TESTtm7873 commited on
Commit
75c7729
1 Parent(s): 873c1fc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ ---
6
+
7
+ # Model Card for Model ID
8
+
9
+ Finetuned mistralai/Mistral-7B-Instruct-v0.2 on TESTtm7873/ChatCat dataset
10
+
11
+ ### Model Description
12
+ Developed of our VCC project
13
+ Finetuned with QLoRA
14
+
15
+ To use it:
16
+ ```import torch
17
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
18
+
19
+ base_model_id = "mistralai/Mistral-7B-Instruct-v0.2"
20
+ bnb_config = BitsAndBytesConfig(
21
+ load_in_4bit=True,
22
+ bnb_4bit_use_double_quant=True,
23
+ bnb_4bit_quant_type="nf4",
24
+ bnb_4bit_compute_dtype=torch.bfloat16
25
+ )
26
+
27
+ base_model = AutoModelForCausalLM.from_pretrained(
28
+ base_model_id, # Mistral, same as before
29
+ quantization_config=bnb_config, # Same quantization config as before
30
+ device_map="auto",
31
+ trust_remote_code=True,
32
+ )
33
+
34
+ eval_tokenizer = AutoTokenizer.from_pretrained(base_model_id, add_bos_token=True, trust_remote_code=True)
35
+
36
+ from peft import PeftModel
37
+
38
+ ft_model = PeftModel.from_pretrained(base_model, "mistral-journal-finetune/checkpoint-150")
39
+
40
+ eval_prompt = "You have the softest fur."
41
+ model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to("cuda")
42
+
43
+ ft_model.eval()
44
+ with torch.no_grad():
45
+ print(eval_tokenizer.decode(ft_model.generate(**model_input, max_new_tokens=100, repetition_penalty=1.15)[0], skip_special_tokens=True))```
46
+
47
+
48
+
49
+ - **Developed by:** testtm
50
+ - **Funded by:** testtm
51
+ - **Model type:** Mistral
52
+ - **Language:** English
53
+ - **Finetuned from model:** mistralai/Mistral-7B-Instruct-v0.2