|
from typing import Dict, List, Any
|
|
from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor
|
|
import torch
|
|
from subprocess import run
|
|
|
|
|
|
run("apt install -y tesseract-ocr", shell=True, check=True)
|
|
run("pip install pytesseract", shell=True, check=True)
|
|
|
|
|
|
def unnormalize_box(bbox, width, height):
|
|
return [
|
|
width * (bbox[0] / 1000),
|
|
height * (bbox[1] / 1000),
|
|
width * (bbox[2] / 1000),
|
|
height * (bbox[3] / 1000),
|
|
]
|
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
class EndpointHandler:
|
|
def __init__(self, path=""):
|
|
|
|
self.model = LayoutLMForTokenClassification.from_pretrained(path).to(device)
|
|
self.processor = LayoutLMv2Processor.from_pretrained(path)
|
|
|
|
def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]:
|
|
"""
|
|
Args:
|
|
data (:obj:):
|
|
includes the deserialized image file as PIL.Image
|
|
"""
|
|
|
|
image = data.pop("inputs", data)
|
|
|
|
|
|
encoding = self.processor(image, return_tensors="pt")
|
|
|
|
|
|
with torch.inference_mode():
|
|
outputs = self.model(
|
|
input_ids=encoding.input_ids.to(device),
|
|
bbox=encoding.bbox.to(device),
|
|
attention_mask=encoding.attention_mask.to(device),
|
|
token_type_ids=encoding.token_type_ids.to(device),
|
|
)
|
|
predictions = outputs.logits.softmax(-1)
|
|
|
|
|
|
result = []
|
|
for item, inp_ids, bbox in zip(
|
|
predictions.squeeze(0).cpu(), encoding.input_ids.squeeze(0).cpu(), encoding.bbox.squeeze(0).cpu()
|
|
):
|
|
label = self.model.config.id2label[int(item.argmax().cpu())]
|
|
if label == "O":
|
|
continue
|
|
score = item.max().item()
|
|
text = self.processor.tokenizer.decode(inp_ids)
|
|
bbox = unnormalize_box(bbox.tolist(), image.width, image.height)
|
|
result.append({"label": label, "score": score, "text": text, "bbox": bbox})
|
|
return {"predictions": result} |