|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch GLM model. """ |
|
|
|
import math |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
import torch.nn.functional as F |
|
from torch.nn import init, LayerNorm, Linear, CrossEntropyLoss |
|
|
|
from transformers.activations import gelu |
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
ModelOutput, |
|
) |
|
|
|
from transformers.modeling_utils import ( |
|
PreTrainedModel, |
|
) |
|
from .configuration_glm import GLMConfig |
|
from torch.nn.parameter import Parameter |
|
|
|
_CHECKPOINT_FOR_DOC = "shunxing1234/GLM" |
|
_CONFIG_FOR_DOC = "GLMConfig" |
|
_TOKENIZER_FOR_DOC = "GLMTokenizer" |
|
|
|
GLM_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"shunxing1234/GLM", |
|
|
|
] |
|
|
|
|
|
def unscaled_init_method(sigma): |
|
"""Init method based on N(0, sigma).""" |
|
|
|
def init_(tensor): |
|
return torch.nn.init.normal_(tensor, mean=0.0, std=sigma) |
|
|
|
return init_ |
|
|
|
|
|
def scaled_init_method(mean, std, num_layers): |
|
"""Init method based on N(0, sigma/sqrt(2*num_layers).""" |
|
std = std / math.sqrt(2.0 * num_layers) |
|
|
|
def init_(tensor): |
|
return torch.nn.init.normal_(tensor, mean=mean, std=std) |
|
|
|
return init_ |
|
|
|
|
|
def ensure_divisibility(numerator, denominator): |
|
"""Ensure that numerator is divisible by the denominator.""" |
|
assert numerator % denominator == 0, '{} is not divisible by {}'.format( |
|
numerator, denominator) |
|
|
|
|
|
def divide(numerator, denominator): |
|
"""Ensure that numerator is divisible by the denominator and return |
|
the division value.""" |
|
ensure_divisibility(numerator, denominator) |
|
return numerator // denominator |
|
|
|
|
|
def split_tensor_along_last_dim(tensor, num_partitions, |
|
contiguous_split_chunks=False): |
|
"""Split a tensor along its last dimension. |
|
Arguments: |
|
tensor: input tensor. |
|
num_partitions: number of partitions to split the tensor |
|
contiguous_split_chunks: If True, make each chunk contiguous |
|
in memory. |
|
""" |
|
|
|
last_dim = tensor.dim() - 1 |
|
last_dim_size = divide(tensor.size()[last_dim], num_partitions) |
|
|
|
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) |
|
|
|
if contiguous_split_chunks: |
|
return tuple(chunk.contiguous() for chunk in tensor_list) |
|
|
|
return tensor_list |
|
|
|
|
|
class MLP(torch.nn.Module): |
|
"""MLP for GPT2. |
|
|
|
MLP will take the input with h hidden state, project it to 4*h |
|
hidden dimension, perform gelu transformation, and project the |
|
state back into h hidden dimension. At the end, dropout is also |
|
applied. |
|
|
|
Arguments: |
|
hidden_size: The hidden size of the self attention. |
|
output_dropout_prob: dropout probability for the outputs |
|
after self attention and final output. |
|
init_method: initialization method used for the weights. Note |
|
that all biases are initialized to zero and |
|
layernorm weight are initialized to one. |
|
output_layer_init_method: output layer initialization. If None, |
|
use `init_method`. |
|
""" |
|
|
|
def __init__(self, hidden_size, output_dropout_prob, init_method, |
|
output_layer_init_method=None): |
|
super(MLP, self).__init__() |
|
|
|
if output_layer_init_method is None: |
|
output_layer_init_method = init_method |
|
|
|
self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size) |
|
|
|
|
|
self.dense_4h_to_h = Linear( |
|
4 * hidden_size, |
|
hidden_size) |
|
|
|
self.dropout = torch.nn.Dropout(output_dropout_prob) |
|
|
|
def forward(self, hidden_states): |
|
|
|
intermediate_parallel = self.dense_h_to_4h(hidden_states) |
|
intermediate_parallel = gelu(intermediate_parallel) |
|
|
|
|
|
output = self.dense_4h_to_h(intermediate_parallel) |
|
output = self.dropout(output) |
|
return output |
|
|
|
|
|
class VocabEmbedding(torch.nn.Module): |
|
"""Embedding parallelized in the vocabulary dimension. |
|
|
|
This is mainly adapted from torch.nn.Embedding and all the default |
|
values are kept. |
|
Arguments: |
|
num_embeddings: vocabulary size. |
|
embedding_dim: size of hidden state. |
|
init_method: method to initialize weights. |
|
""" |
|
|
|
def __init__(self, config): |
|
super(VocabEmbedding, self).__init__() |
|
|
|
self.num_embeddings = config.vocab_size |
|
self.embedding_dim = config.hidden_size |
|
|
|
self.padding_idx = None |
|
self.max_norm = None |
|
self.norm_type = 2. |
|
self.scale_grad_by_freq = False |
|
self.sparse = False |
|
self._weight = None |
|
|
|
self.vocab_start_index = 0 |
|
self.vocab_end_index = self.num_embeddings |
|
|
|
|
|
self.weight = Parameter(torch.Tensor(self.num_embeddings, |
|
self.embedding_dim)) |
|
|
|
init.xavier_normal_(self.weight) |
|
|
|
def forward(self, input_): |
|
|
|
output = F.embedding(input_, self.weight, |
|
self.padding_idx, self.max_norm, |
|
self.norm_type, self.scale_grad_by_freq, |
|
self.sparse) |
|
return output |
|
|
|
|
|
class PositionalEmbedding(torch.nn.Module): |
|
|
|
def __init__(self, hidden_size): |
|
super(PositionalEmbedding, self).__init__() |
|
|
|
self.hidden_size = hidden_size |
|
|
|
inv_freq = 1 / (10000 ** (torch.arange(0.0, hidden_size, 2.0) / hidden_size)) |
|
self.register_buffer('inv_freq', inv_freq) |
|
|
|
def forward(self, pos_seq, bsz=None): |
|
sinusoid_inp = torch.ger(pos_seq, self.inv_freq) |
|
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) |
|
|
|
if bsz is not None: |
|
return pos_emb[None, :, :].expand(bsz, -1, -1) |
|
else: |
|
return pos_emb[None, :, :] |
|
|
|
|
|
class SelfAttention(torch.nn.Module): |
|
"""self-attention layer for GLM. |
|
|
|
Self-attention layer takes input with size [b, s, h] where b is |
|
the batch size, s is the sequence lenght, and h is the hidden size |
|
and creates output of the same size. |
|
Arguments: |
|
hidden_size: total hidden size of the layer (h). |
|
num_attention_heads: number of attention heads (n). Note that we |
|
require n to be divisible by number of GPUs |
|
used to parallelize the model. Also, we |
|
require hidden size to be divisible by n. |
|
attention_dropout_prob: dropout probability for the attention scores. |
|
init_method: weight initialization. |
|
output_layer_init_method: output layer initialization. If None, use |
|
`init_method`. |
|
We use the following notation: |
|
h: hidden_size |
|
n: num_attention_heads |
|
p: number of partitions |
|
np: n/p |
|
hp: h/p |
|
hn: h/n |
|
b: batch size |
|
s: sequence length |
|
""" |
|
|
|
def __init__(self, hidden_size, num_attention_heads, |
|
attention_dropout_prob, output_dropout_prob, |
|
init_method, output_layer_init_method=None, |
|
attention_scale=1.0): |
|
super(SelfAttention, self).__init__() |
|
|
|
if output_layer_init_method is None: |
|
output_layer_init_method = init_method |
|
|
|
self.hidden_size = hidden_size |
|
self.hidden_size_per_attention_head = divide(hidden_size, |
|
num_attention_heads) |
|
|
|
self.num_attention_heads = num_attention_heads |
|
self.attention_scale = attention_scale |
|
|
|
self.query_key_value = Linear(hidden_size, 3 * hidden_size) |
|
|
|
|
|
|
|
|
|
self.attention_dropout = torch.nn.Dropout(attention_dropout_prob) |
|
|
|
|
|
self.dense = Linear(hidden_size, |
|
hidden_size) |
|
self.output_dropout = torch.nn.Dropout(output_dropout_prob) |
|
|
|
def _transpose_for_scores(self, tensor): |
|
"""Transpose a 3D tensor [b, s, np*hn] into a 4D tensor with |
|
size [b, np, s, hn]. |
|
""" |
|
new_tensor_shape = tensor.size()[:-1] + \ |
|
(self.num_attention_heads, |
|
self.hidden_size_per_attention_head) |
|
tensor = tensor.view(*new_tensor_shape) |
|
return tensor.permute(0, 2, 1, 3) |
|
|
|
def forward(self, hidden_states, ltor_mask, mem=None): |
|
|
|
|
|
|
|
|
|
query_length = hidden_states.size(1) |
|
|
|
if mem is None: |
|
mixed_x_layer = self.query_key_value(hidden_states) |
|
(mixed_query_layer, |
|
mixed_key_layer, |
|
mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) |
|
else: |
|
cat = torch.cat((mem, hidden_states), 1) |
|
mixed_x_layer = self.query_key_value(cat) |
|
(mixed_query_layer, |
|
mixed_key_layer, |
|
mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3) |
|
mixed_query_layer = mixed_query_layer[:, -query_length:] |
|
|
|
|
|
query_layer = self._transpose_for_scores(mixed_query_layer) |
|
key_layer = self._transpose_for_scores(mixed_key_layer) |
|
value_layer = self._transpose_for_scores(mixed_value_layer) |
|
|
|
if self.attention_scale > 1.0: |
|
|
|
attention_scores = torch.matmul(query_layer / math.sqrt(self.attention_scale), |
|
key_layer.transpose(-1, -2) / math.sqrt( |
|
self.hidden_size_per_attention_head * self.attention_scale)) |
|
else: |
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2) / math.sqrt( |
|
self.hidden_size_per_attention_head)) |
|
|
|
|
|
ltor_mask = ltor_mask.type_as(attention_scores) |
|
attention_scores = torch.mul(attention_scores, ltor_mask) |
|
if self.attention_scale > 1.0: |
|
max_attention_scores = attention_scores.max(dim=-1, keepdim=True)[0] |
|
attention_scores -= max_attention_scores |
|
attention_scores *= self.attention_scale |
|
|
|
attention_scores = attention_scores + (-65504.0) * (1.0 - ltor_mask) |
|
|
|
attention_probs = torch.nn.Softmax(dim=-1)(attention_scores) |
|
|
|
|
|
|
|
attention_probs = self.attention_dropout(attention_probs) |
|
|
|
|
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + \ |
|
(self.hidden_size,) |
|
|
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
|
|
output = self.dense(context_layer) |
|
output = self.output_dropout(output) |
|
|
|
return output |
|
|
|
|
|
class GLMBlock(torch.nn.Module): |
|
"""A single layer transformer for GLM. |
|
|
|
We use the following notation: |
|
h: hidden size |
|
n: number of attention heads |
|
b: batch size |
|
s: sequence length |
|
Transformore layer takes input with size [b, s, h] and returns an |
|
output of the same size. |
|
|
|
Arguments: |
|
hidden_size: The hidden size of the self attention. |
|
num_attention_heads: number of attention head in the self |
|
attention. |
|
attention_dropout_prob: dropout probability of the attention |
|
score in self attention. |
|
output_dropout_prob: dropout probability for the outputs |
|
after self attention and final output. |
|
layernorm_epsilon: epsilon used in layernorm to avoid |
|
division by zero. |
|
init_method: initialization method used for the weights. Note |
|
that all biases are initialized to zero and |
|
layernorm weight are initialized to one. |
|
output_layer_init_method: output layers (attention output and |
|
mlp output) initialization. If None, |
|
use `init_method`. |
|
""" |
|
|
|
def __init__(self, |
|
hidden_size, |
|
num_attention_heads, |
|
attention_dropout_prob, |
|
output_dropout_prob, |
|
layernorm_epsilon, |
|
init_method, |
|
output_layer_init_method=None, |
|
attention_scale=1.0): |
|
super(GLMBlock, self).__init__() |
|
|
|
if output_layer_init_method is None: |
|
output_layer_init_method = init_method |
|
|
|
|
|
self.input_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon) |
|
|
|
|
|
self.attention = SelfAttention( |
|
hidden_size, |
|
num_attention_heads, |
|
attention_dropout_prob, |
|
output_dropout_prob, |
|
init_method, |
|
output_layer_init_method=output_layer_init_method, |
|
attention_scale=attention_scale) |
|
|
|
|
|
self.post_attention_layernorm = LayerNorm(hidden_size, |
|
eps=layernorm_epsilon) |
|
|
|
|
|
self.mlp = MLP( |
|
hidden_size, |
|
output_dropout_prob, |
|
init_method, |
|
output_layer_init_method=output_layer_init_method) |
|
|
|
def forward(self, hidden_states, ltor_mask, mem=None): |
|
|
|
|
|
|
|
|
|
layernorm_output = self.input_layernorm(hidden_states) |
|
mem = self.input_layernorm(mem) if mem is not None else None |
|
|
|
attention_output = self.attention(layernorm_output, ltor_mask, mem) |
|
|
|
layernorm_input = hidden_states + attention_output |
|
|
|
layernorm_output = self.post_attention_layernorm(layernorm_input) |
|
|
|
mlp_output = self.mlp(layernorm_output) |
|
|
|
output = layernorm_input + mlp_output |
|
|
|
return output |
|
|
|
|
|
class GLMStack(torch.nn.Module): |
|
"""GLM transformer. |
|
|
|
This module takes input from embedding layer and it's output can |
|
be used directly by a logit layer. It consists of L (num-layers) |
|
blocks of: |
|
layer norm |
|
self attention |
|
residual connection |
|
layer norm |
|
mlp |
|
residual connection |
|
followed by a final layer norm. |
|
|
|
Arguments: |
|
num_layers: Number of transformer layers. |
|
hidden_size: The hidden size of the self attention. |
|
num_attention_heads: number of attention head in the self |
|
attention. |
|
attention_dropout_prob: dropout probability of the attention |
|
score in self attention. |
|
output_dropout_prob: dropout probability for the outputs |
|
after self attention and final output. |
|
checkpoint_activations: if True, checkpoint activations. |
|
checkpoint_num_layers: number of layers to checkpoint. This |
|
is basically the chunk size in checkpoitning. |
|
layernorm_epsilon: epsilon used in layernorm to avoid |
|
division by zero. |
|
init_method_std: standard deviation of the init method which has |
|
the form N(0, std). |
|
use_scaled_init_for_output_weights: If Ture use 1/sqrt(2*num_layers) |
|
scaling for the output weights ( |
|
output of self attention and mlp). |
|
""" |
|
|
|
def __init__(self, |
|
num_layers, |
|
hidden_size, |
|
num_attention_heads, |
|
max_sequence_length, |
|
embedding_dropout_prob, |
|
attention_dropout_prob, |
|
output_dropout_prob, |
|
checkpoint_activations, |
|
checkpoint_num_layers=1, |
|
layernorm_epsilon=1.0e-5, |
|
init_method_std=0.02, |
|
use_scaled_init_for_output_weights=True, |
|
block_position_encoding=False, |
|
attention_scale=1.0, |
|
): |
|
super(GLMStack, self).__init__() |
|
self.hidden_size = hidden_size |
|
|
|
self.checkpoint_activations = checkpoint_activations |
|
self.checkpoint_num_layers = checkpoint_num_layers |
|
|
|
output_layer_init_method = None |
|
if use_scaled_init_for_output_weights: |
|
output_layer_init_method = scaled_init_method(0.0, init_method_std, |
|
num_layers) |
|
|
|
self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob) |
|
self.block_position_encoding = block_position_encoding |
|
|
|
|
|
if block_position_encoding: |
|
self.position_embeddings = torch.nn.Embedding(max_sequence_length + 1, hidden_size) |
|
self.block_position_embeddings = torch.nn.Embedding(max_sequence_length + 1, hidden_size) |
|
torch.nn.init.normal_(self.block_position_embeddings.weight, mean=0.0, std=init_method_std) |
|
else: |
|
self.position_embeddings = torch.nn.Embedding(max_sequence_length, hidden_size) |
|
|
|
torch.nn.init.normal_(self.position_embeddings.weight, mean=0.0, std=init_method_std) |
|
|
|
def get_layer(): |
|
|
|
return GLMBlock( |
|
hidden_size, |
|
num_attention_heads, |
|
attention_dropout_prob, |
|
output_dropout_prob, |
|
layernorm_epsilon, |
|
unscaled_init_method(init_method_std), |
|
output_layer_init_method=output_layer_init_method, |
|
attention_scale=attention_scale) |
|
|
|
|
|
self.layers = torch.nn.ModuleList( |
|
[get_layer() for _ in range(num_layers)]) |
|
|
|
|
|
self.final_layernorm = LayerNorm(hidden_size, eps=layernorm_epsilon) |
|
|
|
def forward(self, hidden_states, position_ids, attention_mask, memory_states=None): |
|
|
|
batch_size, query_length = hidden_states.size()[:2] |
|
memory_length = memory_states[0].size(1) if memory_states else 0 |
|
|
|
is_scalar = torch.numel(attention_mask) == 1 |
|
is_sep = is_scalar or torch.numel(attention_mask) == batch_size |
|
if is_sep: |
|
sep = attention_mask.item() if is_scalar else attention_mask |
|
|
|
|
|
def build_mask_matrix(seq_length, sep, memory_length=0): |
|
m = hidden_states.new_ones((1, seq_length, seq_length)) |
|
m = torch.tril(m) |
|
if is_scalar: |
|
m[0, :, :int(sep)] = 1 |
|
else: |
|
m = m.expand(batch_size, -1, -1) |
|
ids = torch.arange(seq_length, device=sep.device, dtype=sep.dtype).view(1, -1) |
|
mask = ids < sep.view(-1, 1) |
|
m = m.masked_fill(mask.unsqueeze(1).expand_as(m), 1) |
|
if memory_length > 0: |
|
m = m.expand(batch_size, -1, -1) |
|
m = torch.cat((hidden_states.new_ones((batch_size, seq_length, memory_length)), m), dim=2) |
|
m = m.unsqueeze(1) |
|
return m |
|
|
|
attention_mask = build_mask_matrix(query_length, sep, memory_length=memory_length) |
|
else: |
|
if attention_mask.dim() == 2: |
|
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) |
|
attention_mask = attention_mask[:, :, :, -query_length - memory_length:] |
|
|
|
if self.block_position_encoding: |
|
position_ids, block_position_ids = position_ids[:, 0], position_ids[:, 1] |
|
position_embeddings = self.position_embeddings(position_ids) |
|
|
|
hidden_states = hidden_states + position_embeddings |
|
if self.block_position_encoding: |
|
block_position_embeddings = self.block_position_embeddings(block_position_ids) |
|
hidden_states = hidden_states + block_position_embeddings |
|
hidden_states = self.embedding_dropout(hidden_states) |
|
|
|
def check_detach(_hidden_states): |
|
return _hidden_states.detach() |
|
|
|
mem_layers = [check_detach(hidden_states)] |
|
|
|
for i, layer in enumerate(self.layers): |
|
|
|
args = [hidden_states, attention_mask] |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
mem_i = memory_states[i] if memory_states else None |
|
|
|
if self.checkpoint_activations: |
|
hidden_states = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer), |
|
hidden_states, |
|
mem=mem_i, |
|
) |
|
else: |
|
hidden_states = layer(*args, mem=mem_i) |
|
mem_layers.append(check_detach(hidden_states)) |
|
|
|
|
|
output = self.final_layernorm(hidden_states) |
|
mem_layers = self.update_mems(mem_layers, memory_states) |
|
return (output, mem_layers) |
|
|
|
def update_mems(self, hiddens, mems): |
|
memory_length = mems[0].size(1) if mems else 0 |
|
query_length = hiddens[0].size(1) |
|
new_memory_length = memory_length + query_length |
|
|
|
new_mems = [] |
|
|
|
for i in range(len(hiddens)): |
|
if new_memory_length <= query_length: |
|
new_mems.append(hiddens[i][:, -new_memory_length:]) |
|
else: |
|
new_mems.append(torch.cat((mems[i][:, -new_memory_length + query_length:], hiddens[i]), dim=1)) |
|
return new_mems |
|
|
|
|
|
class GLMPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and |
|
a simple interface for downloading and loading pretrained models. |
|
""" |
|
|
|
config_class = GLMConfig |
|
base_model_prefix = "glm" |
|
supports_gradient_checkpointing = True |
|
_keys_to_ignore_on_load_missing = [r"position_ids"] |
|
|
|
def _init_weights(self, module): |
|
""" Initialize the weights """ |
|
if isinstance(module, torch.nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, torch.nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, torch.nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, GLMModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
GLM_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general |
|
usage and behavior. |
|
|
|
Parameters: |
|
config ([`~GLMConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the configuration. |
|
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
GLM_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`GLMTokenizer`]. |
|
See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. |
|
Selected in the range `[0, config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert *input_ids* indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare GLM Model transformer outputting raw hidden-states without any specific head on top.", |
|
GLM_START_DOCSTRING, |
|
) |
|
class GLMModel(GLMPreTrainedModel): |
|
""" |
|
|
|
The model can behave as an encoder (with only self-attention) as well |
|
as a decoder, in which case a layer of cross-attention is added between |
|
the self-attention layers, following the architecture described in [Attention is |
|
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, |
|
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. |
|
|
|
To behave as an decoder the model needs to be initialized with the |
|
`is_decoder` argument of the configuration set to `True`. |
|
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` |
|
argument and `add_cross_attention` set to `True`; an |
|
`encoder_hidden_states` is then expected as an input to the forward pass. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
self.output_predict = config.output_predict |
|
|
|
self.word_embeddings = VocabEmbedding(config) |
|
|
|
|
|
self.transformer = GLMStack(config.num_layers, |
|
config.hidden_size, |
|
config.num_attention_heads, |
|
config.max_sequence_length, |
|
config.embedding_dropout_prob, |
|
config.attention_dropout_prob, |
|
config.output_dropout_prob, |
|
config.checkpoint_activations, |
|
config.checkpoint_num_layers, |
|
attention_scale=config.attention_scale, |
|
block_position_encoding=config.block_position_encoding) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(GLM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
processor_class=_TOKENIZER_FOR_DOC, |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPastAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids=None, |
|
position_ids=None, |
|
attention_mask=None, |
|
mems=None, |
|
**kwargs |
|
): |
|
batch_size = input_ids.size(0) |
|
words_embeddings = self.word_embeddings(input_ids) |
|
embeddings = words_embeddings |
|
|
|
device = input_ids.device |
|
input_shape = input_ids.size() |
|
|
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_shape[-1], dtype=torch.long, device=device) |
|
block_position_ids = torch.zeros(input_shape[-1], dtype=torch.long, device=device) |
|
position_ids = torch.stack((position_ids, block_position_ids), dim=0).unsqueeze(0) |
|
if attention_mask is None: |
|
attention_mask = torch.zeros(batch_size) |
|
|
|
transformer_output = self.transformer(embeddings, position_ids, attention_mask, mems) |
|
logits, hidden_layers = transformer_output |
|
|
|
if self.output_predict: |
|
|
|
|
|
|
|
logits = F.linear(logits, self.word_embeddings.weight) |
|
|
|
return ModelOutput( |
|
logits=logits, |
|
mems=hidden_layers, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""GLM Model transformer for multiple choice classification""", |
|
GLM_START_DOCSTRING |
|
) |
|
class GLMForMultipleChoice(GLMPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.glm = GLMModel(config) |
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
position_ids=None, |
|
attention_mask=None, |
|
choice_ids=None, |
|
choice_indices=None, |
|
labels=None, |
|
mems=None, |
|
**kwargs |
|
): |
|
model_output = self.glm.forward(input_ids, position_ids, attention_mask, mems=mems, **kwargs) |
|
lm_logits = model_output.logits |
|
log_probs = [] |
|
for output, choices, choice_index in zip(F.log_softmax(lm_logits, dim=-1), choice_ids, choice_indices): |
|
log_probs_single = [] |
|
for choice, choice_target_id in zip(choices, choice_index): |
|
tmp = output[choice_target_id, choice] |
|
log_probs_single.append(tmp.sum()) |
|
log_probs.append(torch.stack(log_probs_single)) |
|
log_probs = torch.stack(log_probs) |
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(log_probs, labels) |
|
return ModelOutput( |
|
loss=loss, |
|
logits=log_probs, |
|
lm_logits=lm_logits, |
|
mems=model_output.mems |
|
) |
|
|
|
@add_start_docstrings( |
|
"""GLM Model transformer with a `language modeling` head on top""", |
|
GLM_START_DOCSTRING, |
|
) |
|
class GLMForConditionalGeneration(GLMPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.glm = GLMModel(config) |
|
self.post_init() |
|
|
|
def _reorder_cache(self, past, beam_idx): |
|
|
|
|
|
if past is None: |
|
return past |
|
reordered_decoder_past = () |
|
for layer_past_states in past: |
|
|
|
reordered_decoder_past = reordered_decoder_past + ( |
|
layer_past_states.index_select(0, beam_idx.to(layer_past_states.device)),) |
|
return reordered_decoder_past |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past=None, position_ids=None, generation_attention_mask=None, |
|
**kwargs): |
|
|
|
attention_mask = generation_attention_mask |
|
seq_length = input_ids.shape[1] |
|
if past: |
|
if position_ids is not None: |
|
position_ids = position_ids[:, :, seq_length - 1].unsqueeze(-1) |
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, :, seq_length - 1, :seq_length].unsqueeze(-2) |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
else: |
|
if position_ids is not None: |
|
position_ids = position_ids[:, :, :seq_length] |
|
if attention_mask is not None: |
|
attention_mask = attention_mask[:, :, :seq_length, :seq_length] |
|
return { |
|
"input_ids": input_ids, |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
"mems": past, |
|
} |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
position_ids=None, |
|
attention_mask=None, |
|
labels=None, |
|
mems=None, |
|
**kwargs |
|
): |
|
model_output = self.glm.forward(input_ids, position_ids, attention_mask, mems=mems, **kwargs) |
|
lm_logits = model_output.logits |
|
loss = None |
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) |
|
return ModelOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
mems=model_output.mems |
|
) |