|
""" PyTorch ChatGLM model. """ |
|
|
|
import math |
|
import copy |
|
import os |
|
import warnings |
|
import re |
|
import sys |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss, LayerNorm |
|
from torch.nn.utils import skip_init |
|
from typing import Optional, Tuple, Union, List, Callable |
|
|
|
from transformers.utils import ( |
|
add_code_sample_docstrings, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
BaseModelOutputWithPastAndCrossAttentions, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
from transformers.generation.logits_process import LogitsProcessor |
|
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig |
|
|
|
from .configuration_chatglm import ChatGLMConfig |
|
|
|
|
|
|
|
if sys.platform != 'darwin': |
|
torch._C._jit_set_profiling_mode(False) |
|
torch._C._jit_set_profiling_executor(False) |
|
torch._C._jit_override_can_fuse_on_cpu(True) |
|
torch._C._jit_override_can_fuse_on_gpu(True) |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B" |
|
_CONFIG_FOR_DOC = "ChatGLM6BConfig" |
|
|
|
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"THUDM/chatglm-6b", |
|
|
|
] |
|
|
|
|
|
class InvalidScoreLogitsProcessor(LogitsProcessor): |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: |
|
if torch.isnan(scores).any() or torch.isinf(scores).any(): |
|
scores.zero_() |
|
scores[..., 20005] = 5e4 |
|
return scores |
|
|
|
|
|
def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path): |
|
"""Load tf checkpoints in a pytorch model.""" |
|
try: |
|
import re |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
except ImportError: |
|
logger.error( |
|
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " |
|
"https://www.tensorflow.org/install/ for installation instructions." |
|
) |
|
raise |
|
tf_path = os.path.abspath(tf_checkpoint_path) |
|
logger.info(f"Converting TensorFlow checkpoint from {tf_path}") |
|
|
|
init_vars = tf.train.list_variables(tf_path) |
|
names = [] |
|
arrays = [] |
|
for name, shape in init_vars: |
|
logger.info(f"Loading TF weight {name} with shape {shape}") |
|
array = tf.train.load_variable(tf_path, name) |
|
names.append(name) |
|
arrays.append(array) |
|
|
|
for name, array in zip(names, arrays): |
|
name = name.split("/") |
|
|
|
|
|
if any( |
|
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] |
|
for n in name |
|
): |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
continue |
|
pointer = model |
|
for m_name in name: |
|
if re.fullmatch(r"[A-Za-z]+_\d+", m_name): |
|
scope_names = re.split(r"_(\d+)", m_name) |
|
else: |
|
scope_names = [m_name] |
|
if scope_names[0] == "kernel" or scope_names[0] == "gamma": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "output_bias" or scope_names[0] == "beta": |
|
pointer = getattr(pointer, "bias") |
|
elif scope_names[0] == "output_weights": |
|
pointer = getattr(pointer, "weight") |
|
elif scope_names[0] == "squad": |
|
pointer = getattr(pointer, "classifier") |
|
else: |
|
try: |
|
pointer = getattr(pointer, scope_names[0]) |
|
except AttributeError: |
|
logger.info(f"Skipping {'/'.join(name)}") |
|
continue |
|
if len(scope_names) >= 2: |
|
num = int(scope_names[1]) |
|
pointer = pointer[num] |
|
if m_name[-11:] == "_embeddings": |
|
pointer = getattr(pointer, "weight") |
|
elif m_name == "kernel": |
|
array = np.transpose(array) |
|
try: |
|
assert ( |
|
pointer.shape == array.shape |
|
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" |
|
except AssertionError as e: |
|
e.args += (pointer.shape, array.shape) |
|
raise |
|
logger.info(f"Initialize PyTorch weight {name}") |
|
pointer.data = torch.from_numpy(array) |
|
return model |
|
|
|
|
|
class PrefixEncoder(torch.nn.Module): |
|
r''' |
|
The torch.nn model to encode the prefix |
|
Input shape: (batch-size, prefix-length) |
|
Output shape: (batch-size, prefix-length, 2*layers*hidden) |
|
''' |
|
def __init__(self, config): |
|
super().__init__() |
|
self.prefix_projection = config.prefix_projection |
|
if self.prefix_projection: |
|
|
|
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size) |
|
self.trans = torch.nn.Sequential( |
|
torch.nn.Linear(config.hidden_size, config.hidden_size), |
|
torch.nn.Tanh(), |
|
torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2) |
|
) |
|
else: |
|
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2) |
|
|
|
def forward(self, prefix: torch.Tensor): |
|
if self.prefix_projection: |
|
prefix_tokens = self.embedding(prefix) |
|
past_key_values = self.trans(prefix_tokens) |
|
else: |
|
past_key_values = self.embedding(prefix) |
|
return past_key_values |
|
|
|
|
|
@torch.jit.script |
|
def gelu_impl(x): |
|
"""OpenAI's gelu implementation.""" |
|
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x * |
|
(1.0 + 0.044715 * x * x))) |
|
|
|
|
|
def gelu(x): |
|
return gelu_impl(x) |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, base=10000, precision=torch.half, learnable=False): |
|
super().__init__() |
|
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) |
|
inv_freq = inv_freq.half() |
|
self.learnable = learnable |
|
if learnable: |
|
self.inv_freq = torch.nn.Parameter(inv_freq) |
|
self.max_seq_len_cached = None |
|
else: |
|
self.register_buffer('inv_freq', inv_freq) |
|
self.max_seq_len_cached = None |
|
self.cos_cached = None |
|
self.sin_cached = None |
|
self.precision = precision |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, |
|
error_msgs): |
|
pass |
|
|
|
def forward(self, x, seq_dim=1, seq_len=None): |
|
if seq_len is None: |
|
seq_len = x.shape[seq_dim] |
|
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached): |
|
self.max_seq_len_cached = None if self.learnable else seq_len |
|
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.einsum('i,j->ij', t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1).to(x.device) |
|
if self.precision == torch.bfloat16: |
|
emb = emb.float() |
|
|
|
|
|
cos_cached = emb.cos()[:, None, :] |
|
sin_cached = emb.sin()[:, None, :] |
|
if self.precision == torch.bfloat16: |
|
cos_cached = cos_cached.bfloat16() |
|
sin_cached = sin_cached.bfloat16() |
|
if self.learnable: |
|
return cos_cached, sin_cached |
|
self.cos_cached, self.sin_cached = cos_cached, sin_cached |
|
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...] |
|
|
|
|
|
def rotate_half(x): |
|
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=x1.ndim - 1) |
|
|
|
|
|
@torch.jit.script |
|
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id): |
|
|
|
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \ |
|
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2) |
|
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin) |
|
return q, k |
|
|
|
|
|
def attention_fn( |
|
self, |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
attention_mask, |
|
hidden_size_per_partition, |
|
layer_id, |
|
layer_past=None, |
|
scaling_attention_score=True, |
|
use_cache=False, |
|
): |
|
if layer_past is not None: |
|
past_key, past_value = layer_past |
|
key_layer = torch.cat((past_key, key_layer), dim=0) |
|
value_layer = torch.cat((past_value, value_layer), dim=0) |
|
|
|
|
|
seq_len, b, nh, hidden_size = key_layer.shape |
|
|
|
if use_cache: |
|
present = (key_layer, value_layer) |
|
else: |
|
present = None |
|
|
|
query_key_layer_scaling_coeff = float(layer_id + 1) |
|
if scaling_attention_score: |
|
query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff) |
|
|
|
|
|
|
|
|
|
|
|
|
|
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0)) |
|
|
|
|
|
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1) |
|
|
|
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1) |
|
|
|
matmul_result = torch.empty( |
|
output_size[0] * output_size[1], |
|
output_size[2], |
|
output_size[3], |
|
dtype=query_layer.dtype, |
|
device=query_layer.device, |
|
) |
|
|
|
matmul_result = torch.baddbmm( |
|
matmul_result, |
|
query_layer.transpose(0, 1), |
|
key_layer.transpose(0, 1).transpose(1, 2), |
|
beta=0.0, |
|
alpha=1.0, |
|
) |
|
|
|
|
|
attention_scores = matmul_result.view(*output_size) |
|
|
|
if self.scale_mask_softmax: |
|
self.scale_mask_softmax.scale = query_key_layer_scaling_coeff |
|
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous()) |
|
else: |
|
if not (attention_mask == 0).all(): |
|
|
|
attention_scores.masked_fill_(attention_mask, -10000.0) |
|
dtype = attention_scores.dtype |
|
attention_scores = attention_scores.float() |
|
attention_scores = attention_scores * query_key_layer_scaling_coeff |
|
|
|
attention_probs = F.softmax(attention_scores, dim=-1) |
|
|
|
attention_probs = attention_probs.type(dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3)) |
|
|
|
|
|
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1) |
|
|
|
|
|
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1) |
|
|
|
|
|
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1)) |
|
|
|
|
|
context_layer = context_layer.view(*output_size) |
|
|
|
|
|
context_layer = context_layer.permute(2, 0, 1, 3).contiguous() |
|
|
|
|
|
new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,) |
|
context_layer = context_layer.view(*new_context_layer_shape) |
|
|
|
outputs = (context_layer, present, attention_probs) |
|
|
|
return outputs |
|
|
|
|
|
class SelfAttention(torch.nn.Module): |
|
def __init__(self, hidden_size, num_attention_heads, |
|
layer_id, hidden_size_per_attention_head=None, bias=True, |
|
params_dtype=torch.float, position_encoding_2d=True): |
|
super(SelfAttention, self).__init__() |
|
|
|
self.layer_id = layer_id |
|
self.hidden_size = hidden_size |
|
self.hidden_size_per_partition = hidden_size |
|
self.num_attention_heads = num_attention_heads |
|
self.num_attention_heads_per_partition = num_attention_heads |
|
self.position_encoding_2d = position_encoding_2d |
|
self.rotary_emb = RotaryEmbedding( |
|
self.hidden_size // (self.num_attention_heads * 2) |
|
if position_encoding_2d |
|
else self.hidden_size // self.num_attention_heads, |
|
base=10000, |
|
precision=torch.half, |
|
learnable=False, |
|
) |
|
|
|
self.scale_mask_softmax = None |
|
|
|
if hidden_size_per_attention_head is None: |
|
self.hidden_size_per_attention_head = hidden_size // num_attention_heads |
|
else: |
|
self.hidden_size_per_attention_head = hidden_size_per_attention_head |
|
|
|
self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head |
|
|
|
|
|
self.query_key_value = skip_init( |
|
torch.nn.Linear, |
|
hidden_size, |
|
3 * self.inner_hidden_size, |
|
bias=bias, |
|
dtype=params_dtype, |
|
) |
|
|
|
self.dense = skip_init( |
|
torch.nn.Linear, |
|
self.inner_hidden_size, |
|
hidden_size, |
|
bias=bias, |
|
dtype=params_dtype, |
|
) |
|
|
|
@staticmethod |
|
def attention_mask_func(attention_scores, attention_mask): |
|
attention_scores.masked_fill_(attention_mask, -10000.0) |
|
return attention_scores |
|
|
|
def split_tensor_along_last_dim(self, tensor, num_partitions, |
|
contiguous_split_chunks=False): |
|
"""Split a tensor along its last dimension. |
|
Arguments: |
|
tensor: input tensor. |
|
num_partitions: number of partitions to split the tensor |
|
contiguous_split_chunks: If True, make each chunk contiguous |
|
in memory. |
|
""" |
|
|
|
last_dim = tensor.dim() - 1 |
|
last_dim_size = tensor.size()[last_dim] // num_partitions |
|
|
|
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) |
|
|
|
if contiguous_split_chunks: |
|
return tuple(chunk.contiguous() for chunk in tensor_list) |
|
|
|
return tensor_list |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_ids, |
|
attention_mask: torch.Tensor, |
|
layer_id, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
""" |
|
hidden_states: [seq_len, batch, hidden_size] |
|
attention_mask: [(1, 1), seq_len, seq_len] |
|
""" |
|
|
|
|
|
mixed_raw_layer = self.query_key_value(hidden_states) |
|
|
|
|
|
new_tensor_shape = mixed_raw_layer.size()[:-1] + ( |
|
self.num_attention_heads_per_partition, |
|
3 * self.hidden_size_per_attention_head, |
|
) |
|
mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape) |
|
|
|
|
|
(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3) |
|
|
|
if self.position_encoding_2d: |
|
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1)) |
|
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1)) |
|
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1) |
|
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \ |
|
position_ids[:, 1, :].transpose(0, 1).contiguous() |
|
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids) |
|
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids) |
|
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1)) |
|
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1)) |
|
else: |
|
position_ids = position_ids.transpose(0, 1) |
|
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1) |
|
|
|
query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids) |
|
|
|
|
|
context_layer, present, attention_probs = attention_fn( |
|
self=self, |
|
query_layer=query_layer, |
|
key_layer=key_layer, |
|
value_layer=value_layer, |
|
attention_mask=attention_mask, |
|
hidden_size_per_partition=self.hidden_size_per_partition, |
|
layer_id=layer_id, |
|
layer_past=layer_past, |
|
use_cache=use_cache |
|
) |
|
|
|
output = self.dense(context_layer) |
|
|
|
outputs = (output, present) |
|
|
|
if output_attentions: |
|
outputs += (attention_probs,) |
|
|
|
return outputs |
|
|
|
|
|
class GEGLU(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.activation_fn = F.gelu |
|
|
|
def forward(self, x): |
|
|
|
x1, x2 = x.chunk(2, dim=(x.ndim - 1)) |
|
return x1 * self.activation_fn(x2) |
|
|
|
|
|
class GLU(torch.nn.Module): |
|
def __init__(self, hidden_size, inner_hidden_size=None, |
|
layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float): |
|
super(GLU, self).__init__() |
|
self.layer_id = layer_id |
|
self.activation_func = activation_func |
|
|
|
|
|
self.hidden_size = hidden_size |
|
if inner_hidden_size is None: |
|
inner_hidden_size = 4 * hidden_size |
|
self.inner_hidden_size = inner_hidden_size |
|
self.dense_h_to_4h = skip_init( |
|
torch.nn.Linear, |
|
self.hidden_size, |
|
self.inner_hidden_size, |
|
bias=bias, |
|
dtype=params_dtype, |
|
) |
|
|
|
self.dense_4h_to_h = skip_init( |
|
torch.nn.Linear, |
|
self.inner_hidden_size, |
|
self.hidden_size, |
|
bias=bias, |
|
dtype=params_dtype, |
|
) |
|
|
|
def forward(self, hidden_states): |
|
""" |
|
hidden_states: [seq_len, batch, hidden_size] |
|
""" |
|
|
|
|
|
intermediate_parallel = self.dense_h_to_4h(hidden_states) |
|
|
|
intermediate_parallel = self.activation_func(intermediate_parallel) |
|
|
|
output = self.dense_4h_to_h(intermediate_parallel) |
|
|
|
return output |
|
|
|
|
|
class GLMBlock(torch.nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size, |
|
num_attention_heads, |
|
layernorm_epsilon, |
|
layer_id, |
|
inner_hidden_size=None, |
|
hidden_size_per_attention_head=None, |
|
layernorm=LayerNorm, |
|
use_bias=True, |
|
params_dtype=torch.float, |
|
num_layers=28, |
|
position_encoding_2d=True |
|
): |
|
super(GLMBlock, self).__init__() |
|
|
|
|
|
self.layer_id = layer_id |
|
|
|
|
|
self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon) |
|
|
|
self.position_encoding_2d = position_encoding_2d |
|
|
|
|
|
self.attention = SelfAttention( |
|
hidden_size, |
|
num_attention_heads, |
|
layer_id, |
|
hidden_size_per_attention_head=hidden_size_per_attention_head, |
|
bias=use_bias, |
|
params_dtype=params_dtype, |
|
position_encoding_2d=self.position_encoding_2d |
|
) |
|
|
|
|
|
self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon) |
|
|
|
self.num_layers = num_layers |
|
|
|
|
|
self.mlp = GLU( |
|
hidden_size, |
|
inner_hidden_size=inner_hidden_size, |
|
bias=use_bias, |
|
layer_id=layer_id, |
|
params_dtype=params_dtype, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_ids, |
|
attention_mask: torch.Tensor, |
|
layer_id, |
|
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
use_cache: bool = False, |
|
output_attentions: bool = False, |
|
): |
|
""" |
|
hidden_states: [seq_len, batch, hidden_size] |
|
attention_mask: [(1, 1), seq_len, seq_len] |
|
""" |
|
|
|
|
|
|
|
attention_input = self.input_layernorm(hidden_states) |
|
|
|
|
|
attention_outputs = self.attention( |
|
attention_input, |
|
position_ids, |
|
attention_mask=attention_mask, |
|
layer_id=layer_id, |
|
layer_past=layer_past, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions |
|
) |
|
|
|
attention_output = attention_outputs[0] |
|
|
|
outputs = attention_outputs[1:] |
|
|
|
|
|
alpha = (2 * self.num_layers) ** 0.5 |
|
hidden_states = attention_input * alpha + attention_output |
|
|
|
mlp_input = self.post_attention_layernorm(hidden_states) |
|
|
|
|
|
mlp_output = self.mlp(mlp_input) |
|
|
|
|
|
output = mlp_input * alpha + mlp_output |
|
|
|
if use_cache: |
|
outputs = (output,) + outputs |
|
else: |
|
outputs = (output,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
|
|
class ChatGLMPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and |
|
a simple interface for downloading and loading pretrained models. |
|
""" |
|
|
|
is_parallelizable = False |
|
supports_gradient_checkpointing = False |
|
config_class = ChatGLMConfig |
|
base_model_prefix = "transformer" |
|
_no_split_modules = ["GLM6BBlock"] |
|
|
|
def __init__(self, *inputs, **kwargs): |
|
super().__init__(*inputs, **kwargs) |
|
|
|
def _init_weights(self, module: nn.Module): |
|
"""Initialize the weights.""" |
|
return |
|
|
|
|
|
CHATGLM_6B_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general |
|
usage and behavior. |
|
|
|
Parameters: |
|
config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the configuration. |
|
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
CHATGLM_6B_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`ChatGLM6BTokenizer`]. |
|
See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: |
|
|
|
- 0 corresponds to a *sentence A* token, |
|
- 1 corresponds to a *sentence B* token. |
|
|
|
[What are token type IDs?](../glossary#token-type-ids) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. |
|
Selected in the range `[0, config.max_position_embeddings - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. |
|
This is useful if you want more control over how to convert *input_ids* indices into associated vectors |
|
than the model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.", |
|
CHATGLM_6B_START_DOCSTRING, |
|
) |
|
class ChatGLMModel(ChatGLMPreTrainedModel): |
|
""" |
|
|
|
The model can behave as an encoder (with only self-attention) as well |
|
as a decoder, in which case a layer of cross-attention is added between |
|
the self-attention layers, following the architecture described in [Attention is |
|
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, |
|
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. |
|
|
|
To behave as an decoder the model needs to be initialized with the |
|
`is_decoder` argument of the configuration set to `True`. |
|
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` |
|
argument and `add_cross_attention` set to `True`; an |
|
`encoder_hidden_states` is then expected as an input to the forward pass. |
|
""" |
|
|
|
def __init__(self, config: ChatGLMConfig): |
|
super().__init__(config) |
|
|
|
|
|
self.max_sequence_length = config.max_sequence_length |
|
self.hidden_size = config.hidden_size |
|
self.params_dtype = torch.half |
|
self.num_attention_heads = config.num_attention_heads |
|
self.vocab_size = config.vocab_size |
|
self.num_layers = config.num_layers |
|
self.layernorm_epsilon = config.layernorm_epsilon |
|
self.inner_hidden_size = config.inner_hidden_size |
|
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads |
|
self.position_encoding_2d = config.position_encoding_2d |
|
self.pre_seq_len = config.pre_seq_len |
|
self.prefix_projection = config.prefix_projection |
|
|
|
self.word_embeddings = skip_init( |
|
torch.nn.Embedding, |
|
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size, |
|
dtype=self.params_dtype |
|
) |
|
|
|
def get_layer(layer_id): |
|
return GLMBlock( |
|
self.hidden_size, |
|
self.num_attention_heads, |
|
self.layernorm_epsilon, |
|
layer_id, |
|
inner_hidden_size=self.inner_hidden_size, |
|
hidden_size_per_attention_head=self.hidden_size_per_attention_head, |
|
layernorm=LayerNorm, |
|
use_bias=True, |
|
params_dtype=self.params_dtype, |
|
position_encoding_2d=self.position_encoding_2d, |
|
) |
|
|
|
self.layers = torch.nn.ModuleList( |
|
[get_layer(layer_id) for layer_id in range(self.num_layers)] |
|
) |
|
|
|
|
|
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon) |
|
|
|
if self.pre_seq_len is not None: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
self.prefix_tokens = torch.arange(self.pre_seq_len).long() |
|
self.prefix_encoder = PrefixEncoder(config) |
|
self.dropout = torch.nn.Dropout(0.1) |
|
|
|
|
|
|
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.word_embeddings |
|
|
|
def set_input_embeddings(self, new_embeddings: torch.Tensor): |
|
self.word_embeddings = new_embeddings |
|
|
|
def get_prompt(self, batch_size, device): |
|
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device) |
|
past_key_values = self.prefix_encoder(prefix_tokens).half() |
|
past_key_values = past_key_values.view( |
|
batch_size, |
|
self.pre_seq_len, |
|
self.num_layers * 2, |
|
self.num_attention_heads, |
|
self.hidden_size // self.num_attention_heads |
|
) |
|
|
|
past_key_values = self.dropout(past_key_values) |
|
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2) |
|
past_key_values = [(v[0], v[1]) for v in past_key_values] |
|
|
|
|
|
return past_key_values |
|
|
|
@staticmethod |
|
def get_masks(self, input_ids, device): |
|
batch_size, seq_length = input_ids.shape |
|
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids] |
|
attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device) |
|
attention_mask.tril_() |
|
for i, context_length in enumerate(context_lengths): |
|
attention_mask[i, :, :context_length] = 1 |
|
attention_mask.unsqueeze_(1) |
|
attention_mask = (attention_mask < 0.5).bool() |
|
|
|
return attention_mask |
|
|
|
def get_position_ids(self, input_ids, mask_positions, device, gmask=False): |
|
batch_size, seq_length = input_ids.shape |
|
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids] |
|
if self.position_encoding_2d: |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).expand(batch_size, seq_length) |
|
if not gmask: |
|
for i, context_length in enumerate(context_lengths): |
|
position_ids[i, context_length:] = mask_positions[i] |
|
block_position_ids = [torch.cat(( |
|
torch.zeros(context_length, dtype=torch.long, device=device), |
|
torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1 |
|
)) for context_length in context_lengths] |
|
block_position_ids = torch.stack(block_position_ids, dim=0) |
|
position_ids = torch.stack((position_ids, block_position_ids), dim=1) |
|
else: |
|
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).expand(batch_size, seq_length) |
|
if not gmask: |
|
for i, context_length in enumerate(context_lengths): |
|
position_ids[context_length:] = mask_positions[i] |
|
|
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
return position_ids |
|
|
|
@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@add_code_sample_docstrings( |
|
checkpoint=_CHECKPOINT_FOR_DOC, |
|
output_type=BaseModelOutputWithPastAndCrossAttentions, |
|
config_class=_CONFIG_FOR_DOC, |
|
) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, |
|
inputs_embeds: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if past_key_values is None: |
|
if self.pre_seq_len is not None: |
|
past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device) |
|
else: |
|
past_key_values = tuple([None] * len(self.layers)) |
|
|
|
if attention_mask is None: |
|
attention_mask = self.get_masks( |
|
input_ids, |
|
device=input_ids.device |
|
) |
|
|
|
if self.pre_seq_len is not None: |
|
prefix_attention_mask = torch.ones(1, 1, input_ids.size(-1), self.pre_seq_len).to(attention_mask.device) |
|
prefix_attention_mask = (prefix_attention_mask < 0.5).bool() |
|
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3) |
|
|
|
if position_ids is None: |
|
MASK, gMASK = 150000, 150001 |
|
mask_token = MASK if MASK in input_ids else gMASK |
|
use_gmask = False if MASK in input_ids else gMASK |
|
|
|
mask_positions = [seq.tolist().index(mask_token) for seq in input_ids] |
|
position_ids = self.get_position_ids( |
|
input_ids, |
|
mask_positions=mask_positions, |
|
device=input_ids.device, |
|
gmask=use_gmask |
|
) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.word_embeddings(input_ids) |
|
|
|
|
|
hidden_states = inputs_embeds.transpose(0, 1) |
|
|
|
presents = () if use_cache else None |
|
all_self_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
if past_key_values[0] is not None: |
|
past_key_values_length = past_key_values[0][0].shape[0] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
if attention_mask is None: |
|
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool() |
|
|
|
else: |
|
attention_mask = attention_mask.to(input_ids.device) |
|
|
|
for i, layer in enumerate(self.layers): |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_ret = layer( |
|
hidden_states, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
layer_id=torch.tensor(i), |
|
layer_past=past_key_values[i], |
|
use_cache=use_cache, |
|
output_attentions=output_attentions |
|
) |
|
|
|
hidden_states = layer_ret[0] |
|
|
|
if use_cache: |
|
presents = presents + (layer_ret[1],) |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],) |
|
|
|
|
|
hidden_states = self.final_layernorm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
|
|
|
|
self.max_sequence_length = config.max_sequence_length |
|
|
|
self.position_encoding_2d = config.position_encoding_2d |
|
|
|
self.transformer = ChatGLMModel(config) |
|
|
|
self.lm_head = skip_init( |
|
nn.Linear, |
|
config.hidden_size, |
|
config.vocab_size, |
|
bias=False, |
|
dtype=torch.half |
|
) |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def get_masks_and_position_ids(self, seq, mask_position, context_length, device, gmask=False): |
|
attention_mask = torch.ones((1, context_length, context_length), device=device) |
|
attention_mask.tril_() |
|
attention_mask[..., :context_length - 1] = 1 |
|
attention_mask.unsqueeze_(1) |
|
attention_mask = (attention_mask < 0.5).bool() |
|
|
|
if self.position_encoding_2d: |
|
seq_length = seq.index(self.config.bos_token_id) |
|
position_ids = torch.arange(context_length, dtype=torch.long, device=device) |
|
if not gmask: |
|
position_ids[seq_length:] = mask_position |
|
block_position_ids = torch.cat(( |
|
torch.zeros(seq_length, dtype=torch.long, device=device), |
|
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1 |
|
)) |
|
position_ids = torch.stack((position_ids, block_position_ids), dim=0) |
|
else: |
|
position_ids = torch.arange(context_length, dtype=torch.long, device=device) |
|
if not gmask: |
|
position_ids[context_length - 1:] = mask_position |
|
|
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
return attention_mask, position_ids |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
**kwargs |
|
) -> dict: |
|
|
|
MASK, gMASK = 150000, 150001 |
|
mask_token = MASK if MASK in input_ids else gMASK |
|
use_gmask = False if MASK in input_ids else gMASK |
|
seq = input_ids[0].tolist() |
|
mask_position = seq.index(mask_token) |
|
|
|
if mask_token not in seq: |
|
raise ValueError("You have to add either [MASK] or [gMASK] in your input") |
|
|
|
|
|
if past is not None or past_key_values is not None: |
|
context_length = seq.index(self.config.bos_token_id) |
|
last_token = input_ids[:, -1].unsqueeze(-1) |
|
if self.position_encoding_2d: |
|
position_ids = torch.tensor([[[mask_position], [len(seq) - context_length]]], dtype=torch.long, |
|
device=input_ids.device) |
|
else: |
|
position_ids = torch.tensor([[mask_position]], dtype=torch.long, device=input_ids.device) |
|
|
|
if past is None: |
|
past = past_key_values |
|
return { |
|
"input_ids": last_token, |
|
"past_key_values": past, |
|
"position_ids": position_ids, |
|
} |
|
else: |
|
attention_mask, position_ids = self.get_masks_and_position_ids( |
|
seq=seq, |
|
mask_position=mask_position, |
|
context_length=len(seq), |
|
device=input_ids.device, |
|
gmask=use_gmask |
|
) |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"past_key_values": past, |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask |
|
} |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[Tuple[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.transformer( |
|
input_ids=input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = transformer_outputs[0] |
|
|
|
lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous() |
|
|
|
loss = None |
|
if labels is not None: |
|
lm_logits = lm_logits.to(torch.float32) |
|
|
|
|
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) |
|
|
|
lm_logits = lm_logits.to(hidden_states.dtype) |
|
loss = loss.to(hidden_states.dtype) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=lm_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|
|
@staticmethod |
|
def _reorder_cache( |
|
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor |
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: |
|
""" |
|
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or |
|
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct |
|
beam_idx at every generation step. |
|
|
|
Output shares the same memory storage as `past`. |
|
""" |
|
return tuple( |
|
( |
|
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)), |
|
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)), |
|
) |
|
for layer_past in past |
|
) |
|
|
|
def process_response(self, response): |
|
response = response.strip() |
|
response = response.replace("[[训练时间]]", "2023年") |
|
punkts = [ |
|
[",", ","], |
|
["!", "!"], |
|
[":", ":"], |
|
[";", ";"], |
|
["\?", "?"], |
|
] |
|
for item in punkts: |
|
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response) |
|
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response) |
|
return response |
|
|
|
@torch.no_grad() |
|
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1, |
|
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs): |
|
if history is None: |
|
history = [] |
|
if logits_processor is None: |
|
logits_processor = LogitsProcessorList() |
|
logits_processor.append(InvalidScoreLogitsProcessor()) |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, |
|
"temperature": temperature, "logits_processor": logits_processor, **kwargs} |
|
if not history: |
|
prompt = query |
|
else: |
|
prompt = "" |
|
for i, (old_query, response) in enumerate(history): |
|
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response) |
|
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query) |
|
input_ids = tokenizer([prompt], return_tensors="pt", padding=True) |
|
input_ids = input_ids.to(self.device) |
|
outputs = self.generate(**input_ids, **gen_kwargs) |
|
outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):] |
|
response = tokenizer.decode(outputs) |
|
response = self.process_response(response) |
|
history = history + [(query, response)] |
|
return response, history |
|
|
|
@torch.no_grad() |
|
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, |
|
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs): |
|
if history is None: |
|
history = [] |
|
if logits_processor is None: |
|
logits_processor = LogitsProcessorList() |
|
logits_processor.append(InvalidScoreLogitsProcessor()) |
|
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p, |
|
"temperature": temperature, "logits_processor": logits_processor, **kwargs} |
|
if not history: |
|
prompt = query |
|
else: |
|
prompt = "" |
|
for i, (old_query, response) in enumerate(history): |
|
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response) |
|
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query) |
|
input_ids = tokenizer([prompt], return_tensors="pt", padding=True) |
|
input_ids = input_ids.to(self.device) |
|
for outputs in self.stream_generate(**input_ids, **gen_kwargs): |
|
outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):] |
|
response = tokenizer.decode(outputs) |
|
response = self.process_response(response) |
|
new_history = history + [(query, response)] |
|
yield response, new_history |
|
|
|
@torch.no_grad() |
|
def stream_generate( |
|
self, |
|
input_ids, |
|
generation_config: Optional[GenerationConfig] = None, |
|
logits_processor: Optional[LogitsProcessorList] = None, |
|
stopping_criteria: Optional[StoppingCriteriaList] = None, |
|
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, |
|
**kwargs, |
|
): |
|
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1] |
|
|
|
if generation_config is None: |
|
generation_config = self.generation_config |
|
generation_config = copy.deepcopy(generation_config) |
|
model_kwargs = generation_config.update(**kwargs) |
|
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id |
|
|
|
if isinstance(eos_token_id, int): |
|
eos_token_id = [eos_token_id] |
|
|
|
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None |
|
if has_default_max_length and generation_config.max_new_tokens is None: |
|
warnings.warn( |
|
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. " |
|
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we" |
|
" recommend using `max_new_tokens` to control the maximum length of the generation.", |
|
UserWarning, |
|
) |
|
elif generation_config.max_new_tokens is not None: |
|
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length |
|
if not has_default_max_length: |
|
logger.warn( |
|
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" |
|
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " |
|
"Please refer to the documentation for more information. " |
|
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)", |
|
UserWarning, |
|
) |
|
|
|
if input_ids_seq_length >= generation_config.max_length: |
|
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids" |
|
logger.warning( |
|
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to" |
|
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" |
|
" increasing `max_new_tokens`." |
|
) |
|
|
|
|
|
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() |
|
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() |
|
|
|
logits_processor = self._get_logits_processor( |
|
generation_config=generation_config, |
|
input_ids_seq_length=input_ids_seq_length, |
|
encoder_input_ids=input_ids, |
|
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, |
|
logits_processor=logits_processor, |
|
) |
|
|
|
stopping_criteria = self._get_stopping_criteria( |
|
generation_config=generation_config, stopping_criteria=stopping_criteria |
|
) |
|
logits_warper = self._get_logits_warper(generation_config) |
|
|
|
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1) |
|
scores = None |
|
while True: |
|
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) |
|
|
|
outputs = self( |
|
**model_inputs, |
|
return_dict=True, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
) |
|
|
|
next_token_logits = outputs.logits[:, -1, :] |
|
|
|
|
|
next_token_scores = logits_processor(input_ids, next_token_logits) |
|
next_token_scores = logits_warper(input_ids, next_token_scores) |
|
|
|
|
|
probs = nn.functional.softmax(next_token_scores, dim=-1) |
|
if generation_config.do_sample: |
|
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1) |
|
else: |
|
next_tokens = torch.argmax(probs, dim=-1) |
|
|
|
|
|
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1) |
|
model_kwargs = self._update_model_kwargs_for_generation( |
|
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder |
|
) |
|
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long()) |
|
|
|
|
|
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores): |
|
break |
|
yield input_ids |
|
|
|
def quantize(self, bits: int): |
|
from .quantization import quantize |
|
self.transformer = quantize(self.transformer, bits) |
|
return self |
|
|