
-
|
743 |
-
onnx_opt_graph = opt.cleanup(return_onnx=True)
|
744 |
-
opt.info(f'{class_name}: final')
|
745 |
-
return onnx_opt_graph
|
746 |
-
|
747 |
-
|
748 |
-
class ControlNetModule(nn.Module):
|
749 |
-
def __init__(self, control_model_dir, fp16=True) -> None:
|
750 |
-
super().__init__()
|
751 |
-
self.device = 'cuda:0'
|
752 |
-
self.fp16 = fp16
|
753 |
-
model_opts = {'revision': 'fp16',
|
754 |
-
'torch_dtype': torch.float16} if self.fp16 else {}
|
755 |
-
self.control = ControlNetModel.from_pretrained(
|
756 |
-
control_model_dir,
|
757 |
-
**model_opts
|
758 |
-
).eval().to(self.device)
|
759 |
-
|
760 |
-
def forward(self, sample, timestep, encoder_hidden_states, controlnet_cond):
|
761 |
-
controlnet_conditioning_scale: float = 1.0
|
762 |
-
down_block_res_samples, mid_block_res_sample = self.control(
|
763 |
-
sample,
|
764 |
-
timestep,
|
765 |
-
encoder_hidden_states=encoder_hidden_states,
|
766 |
-
controlnet_cond=controlnet_cond,
|
767 |
-
return_dict=False,
|
768 |
-
)
|
769 |
-
down_block_res_samples = [
|
770 |
-
down_block_res_sample * controlnet_conditioning_scale
|
771 |
-
for down_block_res_sample in down_block_res_samples
|
772 |
-
]
|
773 |
-
mid_block_res_sample *= controlnet_conditioning_scale
|
774 |
-
# @vane: currently, only retun mid_blocks_res_sample: (B, 1280, height//8//8, width//8//8)
|
775 |
-
# down_block_res_samples is a tensor tuple that length is 12.
|
776 |
-
# it will be flatten to 12 nodes if we return the down_block_res_samples
|
777 |
-
return mid_block_res_sample
|
778 |
-
|
779 |
-
|
780 |
-
class ControlNet(FusedControlNet):
|
781 |
-
def __init__(self, local_model_path=None, controlnet_model_path=None, hf_token=None, text_maxlen=77,
|
782 |
-
embedding_dim=768, fp16=False, device='cuda', verbose=True, max_batch_size=16):
|
783 |
-
super().__init__(local_model_path, controlnet_model_path, hf_token,
|
784 |
-
text_maxlen, embedding_dim, fp16, device, verbose, max_batch_size)
|
785 |
-
|
786 |
-
def get_model(self):
|
787 |
-
model = ControlNetModule(
|
788 |
-
control_model_dir=self.controlnet_model_path,
|
789 |
-
fp16=self.fp16
|
790 |
-
)
|
791 |
-
return model
|
792 |
-
|
793 |
-
def get_input_names(self):
|
794 |
-
return ['sample', 'timestep', 'encoder_hidden_states', 'controlnet_cond']
|
795 |
-
|
796 |
-
def get_output_names(self):
|
797 |
-
return ['mids']
|
798 |
-
|
799 |
-
def get_dynamic_axes(self):
|
800 |
-
return {
|
801 |
-
'sample': {0: '2B', 2: '8H', 3: '8W'},
|
802 |
-
'encoder_hidden_states': {0: '2B'},
|
803 |
-
'controlnet_cond': {0: '2B', 2: '16H', 3: '16W'},
|
804 |
-
'mids': {0: '2B', 2: 'H', 3: 'W'}
|
805 |
-
}
|
806 |
-
|
807 |
-
def get_shape_dict(self, batch_size, image_height, image_width):
|
808 |
-
latent_height, latent_width = self.check_dims(
|
809 |
-
batch_size, image_height, image_width)
|
810 |
-
return {
|
811 |
-
'sample': (2*batch_size, 4, latent_height, latent_width),
|
812 |
-
'encoder_hidden_states': (2*batch_size, self.text_maxlen, self.embedding_dim),
|
813 |
-
'controlnet_cond': (2*batch_size, 3, image_height, image_width),
|
814 |
-
'mids': (2*batch_size, 1280, latent_height//8, latent_width//8)
|
815 |
-
}
|
|
|
259 |
batch_size, image_height, image_width)
|
260 |
return torch.randn(batch_size, 3, image_height, image_width, dtype=torch.float32, device=self.device)
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
class VAEDecoder(BaseModel):
|
264 |
def get_model(self):
|
|
|
307 |
def get_sample_input(self, batch_size, image_height, image_width):
|
308 |
latent_height, latent_width = self.check_dims(
|
309 |
batch_size, image_height, image_width)
|
310 |
+
return torch.randn(batch_size, 4, latent_height, latent_width, dtype=torch.float32, device=self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output/sd-img2img-0.jpg
CHANGED
output/sd-text2img-0.jpg
CHANGED
output/text2img_demo.jpg
CHANGED