Update README.md
Browse filesupdated model card
README.md
CHANGED
@@ -90,21 +90,36 @@ Addressing the power of LLM in fintuned downstream task. Implemented as a person
|
|
90 |
|
91 |
### How to use
|
92 |
|
93 |
-
# Load model directly
|
94 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
# Use a pipeline as a high-level helper
|
|
|
96 |
from transformers import pipeline
|
97 |
|
98 |
sql_generator = pipeline("text2text-generation", model="SwastikM/bart-large-nl2sql")
|
99 |
|
|
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
sql_context: CREATE TABLE diversification (id INT, effort VARCHAR(50), budget FLOAT); CREATE TABLE
|
104 |
-
budget (diversification_id INT, diversification_effort VARCHAR(50), amount FLOAT);"""
|
105 |
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
|
|
108 |
print(sql)
|
109 |
```
|
110 |
|
|
|
90 |
|
91 |
### How to use
|
92 |
|
|
|
93 |
```python
|
94 |
+
query_question_with_context = """sql_prompt: Which economic diversification efforts in
|
95 |
+
the 'diversification' table have a higher budget than the average budget for all economic diversification efforts in the 'budget' table?
|
96 |
+
sql_context: CREATE TABLE diversification (id INT, effort VARCHAR(50), budget FLOAT); CREATE TABLE
|
97 |
+
budget (diversification_id INT, diversification_effort VARCHAR(50), amount FLOAT);"""
|
98 |
+
```
|
99 |
+
|
100 |
# Use a pipeline as a high-level helper
|
101 |
+
```python
|
102 |
from transformers import pipeline
|
103 |
|
104 |
sql_generator = pipeline("text2text-generation", model="SwastikM/bart-large-nl2sql")
|
105 |
|
106 |
+
sql = sql_generator(query_question_with_context)[0]['generated_text']
|
107 |
|
108 |
+
print(sql)
|
109 |
+
```
|
|
|
|
|
110 |
|
111 |
+
# Load model directly
|
112 |
+
|
113 |
+
```python
|
114 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
115 |
+
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained("SwastikM/bart-large-nl2sql")
|
117 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("SwastikM/bart-large-nl2sql")
|
118 |
+
|
119 |
+
inputs = tokenizer(query_question_with_context, return_tensors="pt").input_ids
|
120 |
+
outputs = model.generate(inputs, max_new_tokens=100, do_sample=False)
|
121 |
|
122 |
+
sql = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
123 |
print(sql)
|
124 |
```
|
125 |
|