PPO LunarLander-v2 trained agent
Browse files- PPO-LunarLander-V2.zip +3 -0
- PPO-LunarLander-V2/_stable_baselines3_version +1 -0
- PPO-LunarLander-V2/data +95 -0
- PPO-LunarLander-V2/policy.optimizer.pth +3 -0
- PPO-LunarLander-V2/policy.pth +3 -0
- PPO-LunarLander-V2/pytorch_variables.pth +3 -0
- PPO-LunarLander-V2/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
PPO-LunarLander-V2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fd863067e93f7da0522744c315f8958e74e99d9ef72523ec93bea2e58548ab7
|
3 |
+
size 147298
|
PPO-LunarLander-V2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
PPO-LunarLander-V2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f771d153310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f771d1533a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f771d153430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f771d1534c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f771d153550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f771d1535e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f771d153670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f771d153700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f771d153790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f771d153820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f771d1538b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f771d153940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f771d14f6f0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 2015232,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1675827534226735937,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq4oT3afaE/DtQLPypuK78+63A9OlOiPgAAAAAAAAAAM2NAu92UtT/eQJi+qeGuPl9hXztg84k9AAAAAAAAAABK/Ye+rJcvPyANLr0mBSO/IjEJv8D5Gj4AAAAAAAAAAFrtOD5ztbg+8rsYvqTtC78lJi4+bcb/vQAAAAAAAAAAzQrVvC91uj+7ZHG+Z5GqPc2T9bxKuhS+AAAAAAAAAABmYlw8KZhmuueGs7QAbHCvIzpSu/p/azMAAIA/AACAPwDw+rzyUbM/SNn4vlTQDr7fYvQ72bOhvQAAAAAAAAAAAFhNPPYUcLrVDts7QOV1PCtC8znOBlg9AACAPwAAgD+AGOi9b1ujP17N2b41dg+/qvB9vhFuib4AAAAAAAAAAA0EgD5nHJ4/mOUdP7aiKb/fUd4+0dOMPgAAAAAAAAAAmrs2PSmoZbpjFDU7Yot8NgzLRju4r1O6AAAAAAAAAACa1p28FVBtPk3gZr32jcW+VKmAvQn6jLwAAAAAAAAAACaX/z0KCx67YCC+Oo7kx7fy5hm8w2fnuQAAAAAAAAAAzXmjPHt/mD5pAog7NHTyvkwZfzwZrbk7AAAAAAAAAAAAx9u8EUz1PhjjET2ACA6/AbudvM0Ye70AAAAAAAAAAJqxBz029Gu8PJXEvff9C7zepIo9+oEwPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.007616000000000067,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/14KDxqFckCUhpRSlIwBbJRL64wBdJRHQKbZtBYV6/t1fZQoaAZoCWgPQwjqIK8HU0VxQJSGlFKUaBVLxmgWR0Cm2bxLbpNcdX2UKGgGaAloD0MIyFwZVBtwdECUhpRSlGgVS9poFkdAptm6JCSid3V9lChoBmgJaA9DCGSSkbOwB3RAlIaUUpRoFUvXaBZHQKbZwAjIJZ51fZQoaAZoCWgPQwiOBvAWyIBxQJSGlFKUaBVLwmgWR0Cm2dy3LFGYdX2UKGgGaAloD0MIrvVFQltIc0CUhpRSlGgVS6hoFkdApto6lpGnXXV9lChoBmgJaA9DCNhit8/qlXBAlIaUUpRoFUu4aBZHQKbaToTPBzp1fZQoaAZoCWgPQwjOjekJS6xyQJSGlFKUaBVL1mgWR0Cm2l5OBUaRdX2UKGgGaAloD0MIC2DKwAGeckCUhpRSlGgVS7doFkdAptqBVXFLnXV9lChoBmgJaA9DCAt+G2L8BXNAlIaUUpRoFUvIaBZHQKbale/Ho5h1fZQoaAZoCWgPQwiXOzPBMNFxQJSGlFKUaBVLqWgWR0Cm2sdaEBbOdX2UKGgGaAloD0MIga/o1uuTcECUhpRSlGgVS7toFkdAptrePo3aSXV9lChoBmgJaA9DCP6ZQXxgcHNAlIaUUpRoFUvDaBZHQKbbP7HAAQx1fZQoaAZoCWgPQwjOM/Ylm9puQJSGlFKUaBVLwmgWR0Cm20KBmPHUdX2UKGgGaAloD0MIhSSzeoeScUCUhpRSlGgVS8NoFkdAptt+T5ftyHV9lChoBmgJaA9DCISEKF/Q73BAlIaUUpRoFUu8aBZHQKbbm3CsOoZ1fZQoaAZoCWgPQwgCgjl6fDpyQJSGlFKUaBVLx2gWR0Cm9i5jH4oJdX2UKGgGaAloD0MIhxQDJJo9cUCUhpRSlGgVS9VoFkdApvZaFdszmHV9lChoBmgJaA9DCPX0EfhD73BAlIaUUpRoFUuraBZHQKb2b/Mnqml1fZQoaAZoCWgPQwjY9KCglLZyQJSGlFKUaBVL12gWR0Cm9oEKu0TldX2UKGgGaAloD0MI54wo7U1tdECUhpRSlGgVS+poFkdApvaPmmtQsXV9lChoBmgJaA9DCDBHj9/b73BAlIaUUpRoFUu8aBZHQKb2rYOlO451fZQoaAZoCWgPQwjKb9HJki5yQJSGlFKUaBVL2WgWR0Cm9wUPH1e0dX2UKGgGaAloD0MITu/i/XiqcUCUhpRSlGgVS8hoFkdApvcUBwMpgHV9lChoBmgJaA9DCLiU88Xeh3FAlIaUUpRoFUutaBZHQKb3GYR/ViF1fZQoaAZoCWgPQwjzGyYaZLJzQJSGlFKUaBVL22gWR0Cm9zDRUm2LdX2UKGgGaAloD0MIZTbIJCMUcECUhpRSlGgVS8NoFkdApvc8j/uLJnV9lChoBmgJaA9DCMO68e7IPXFAlIaUUpRoFUufaBZHQKb3igQpWmx1fZQoaAZoCWgPQwjVIw1uK/FwQJSGlFKUaBVLt2gWR0Cm95KxcE/0dX2UKGgGaAloD0MIt0WZDXJXc0CUhpRSlGgVS8BoFkdApveohB7eEnV9lChoBmgJaA9DCFPovMbuoXNAlIaUUpRoFUvHaBZHQKb4GE5hjON1fZQoaAZoCWgPQwiRup19pSxyQJSGlFKUaBVLrWgWR0Cm+CFR51NhdX2UKGgGaAloD0MIzuFa7WHzc0CUhpRSlGgVS71oFkdApvghNoJzDHV9lChoBmgJaA9DCEvnw7NEHXJAlIaUUpRoFUu4aBZHQKb4Uf/WDpV1fZQoaAZoCWgPQwg3VffIpsFzQJSGlFKUaBVLxGgWR0Cm+IEgW8AadX2UKGgGaAloD0MIoBaDh2nlcUCUhpRSlGgVS8hoFkdApviaoXKr73V9lChoBmgJaA9DCA4w8x38cnFAlIaUUpRoFUvOaBZHQKb4yS8rZrZ1fZQoaAZoCWgPQwiOWmH6nmBwQJSGlFKUaBVLtmgWR0Cm+PSlN1yOdX2UKGgGaAloD0MI1SZO7jdmcUCUhpRSlGgVS65oFkdApvj7dnCfpXV9lChoBmgJaA9DCJnU0AYgdHNAlIaUUpRoFUu1aBZHQKb4+Hi3ocJ1fZQoaAZoCWgPQwgkmGpmLT5pQJSGlFKUaBVN6ANoFkdApvkIMKCxvHV9lChoBmgJaA9DCCCzs+idJ3FAlIaUUpRoFUvBaBZHQKb5OLNwBHV1fZQoaAZoCWgPQwiZ8Ev9vD9zQJSGlFKUaBVL12gWR0Cm+TxNyo4udX2UKGgGaAloD0MIVklkHyQyckCUhpRSlGgVS7loFkdApvltc8kleHV9lChoBmgJaA9DCGOcvwkFAHJAlIaUUpRoFUu/aBZHQKb5gcUdq+J1fZQoaAZoCWgPQwhJnBVRkxFyQJSGlFKUaBVL3GgWR0Cm+d44ACGOdX2UKGgGaAloD0MIDmsqi0JhcECUhpRSlGgVS7doFkdApvnlwkxASnV9lChoBmgJaA9DCAOy17t/C3FAlIaUUpRoFUu2aBZHQKb56wqRU3p1fZQoaAZoCWgPQwiUv3tHTa1yQJSGlFKUaBVLzmgWR0Cm+il/6O5sdX2UKGgGaAloD0MIa4MT0W/nc0CUhpRSlGgVS8doFkdApvpHRqoIfXV9lChoBmgJaA9DCPz+zYtThnBAlIaUUpRoFUuvaBZHQKb6UWFev6l1fZQoaAZoCWgPQwhS19r7FNZwQJSGlFKUaBVLzGgWR0Cm+n+MIeHSdX2UKGgGaAloD0MIXmdD/pkLckCUhpRSlGgVS7VoFkdApvqLtTkyUXV9lChoBmgJaA9DCORJ0jVTKXNAlIaUUpRoFUuyaBZHQKb6vVRUFSt1fZQoaAZoCWgPQwg8MIDwIf1xQJSGlFKUaBVLvWgWR0Cm+ssfA9FGdX2UKGgGaAloD0MIliAjoELAcUCUhpRSlGgVS8BoFkdApvrQllbu+nV9lChoBmgJaA9DCGTKh6Dqb3FAlIaUUpRoFUupaBZHQKb62M85jpd1fZQoaAZoCWgPQwiY/E/+7iVyQJSGlFKUaBVLyGgWR0Cm+um+bmU4dX2UKGgGaAloD0MIcZF7ujqmc0CUhpRSlGgVS7toFkdApvsDz/ZM+XV9lChoBmgJaA9DCNFbPLxnbHFAlIaUUpRoFUvHaBZHQKb7aSSNfgJ1fZQoaAZoCWgPQwijO4idaZdxQJSGlFKUaBVLwWgWR0Cm+7384xUOdX2UKGgGaAloD0MIaFiMulawcECUhpRSlGgVS6VoFkdApvvA9q1w53V9lChoBmgJaA9DCL2NzY6UEHJAlIaUUpRoFUvNaBZHQKb77Tqjaf11fZQoaAZoCWgPQwi+EkiJ3YJwQJSGlFKUaBVLt2gWR0Cm/BkN4JNTdX2UKGgGaAloD0MI2uIan8kRckCUhpRSlGgVS75oFkdApvw4OJ+DvnV9lChoBmgJaA9DCGNeRxzyLXBAlIaUUpRoFUupaBZHQKb8QdrftQd1fZQoaAZoCWgPQwhp5POKJwxzQJSGlFKUaBVLqWgWR0Cm/HoUSIxhdX2UKGgGaAloD0MIM/0S8dbJcECUhpRSlGgVS6ZoFkdApvyjRUm2LHV9lChoBmgJaA9DCO61oPfG8HFAlIaUUpRoFUutaBZHQKb8ov4dp7F1fZQoaAZoCWgPQwiUSnhCbxdxQJSGlFKUaBVLtWgWR0Cm/LHTZxrBdX2UKGgGaAloD0MIyxKdZRbXc0CUhpRSlGgVS9VoFkdApvywzch1T3V9lChoBmgJaA9DCGGlgoqqCXNAlIaUUpRoFUvCaBZHQKb8zeizsyB1fZQoaAZoCWgPQwjwiuB/67hyQJSGlFKUaBVLtWgWR0Cm/OpgkTpQdX2UKGgGaAloD0MIeQQ3UvYIc0CUhpRSlGgVTTcBaBZHQKb9CmsvIwN1fZQoaAZoCWgPQwhBKO/j6DVyQJSGlFKUaBVLuWgWR0Cm/V3T/hl2dX2UKGgGaAloD0MI7BLVW0P4cECUhpRSlGgVS8RoFkdApv3RA2Q4j3V9lChoBmgJaA9DCOnxe5v+F3FAlIaUUpRoFUvLaBZHQKb94nH/9511fZQoaAZoCWgPQwhVouwtJWVxQJSGlFKUaBVLu2gWR0Cm/eYCZF5OdX2UKGgGaAloD0MIixh2GBOKckCUhpRSlGgVS6ZoFkdApv3wl4TsY3V9lChoBmgJaA9DCHx9rUvNoHBAlIaUUpRoFUuzaBZHQKb99wF1SwZ1fZQoaAZoCWgPQwhJgnAFlNZvQJSGlFKUaBVLw2gWR0Cm/kew9q1xdX2UKGgGaAloD0MIX7adtkbbckCUhpRSlGgVS7doFkdApv6Gq94/vHV9lChoBmgJaA9DCN/BTxzAoW9AlIaUUpRoFUumaBZHQKb+g9V3ljp1fZQoaAZoCWgPQwiZKELqts9wQJSGlFKUaBVLt2gWR0Cm/pRfWtlqdX2UKGgGaAloD0MIWTDxR1E3ckCUhpRSlGgVS8toFkdApv6WmBOHnHV9lChoBmgJaA9DCGWPUDNk5XFAlIaUUpRoFUvHaBZHQKb+sXyAhB91fZQoaAZoCWgPQwgy6e+lMAxxQJSGlFKUaBVLyGgWR0Cm/vnYg7o0dX2UKGgGaAloD0MIKXrgY3D/cUCUhpRSlGgVS99oFkdApv75xDLKWHV9lChoBmgJaA9DCJY9CWzO5XNAlIaUUpRoFUu7aBZHQKb/WAxzq8l1fZQoaAZoCWgPQwitNCkFnV5xQJSGlFKUaBVLrWgWR0Cm/9MK1G9YdX2UKGgGaAloD0MIYjB/hcwEcUCUhpRSlGgVS7NoFkdApv/fJNj9XXV9lChoBmgJaA9DCM4avK/KR1BAlIaUUpRoFUt8aBZHQKb/3TfixV11fZQoaAZoCWgPQwiSskXS7vRyQJSGlFKUaBVLv2gWR0Cm/+Lzf779dX2UKGgGaAloD0MISMMpczOscECUhpRSlGgVS8toFkdApwAtcOby6XV9lChoBmgJaA9DCCqMLQR5EXNAlIaUUpRoFUvfaBZHQKcAhjxTbWV1fZQoaAZoCWgPQwhXlX1XhNRyQJSGlFKUaBVLx2gWR0CnALmhdt2tdX2UKGgGaAloD0MIoDaq08Edc0CUhpRSlGgVS71oFkdApwDq9CeEqXV9lChoBmgJaA9DCNR+ayfKd3FAlIaUUpRoFUu7aBZHQKcA9ZkkKNR1fZQoaAZoCWgPQwhZFkz80bVvQJSGlFKUaBVLvmgWR0CnAQPC2tuDdX2UKGgGaAloD0MInG1uTE/RcECUhpRSlGgVS7loFkdApwEXgaWHDnVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 1230,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
PPO-LunarLander-V2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af5c49953a2e229ddee752821df86c67e1f691ed096525f43bc1058040990813
|
3 |
+
size 87929
|
PPO-LunarLander-V2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b308b3fa9589127bf5b7d836ae7ff5fc5a7d5bda69dc8401002fff2a2ef13a5b
|
3 |
+
size 43393
|
PPO-LunarLander-V2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-V2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 288.38 +/- 13.94
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f771d153310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f771d1533a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f771d153430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f771d1534c0>", "_build": "<function ActorCriticPolicy._build at 0x7f771d153550>", "forward": "<function ActorCriticPolicy.forward at 0x7f771d1535e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f771d153670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f771d153700>", "_predict": "<function ActorCriticPolicy._predict at 0x7f771d153790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f771d153820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f771d1538b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f771d153940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f771d14f6f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675827534226735937, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJq4oT3afaE/DtQLPypuK78+63A9OlOiPgAAAAAAAAAAM2NAu92UtT/eQJi+qeGuPl9hXztg84k9AAAAAAAAAABK/Ye+rJcvPyANLr0mBSO/IjEJv8D5Gj4AAAAAAAAAAFrtOD5ztbg+8rsYvqTtC78lJi4+bcb/vQAAAAAAAAAAzQrVvC91uj+7ZHG+Z5GqPc2T9bxKuhS+AAAAAAAAAABmYlw8KZhmuueGs7QAbHCvIzpSu/p/azMAAIA/AACAPwDw+rzyUbM/SNn4vlTQDr7fYvQ72bOhvQAAAAAAAAAAAFhNPPYUcLrVDts7QOV1PCtC8znOBlg9AACAPwAAgD+AGOi9b1ujP17N2b41dg+/qvB9vhFuib4AAAAAAAAAAA0EgD5nHJ4/mOUdP7aiKb/fUd4+0dOMPgAAAAAAAAAAmrs2PSmoZbpjFDU7Yot8NgzLRju4r1O6AAAAAAAAAACa1p28FVBtPk3gZr32jcW+VKmAvQn6jLwAAAAAAAAAACaX/z0KCx67YCC+Oo7kx7fy5hm8w2fnuQAAAAAAAAAAzXmjPHt/mD5pAog7NHTyvkwZfzwZrbk7AAAAAAAAAAAAx9u8EUz1PhjjET2ACA6/AbudvM0Ye70AAAAAAAAAAJqxBz029Gu8PJXEvff9C7zepIo9+oEwPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/14KDxqFckCUhpRSlIwBbJRL64wBdJRHQKbZtBYV6/t1fZQoaAZoCWgPQwjqIK8HU0VxQJSGlFKUaBVLxmgWR0Cm2bxLbpNcdX2UKGgGaAloD0MIyFwZVBtwdECUhpRSlGgVS9poFkdAptm6JCSid3V9lChoBmgJaA9DCGSSkbOwB3RAlIaUUpRoFUvXaBZHQKbZwAjIJZ51fZQoaAZoCWgPQwiOBvAWyIBxQJSGlFKUaBVLwmgWR0Cm2dy3LFGYdX2UKGgGaAloD0MIrvVFQltIc0CUhpRSlGgVS6hoFkdApto6lpGnXXV9lChoBmgJaA9DCNhit8/qlXBAlIaUUpRoFUu4aBZHQKbaToTPBzp1fZQoaAZoCWgPQwjOjekJS6xyQJSGlFKUaBVL1mgWR0Cm2l5OBUaRdX2UKGgGaAloD0MIC2DKwAGeckCUhpRSlGgVS7doFkdAptqBVXFLnXV9lChoBmgJaA9DCAt+G2L8BXNAlIaUUpRoFUvIaBZHQKbale/Ho5h1fZQoaAZoCWgPQwiXOzPBMNFxQJSGlFKUaBVLqWgWR0Cm2sdaEBbOdX2UKGgGaAloD0MIga/o1uuTcECUhpRSlGgVS7toFkdAptrePo3aSXV9lChoBmgJaA9DCP6ZQXxgcHNAlIaUUpRoFUvDaBZHQKbbP7HAAQx1fZQoaAZoCWgPQwjOM/Ylm9puQJSGlFKUaBVLwmgWR0Cm20KBmPHUdX2UKGgGaAloD0MIhSSzeoeScUCUhpRSlGgVS8NoFkdAptt+T5ftyHV9lChoBmgJaA9DCISEKF/Q73BAlIaUUpRoFUu8aBZHQKbbm3CsOoZ1fZQoaAZoCWgPQwgCgjl6fDpyQJSGlFKUaBVLx2gWR0Cm9i5jH4oJdX2UKGgGaAloD0MIhxQDJJo9cUCUhpRSlGgVS9VoFkdApvZaFdszmHV9lChoBmgJaA9DCPX0EfhD73BAlIaUUpRoFUuraBZHQKb2b/Mnqml1fZQoaAZoCWgPQwjY9KCglLZyQJSGlFKUaBVL12gWR0Cm9oEKu0TldX2UKGgGaAloD0MI54wo7U1tdECUhpRSlGgVS+poFkdApvaPmmtQsXV9lChoBmgJaA9DCDBHj9/b73BAlIaUUpRoFUu8aBZHQKb2rYOlO451fZQoaAZoCWgPQwjKb9HJki5yQJSGlFKUaBVL2WgWR0Cm9wUPH1e0dX2UKGgGaAloD0MITu/i/XiqcUCUhpRSlGgVS8hoFkdApvcUBwMpgHV9lChoBmgJaA9DCLiU88Xeh3FAlIaUUpRoFUutaBZHQKb3GYR/ViF1fZQoaAZoCWgPQwjzGyYaZLJzQJSGlFKUaBVL22gWR0Cm9zDRUm2LdX2UKGgGaAloD0MIZTbIJCMUcECUhpRSlGgVS8NoFkdApvc8j/uLJnV9lChoBmgJaA9DCMO68e7IPXFAlIaUUpRoFUufaBZHQKb3igQpWmx1fZQoaAZoCWgPQwjVIw1uK/FwQJSGlFKUaBVLt2gWR0Cm95KxcE/0dX2UKGgGaAloD0MIt0WZDXJXc0CUhpRSlGgVS8BoFkdApveohB7eEnV9lChoBmgJaA9DCFPovMbuoXNAlIaUUpRoFUvHaBZHQKb4GE5hjON1fZQoaAZoCWgPQwiRup19pSxyQJSGlFKUaBVLrWgWR0Cm+CFR51NhdX2UKGgGaAloD0MIzuFa7WHzc0CUhpRSlGgVS71oFkdApvghNoJzDHV9lChoBmgJaA9DCEvnw7NEHXJAlIaUUpRoFUu4aBZHQKb4Uf/WDpV1fZQoaAZoCWgPQwg3VffIpsFzQJSGlFKUaBVLxGgWR0Cm+IEgW8AadX2UKGgGaAloD0MIoBaDh2nlcUCUhpRSlGgVS8hoFkdApviaoXKr73V9lChoBmgJaA9DCA4w8x38cnFAlIaUUpRoFUvOaBZHQKb4yS8rZrZ1fZQoaAZoCWgPQwiOWmH6nmBwQJSGlFKUaBVLtmgWR0Cm+PSlN1yOdX2UKGgGaAloD0MI1SZO7jdmcUCUhpRSlGgVS65oFkdApvj7dnCfpXV9lChoBmgJaA9DCJnU0AYgdHNAlIaUUpRoFUu1aBZHQKb4+Hi3ocJ1fZQoaAZoCWgPQwgkmGpmLT5pQJSGlFKUaBVN6ANoFkdApvkIMKCxvHV9lChoBmgJaA9DCCCzs+idJ3FAlIaUUpRoFUvBaBZHQKb5OLNwBHV1fZQoaAZoCWgPQwiZ8Ev9vD9zQJSGlFKUaBVL12gWR0Cm+TxNyo4udX2UKGgGaAloD0MIVklkHyQyckCUhpRSlGgVS7loFkdApvltc8kleHV9lChoBmgJaA9DCGOcvwkFAHJAlIaUUpRoFUu/aBZHQKb5gcUdq+J1fZQoaAZoCWgPQwhJnBVRkxFyQJSGlFKUaBVL3GgWR0Cm+d44ACGOdX2UKGgGaAloD0MIDmsqi0JhcECUhpRSlGgVS7doFkdApvnlwkxASnV9lChoBmgJaA9DCAOy17t/C3FAlIaUUpRoFUu2aBZHQKb56wqRU3p1fZQoaAZoCWgPQwiUv3tHTa1yQJSGlFKUaBVLzmgWR0Cm+il/6O5sdX2UKGgGaAloD0MIa4MT0W/nc0CUhpRSlGgVS8doFkdApvpHRqoIfXV9lChoBmgJaA9DCPz+zYtThnBAlIaUUpRoFUuvaBZHQKb6UWFev6l1fZQoaAZoCWgPQwhS19r7FNZwQJSGlFKUaBVLzGgWR0Cm+n+MIeHSdX2UKGgGaAloD0MIXmdD/pkLckCUhpRSlGgVS7VoFkdApvqLtTkyUXV9lChoBmgJaA9DCORJ0jVTKXNAlIaUUpRoFUuyaBZHQKb6vVRUFSt1fZQoaAZoCWgPQwg8MIDwIf1xQJSGlFKUaBVLvWgWR0Cm+ssfA9FGdX2UKGgGaAloD0MIliAjoELAcUCUhpRSlGgVS8BoFkdApvrQllbu+nV9lChoBmgJaA9DCGTKh6Dqb3FAlIaUUpRoFUupaBZHQKb62M85jpd1fZQoaAZoCWgPQwiY/E/+7iVyQJSGlFKUaBVLyGgWR0Cm+um+bmU4dX2UKGgGaAloD0MIcZF7ujqmc0CUhpRSlGgVS7toFkdApvsDz/ZM+XV9lChoBmgJaA9DCNFbPLxnbHFAlIaUUpRoFUvHaBZHQKb7aSSNfgJ1fZQoaAZoCWgPQwijO4idaZdxQJSGlFKUaBVLwWgWR0Cm+7384xUOdX2UKGgGaAloD0MIaFiMulawcECUhpRSlGgVS6VoFkdApvvA9q1w53V9lChoBmgJaA9DCL2NzY6UEHJAlIaUUpRoFUvNaBZHQKb77Tqjaf11fZQoaAZoCWgPQwi+EkiJ3YJwQJSGlFKUaBVLt2gWR0Cm/BkN4JNTdX2UKGgGaAloD0MI2uIan8kRckCUhpRSlGgVS75oFkdApvw4OJ+DvnV9lChoBmgJaA9DCGNeRxzyLXBAlIaUUpRoFUupaBZHQKb8QdrftQd1fZQoaAZoCWgPQwhp5POKJwxzQJSGlFKUaBVLqWgWR0Cm/HoUSIxhdX2UKGgGaAloD0MIM/0S8dbJcECUhpRSlGgVS6ZoFkdApvyjRUm2LHV9lChoBmgJaA9DCO61oPfG8HFAlIaUUpRoFUutaBZHQKb8ov4dp7F1fZQoaAZoCWgPQwiUSnhCbxdxQJSGlFKUaBVLtWgWR0Cm/LHTZxrBdX2UKGgGaAloD0MIyxKdZRbXc0CUhpRSlGgVS9VoFkdApvywzch1T3V9lChoBmgJaA9DCGGlgoqqCXNAlIaUUpRoFUvCaBZHQKb8zeizsyB1fZQoaAZoCWgPQwjwiuB/67hyQJSGlFKUaBVLtWgWR0Cm/OpgkTpQdX2UKGgGaAloD0MIeQQ3UvYIc0CUhpRSlGgVTTcBaBZHQKb9CmsvIwN1fZQoaAZoCWgPQwhBKO/j6DVyQJSGlFKUaBVLuWgWR0Cm/V3T/hl2dX2UKGgGaAloD0MI7BLVW0P4cECUhpRSlGgVS8RoFkdApv3RA2Q4j3V9lChoBmgJaA9DCOnxe5v+F3FAlIaUUpRoFUvLaBZHQKb94nH/9511fZQoaAZoCWgPQwhVouwtJWVxQJSGlFKUaBVLu2gWR0Cm/eYCZF5OdX2UKGgGaAloD0MIixh2GBOKckCUhpRSlGgVS6ZoFkdApv3wl4TsY3V9lChoBmgJaA9DCHx9rUvNoHBAlIaUUpRoFUuzaBZHQKb99wF1SwZ1fZQoaAZoCWgPQwhJgnAFlNZvQJSGlFKUaBVLw2gWR0Cm/kew9q1xdX2UKGgGaAloD0MIX7adtkbbckCUhpRSlGgVS7doFkdApv6Gq94/vHV9lChoBmgJaA9DCN/BTxzAoW9AlIaUUpRoFUumaBZHQKb+g9V3ljp1fZQoaAZoCWgPQwiZKELqts9wQJSGlFKUaBVLt2gWR0Cm/pRfWtlqdX2UKGgGaAloD0MIWTDxR1E3ckCUhpRSlGgVS8toFkdApv6WmBOHnHV9lChoBmgJaA9DCGWPUDNk5XFAlIaUUpRoFUvHaBZHQKb+sXyAhB91fZQoaAZoCWgPQwgy6e+lMAxxQJSGlFKUaBVLyGgWR0Cm/vnYg7o0dX2UKGgGaAloD0MIKXrgY3D/cUCUhpRSlGgVS99oFkdApv75xDLKWHV9lChoBmgJaA9DCJY9CWzO5XNAlIaUUpRoFUu7aBZHQKb/WAxzq8l1fZQoaAZoCWgPQwitNCkFnV5xQJSGlFKUaBVLrWgWR0Cm/9MK1G9YdX2UKGgGaAloD0MIYjB/hcwEcUCUhpRSlGgVS7NoFkdApv/fJNj9XXV9lChoBmgJaA9DCM4avK/KR1BAlIaUUpRoFUt8aBZHQKb/3TfixV11fZQoaAZoCWgPQwiSskXS7vRyQJSGlFKUaBVLv2gWR0Cm/+Lzf779dX2UKGgGaAloD0MISMMpczOscECUhpRSlGgVS8toFkdApwAtcOby6XV9lChoBmgJaA9DCCqMLQR5EXNAlIaUUpRoFUvfaBZHQKcAhjxTbWV1fZQoaAZoCWgPQwhXlX1XhNRyQJSGlFKUaBVLx2gWR0CnALmhdt2tdX2UKGgGaAloD0MIoDaq08Edc0CUhpRSlGgVS71oFkdApwDq9CeEqXV9lChoBmgJaA9DCNR+ayfKd3FAlIaUUpRoFUu7aBZHQKcA9ZkkKNR1fZQoaAZoCWgPQwhZFkz80bVvQJSGlFKUaBVLvmgWR0CnAQPC2tuDdX2UKGgGaAloD0MInG1uTE/RcECUhpRSlGgVS7loFkdApwEXgaWHDnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (200 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 288.3805658475557, "std_reward": 13.944821495682662, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T04:27:18.295068"}
|