Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.61 +/- 0.69
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d8da0aa31ef1ab11bd8cd4ece0dfc5928c6ecb7d573516d6ae0909939efc964
|
3 |
+
size 108072
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7af68849dab0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7af68849b180>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 500000,
|
23 |
+
"_total_timesteps": 500000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1689515737846155212,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAC4jJPpIbq7zrXws/C4jJPpIbq7zrXws/C4jJPpIbq7zrXws/C4jJPpIbq7zrXws/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAX5ewv7nIn78fMgu/duzZPzK06D7lt5a/e3t0v2lFTj/WU5k+tYDdPyFAPD9Oi5C/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAALiMk+khurvOtfCz/1sxK7l9rpu7+aTTsLiMk+khurvOtfCz/1sxK7l9rpu7+aTTsLiMk+khurvOtfCz/1sxK7l9rpu7+aTTsLiMk+khurvOtfCz/1sxK7l9rpu7+aTTuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.39361605 -0.02088717 0.54443234]\n [ 0.39361605 -0.02088717 0.54443234]\n [ 0.39361605 -0.02088717 0.54443234]\n [ 0.39361605 -0.02088717 0.54443234]]",
|
38 |
+
"desired_goal": "[[-1.3796195 -1.2483131 -0.54373354]\n [ 1.7025287 0.45449978 -1.177487 ]\n [-0.95500916 0.8057466 0.29946774]\n [ 1.7304903 0.7353535 -1.1292512 ]]",
|
39 |
+
"observation": "[[ 0.39361605 -0.02088717 0.54443234 -0.00223851 -0.00713665 0.00313728]\n [ 0.39361605 -0.02088717 0.54443234 -0.00223851 -0.00713665 0.00313728]\n [ 0.39361605 -0.02088717 0.54443234 -0.00223851 -0.00713665 0.00313728]\n [ 0.39361605 -0.02088717 0.54443234 -0.00223851 -0.00713665 0.00313728]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz7qVvZob4T2WGr49XoXava3mAT4YoCQ+rN8qvQw6BDwh3So+X9USvo88mD3XP8A8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.07311022 0.10991593 0.09282415]\n [-0.10669969 0.12685652 0.16076696]\n [-0.04171722 0.00807048 0.16685916]\n [-0.14339207 0.07433426 0.02346794]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItDukGCBBEcCUhpRSlIwBbJRLMowBdJRHQJYYI/1QIld1fZQoaAZoCWgPQwiHqMKf4U0OwJSGlFKUaBVLMmgWR0CWF6+xGDtgdX2UKGgGaAloD0MIB5YjZCAPAMCUhpRSlGgVSzJoFkdAlhc8IE8q4HV9lChoBmgJaA9DCCb752nAoAPAlIaUUpRoFUsyaBZHQJYWx4FA3UB1fZQoaAZoCWgPQwjrrBbYY2L7v5SGlFKUaBVLMmgWR0CWGv0Sh8IBdX2UKGgGaAloD0MIoz7JHTYxDsCUhpRSlGgVSzJoFkdAlhqKIFeOXHV9lChoBmgJaA9DCDLJyFnYMwbAlIaUUpRoFUsyaBZHQJYaGEytV7x1fZQoaAZoCWgPQwiSkbOwp50CwJSGlFKUaBVLMmgWR0CWGaTXrdFfdX2UKGgGaAloD0MI3/lFCfoLCMCUhpRSlGgVSzJoFkdAlh4dZRsMzHV9lChoBmgJaA9DCBJNoIhFzBLAlIaUUpRoFUsyaBZHQJYdqvicXnB1fZQoaAZoCWgPQwgexqS/l4IHwJSGlFKUaBVLMmgWR0CWHTk/bCaadX2UKGgGaAloD0MILO+qB8yDDcCUhpRSlGgVSzJoFkdAlhzIP9UCJXV9lChoBmgJaA9DCD85ChAFEwjAlIaUUpRoFUsyaBZHQJYhS0Sh8IB1fZQoaAZoCWgPQwi/DMaIRGH5v5SGlFKUaBVLMmgWR0CWINhnrY5DdX2UKGgGaAloD0MI19mQf2ZgEMCUhpRSlGgVSzJoFkdAliBmBnSOR3V9lChoBmgJaA9DCCKLNPEO8PS/lIaUUpRoFUsyaBZHQJYf8n6VMVV1fZQoaAZoCWgPQwi/DwcJUb79v5SGlFKUaBVLMmgWR0CWJOXoC+10dX2UKGgGaAloD0MIXI5XIHpS/7+UhpRSlGgVSzJoFkdAliRy+pOvdXV9lChoBmgJaA9DCPPLYIxINALAlIaUUpRoFUsyaBZHQJYkBBt1p0x1fZQoaAZoCWgPQwielbTiG4oCwJSGlFKUaBVLMmgWR0CWI5IU8FINdX2UKGgGaAloD0MIJ09ZTdfzAcCUhpRSlGgVSzJoFkdAlii9/z8P4HV9lChoBmgJaA9DCNrlWx/WGwvAlIaUUpRoFUsyaBZHQJYoS1SflIV1fZQoaAZoCWgPQwiLUkKwql4KwJSGlFKUaBVLMmgWR0CWJ9j2i+L4dX2UKGgGaAloD0MIEJGadjEN9b+UhpRSlGgVSzJoFkdAlidlfu1F6XV9lChoBmgJaA9DCHfbheY6DQLAlIaUUpRoFUsyaBZHQJYsA6Lfk3l1fZQoaAZoCWgPQwhSY0LMJdULwJSGlFKUaBVLMmgWR0CWK5C+UQkHdX2UKGgGaAloD0MIuVD51/KK/b+UhpRSlGgVSzJoFkdAliseh4+r2nV9lChoBmgJaA9DCKsHzEOmXAbAlIaUUpRoFUsyaBZHQJYqrEFW4mV1fZQoaAZoCWgPQwiE9X8O84UGwJSGlFKUaBVLMmgWR0CWL0y1eBxxdX2UKGgGaAloD0MICvMeZ5rQBsCUhpRSlGgVSzJoFkdAli7Yf0VafXV9lChoBmgJaA9DCP4mFCLgUA3AlIaUUpRoFUsyaBZHQJYuZQyhzvJ1fZQoaAZoCWgPQwjfqYB7nn8IwJSGlFKUaBVLMmgWR0CWLfBTn7pFdX2UKGgGaAloD0MI8fYgBOSrA8CUhpRSlGgVSzJoFkdAljEsUZeiSXV9lChoBmgJaA9DCNNqSNxjqfW/lIaUUpRoFUsyaBZHQJYwt+gDifh1fZQoaAZoCWgPQwi/02TG22oIwJSGlFKUaBVLMmgWR0CWMESk0rLAdX2UKGgGaAloD0MIG9R+ayfK9r+UhpRSlGgVSzJoFkdAli/P2TPjXHV9lChoBmgJaA9DCOTYeoZwLAPAlIaUUpRoFUsyaBZHQJYzBk1/DtR1fZQoaAZoCWgPQwhzaJHtfD/7v5SGlFKUaBVLMmgWR0CWMpJa7mMgdX2UKGgGaAloD0MIgXozar6qBMCUhpRSlGgVSzJoFkdAljIewxFiKHV9lChoBmgJaA9DCJW5+UZ0T/2/lIaUUpRoFUsyaBZHQJYxqvFFUhp1fZQoaAZoCWgPQwiVZB2OrgIRwJSGlFKUaBVLMmgWR0CWNOYfGMn7dX2UKGgGaAloD0MISvHxCdk5A8CUhpRSlGgVSzJoFkdAljRyHARChXV9lChoBmgJaA9DCJfIBWfwtwzAlIaUUpRoFUsyaBZHQJYz/n8sMAp1fZQoaAZoCWgPQwh+Uu3T8VgCwJSGlFKUaBVLMmgWR0CWM4nLq2SddX2UKGgGaAloD0MI4/+OqFBdB8CUhpRSlGgVSzJoFkdAljbQ4ffXPXV9lChoBmgJaA9DCL/xtWeWRPe/lIaUUpRoFUsyaBZHQJY2XTZxrBV1fZQoaAZoCWgPQwhQjZduEsP+v5SGlFKUaBVLMmgWR0CWNemcvugIdX2UKGgGaAloD0MIceZXc4Cg9b+UhpRSlGgVSzJoFkdAljV1aKUFCHV9lChoBmgJaA9DCPFIvDyd6wbAlIaUUpRoFUsyaBZHQJY4o7W/ag51fZQoaAZoCWgPQwhCQpQvaGELwJSGlFKUaBVLMmgWR0CWOC9XLeQ/dX2UKGgGaAloD0MIq3tkc9X8+r+UhpRSlGgVSzJoFkdAlje70z0pVnV9lChoBmgJaA9DCIiCGVOwhvu/lIaUUpRoFUsyaBZHQJY3R2xIJ7d1fZQoaAZoCWgPQwiwOQfPhGYAwJSGlFKUaBVLMmgWR0CWOogmZ3LWdX2UKGgGaAloD0MIucK7XMS3AsCUhpRSlGgVSzJoFkdAljoVId2gWnV9lChoBmgJaA9DCL2qs1pgD/i/lIaUUpRoFUsyaBZHQJY5oePq9oN1fZQoaAZoCWgPQwjwoq8gzVgFwJSGlFKUaBVLMmgWR0CWOS2DQJHBdX2UKGgGaAloD0MIi28ofLYO+7+UhpRSlGgVSzJoFkdAljxr3sXzlXV9lChoBmgJaA9DCD+O5sjK7/6/lIaUUpRoFUsyaBZHQJY798KG+K11fZQoaAZoCWgPQwgkXwmkxC4GwJSGlFKUaBVLMmgWR0CWO4QaJhvzdX2UKGgGaAloD0MIx/SEJR7wAcCUhpRSlGgVSzJoFkdAljsPaYeDF3V9lChoBmgJaA9DCAn+t5Idm/6/lIaUUpRoFUsyaBZHQJY+TsMRYih1fZQoaAZoCWgPQwjzdK4oJaQBwJSGlFKUaBVLMmgWR0CWPdp9JBgNdX2UKGgGaAloD0MIK01KQbcXBsCUhpRSlGgVSzJoFkdAlj1m+K0laHV9lChoBmgJaA9DCOEmo8owrvO/lIaUUpRoFUsyaBZHQJY88oJAt4B1fZQoaAZoCWgPQwgls3qH2+H7v5SGlFKUaBVLMmgWR0CWQC5BC2MLdX2UKGgGaAloD0MI/d07akzI/L+UhpRSlGgVSzJoFkdAlj+59JBgNXV9lChoBmgJaA9DCLFppRDI5fa/lIaUUpRoFUsyaBZHQJY/RkauOjt1fZQoaAZoCWgPQwg57pQO1v/0v5SGlFKUaBVLMmgWR0CWPtHzH0btdX2UKGgGaAloD0MIICi37XuU+b+UhpRSlGgVSzJoFkdAlkH8twrDqHV9lChoBmgJaA9DCCBEMuTYegLAlIaUUpRoFUsyaBZHQJZBiNVBD5V1fZQoaAZoCWgPQwiUF5mAX2P7v5SGlFKUaBVLMmgWR0CWQRVRUFSsdX2UKGgGaAloD0MIxYzw9iCkCcCUhpRSlGgVSzJoFkdAlkCgrYoRZnV9lChoBmgJaA9DCNHmOLcJFwnAlIaUUpRoFUsyaBZHQJZD2dd3Srp1fZQoaAZoCWgPQwhIpkOn590JwJSGlFKUaBVLMmgWR0CWQ2X9R77bdX2UKGgGaAloD0MIfH2tS41Q/b+UhpRSlGgVSzJoFkdAlkLyqp97W3V9lChoBmgJaA9DCJ4lyAioEATAlIaUUpRoFUsyaBZHQJZCfgrH2h91fZQoaAZoCWgPQwiFJLN6h7sHwJSGlFKUaBVLMmgWR0CWRboFV1fWdX2UKGgGaAloD0MIL8N/uoHC+b+UhpRSlGgVSzJoFkdAlkVFz+3pfXV9lChoBmgJaA9DCA72Jobk5P+/lIaUUpRoFUsyaBZHQJZE0r/bTMJ1fZQoaAZoCWgPQwh5r1qZ8Mv9v5SGlFKUaBVLMmgWR0CWRF6GgzxgdX2UKGgGaAloD0MIkxywq8nT/7+UhpRSlGgVSzJoFkdAlkerc0tRN3V9lChoBmgJaA9DCCxF8pVACvm/lIaUUpRoFUsyaBZHQJZHN72L5yl1fZQoaAZoCWgPQwggtvRoqgcLwJSGlFKUaBVLMmgWR0CWRsRf4REndX2UKGgGaAloD0MIoFT7dDwGAcCUhpRSlGgVSzJoFkdAlkZQOOKfnXV9lChoBmgJaA9DCCf5Eb9irQPAlIaUUpRoFUsyaBZHQJZJkE4ecQR1fZQoaAZoCWgPQwg4vYv34xYDwJSGlFKUaBVLMmgWR0CWSRxn3+MqdX2UKGgGaAloD0MIR8uBHmp7A8CUhpRSlGgVSzJoFkdAlkipGnXNDHV9lChoBmgJaA9DCHwKgPEMmgHAlIaUUpRoFUsyaBZHQJZINRWLgoB1fZQoaAZoCWgPQwgSoRFsXD8CwJSGlFKUaBVLMmgWR0CWS2jGDL8rdX2UKGgGaAloD0MIqWvtfarK+r+UhpRSlGgVSzJoFkdAlkr08mrsB3V9lChoBmgJaA9DCFJ8fEJ2vgjAlIaUUpRoFUsyaBZHQJZKgTpPhyd1fZQoaAZoCWgPQwgAVkeOdOYCwJSGlFKUaBVLMmgWR0CWSgz3h4t6dX2UKGgGaAloD0MI7pdPVgw3BMCUhpRSlGgVSzJoFkdAlk1ENayKN3V9lChoBmgJaA9DCAfvq3KhkgHAlIaUUpRoFUsyaBZHQJZMz+85CF91fZQoaAZoCWgPQwhm+iXirZMCwJSGlFKUaBVLMmgWR0CWTFx46fapdX2UKGgGaAloD0MIdY4B2etdAMCUhpRSlGgVSzJoFkdAlkvn5i3G43V9lChoBmgJaA9DCPqAQGfSdhDAlIaUUpRoFUsyaBZHQJZPKTINmUZ1fZQoaAZoCWgPQwimKm1xjc8BwJSGlFKUaBVLMmgWR0CWTrU5dWyUdX2UKGgGaAloD0MIW5iFdk5z/r+UhpRSlGgVSzJoFkdAlk5Bg3Lmp3V9lChoBmgJaA9DCNEeL6TDw/+/lIaUUpRoFUsyaBZHQJZNzTkQwsZ1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 25000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c961c8e4adfc746f962e58f17d63f664d908cee57bb4005b307298982c3b3b51
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b789fab6861f9d0a1ffbeeb2135d8d37e41b5ff0968611d99fd55019f4da991c
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7af68849dab0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7af68849b180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 500000, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689515737846155212, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAC4jJPpIbq7zrXws/C4jJPpIbq7zrXws/C4jJPpIbq7zrXws/C4jJPpIbq7zrXws/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAX5ewv7nIn78fMgu/duzZPzK06D7lt5a/e3t0v2lFTj/WU5k+tYDdPyFAPD9Oi5C/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAALiMk+khurvOtfCz/1sxK7l9rpu7+aTTsLiMk+khurvOtfCz/1sxK7l9rpu7+aTTsLiMk+khurvOtfCz/1sxK7l9rpu7+aTTsLiMk+khurvOtfCz/1sxK7l9rpu7+aTTuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.39361605 -0.02088717 0.54443234]\n [ 0.39361605 -0.02088717 0.54443234]\n [ 0.39361605 -0.02088717 0.54443234]\n [ 0.39361605 -0.02088717 0.54443234]]", "desired_goal": "[[-1.3796195 -1.2483131 -0.54373354]\n [ 1.7025287 0.45449978 -1.177487 ]\n [-0.95500916 0.8057466 0.29946774]\n [ 1.7304903 0.7353535 -1.1292512 ]]", "observation": "[[ 0.39361605 -0.02088717 0.54443234 -0.00223851 -0.00713665 0.00313728]\n [ 0.39361605 -0.02088717 0.54443234 -0.00223851 -0.00713665 0.00313728]\n [ 0.39361605 -0.02088717 0.54443234 -0.00223851 -0.00713665 0.00313728]\n [ 0.39361605 -0.02088717 0.54443234 -0.00223851 -0.00713665 0.00313728]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz7qVvZob4T2WGr49XoXava3mAT4YoCQ+rN8qvQw6BDwh3So+X9USvo88mD3XP8A8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07311022 0.10991593 0.09282415]\n [-0.10669969 0.12685652 0.16076696]\n [-0.04171722 0.00807048 0.16685916]\n [-0.14339207 0.07433426 0.02346794]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItDukGCBBEcCUhpRSlIwBbJRLMowBdJRHQJYYI/1QIld1fZQoaAZoCWgPQwiHqMKf4U0OwJSGlFKUaBVLMmgWR0CWF6+xGDtgdX2UKGgGaAloD0MIB5YjZCAPAMCUhpRSlGgVSzJoFkdAlhc8IE8q4HV9lChoBmgJaA9DCCb752nAoAPAlIaUUpRoFUsyaBZHQJYWx4FA3UB1fZQoaAZoCWgPQwjrrBbYY2L7v5SGlFKUaBVLMmgWR0CWGv0Sh8IBdX2UKGgGaAloD0MIoz7JHTYxDsCUhpRSlGgVSzJoFkdAlhqKIFeOXHV9lChoBmgJaA9DCDLJyFnYMwbAlIaUUpRoFUsyaBZHQJYaGEytV7x1fZQoaAZoCWgPQwiSkbOwp50CwJSGlFKUaBVLMmgWR0CWGaTXrdFfdX2UKGgGaAloD0MI3/lFCfoLCMCUhpRSlGgVSzJoFkdAlh4dZRsMzHV9lChoBmgJaA9DCBJNoIhFzBLAlIaUUpRoFUsyaBZHQJYdqvicXnB1fZQoaAZoCWgPQwgexqS/l4IHwJSGlFKUaBVLMmgWR0CWHTk/bCaadX2UKGgGaAloD0MILO+qB8yDDcCUhpRSlGgVSzJoFkdAlhzIP9UCJXV9lChoBmgJaA9DCD85ChAFEwjAlIaUUpRoFUsyaBZHQJYhS0Sh8IB1fZQoaAZoCWgPQwi/DMaIRGH5v5SGlFKUaBVLMmgWR0CWINhnrY5DdX2UKGgGaAloD0MI19mQf2ZgEMCUhpRSlGgVSzJoFkdAliBmBnSOR3V9lChoBmgJaA9DCCKLNPEO8PS/lIaUUpRoFUsyaBZHQJYf8n6VMVV1fZQoaAZoCWgPQwi/DwcJUb79v5SGlFKUaBVLMmgWR0CWJOXoC+10dX2UKGgGaAloD0MIXI5XIHpS/7+UhpRSlGgVSzJoFkdAliRy+pOvdXV9lChoBmgJaA9DCPPLYIxINALAlIaUUpRoFUsyaBZHQJYkBBt1p0x1fZQoaAZoCWgPQwielbTiG4oCwJSGlFKUaBVLMmgWR0CWI5IU8FINdX2UKGgGaAloD0MIJ09ZTdfzAcCUhpRSlGgVSzJoFkdAlii9/z8P4HV9lChoBmgJaA9DCNrlWx/WGwvAlIaUUpRoFUsyaBZHQJYoS1SflIV1fZQoaAZoCWgPQwiLUkKwql4KwJSGlFKUaBVLMmgWR0CWJ9j2i+L4dX2UKGgGaAloD0MIEJGadjEN9b+UhpRSlGgVSzJoFkdAlidlfu1F6XV9lChoBmgJaA9DCHfbheY6DQLAlIaUUpRoFUsyaBZHQJYsA6Lfk3l1fZQoaAZoCWgPQwhSY0LMJdULwJSGlFKUaBVLMmgWR0CWK5C+UQkHdX2UKGgGaAloD0MIuVD51/KK/b+UhpRSlGgVSzJoFkdAliseh4+r2nV9lChoBmgJaA9DCKsHzEOmXAbAlIaUUpRoFUsyaBZHQJYqrEFW4mV1fZQoaAZoCWgPQwiE9X8O84UGwJSGlFKUaBVLMmgWR0CWL0y1eBxxdX2UKGgGaAloD0MICvMeZ5rQBsCUhpRSlGgVSzJoFkdAli7Yf0VafXV9lChoBmgJaA9DCP4mFCLgUA3AlIaUUpRoFUsyaBZHQJYuZQyhzvJ1fZQoaAZoCWgPQwjfqYB7nn8IwJSGlFKUaBVLMmgWR0CWLfBTn7pFdX2UKGgGaAloD0MI8fYgBOSrA8CUhpRSlGgVSzJoFkdAljEsUZeiSXV9lChoBmgJaA9DCNNqSNxjqfW/lIaUUpRoFUsyaBZHQJYwt+gDifh1fZQoaAZoCWgPQwi/02TG22oIwJSGlFKUaBVLMmgWR0CWMESk0rLAdX2UKGgGaAloD0MIG9R+ayfK9r+UhpRSlGgVSzJoFkdAli/P2TPjXHV9lChoBmgJaA9DCOTYeoZwLAPAlIaUUpRoFUsyaBZHQJYzBk1/DtR1fZQoaAZoCWgPQwhzaJHtfD/7v5SGlFKUaBVLMmgWR0CWMpJa7mMgdX2UKGgGaAloD0MIgXozar6qBMCUhpRSlGgVSzJoFkdAljIewxFiKHV9lChoBmgJaA9DCJW5+UZ0T/2/lIaUUpRoFUsyaBZHQJYxqvFFUhp1fZQoaAZoCWgPQwiVZB2OrgIRwJSGlFKUaBVLMmgWR0CWNOYfGMn7dX2UKGgGaAloD0MISvHxCdk5A8CUhpRSlGgVSzJoFkdAljRyHARChXV9lChoBmgJaA9DCJfIBWfwtwzAlIaUUpRoFUsyaBZHQJYz/n8sMAp1fZQoaAZoCWgPQwh+Uu3T8VgCwJSGlFKUaBVLMmgWR0CWM4nLq2SddX2UKGgGaAloD0MI4/+OqFBdB8CUhpRSlGgVSzJoFkdAljbQ4ffXPXV9lChoBmgJaA9DCL/xtWeWRPe/lIaUUpRoFUsyaBZHQJY2XTZxrBV1fZQoaAZoCWgPQwhQjZduEsP+v5SGlFKUaBVLMmgWR0CWNemcvugIdX2UKGgGaAloD0MIceZXc4Cg9b+UhpRSlGgVSzJoFkdAljV1aKUFCHV9lChoBmgJaA9DCPFIvDyd6wbAlIaUUpRoFUsyaBZHQJY4o7W/ag51fZQoaAZoCWgPQwhCQpQvaGELwJSGlFKUaBVLMmgWR0CWOC9XLeQ/dX2UKGgGaAloD0MIq3tkc9X8+r+UhpRSlGgVSzJoFkdAlje70z0pVnV9lChoBmgJaA9DCIiCGVOwhvu/lIaUUpRoFUsyaBZHQJY3R2xIJ7d1fZQoaAZoCWgPQwiwOQfPhGYAwJSGlFKUaBVLMmgWR0CWOogmZ3LWdX2UKGgGaAloD0MIucK7XMS3AsCUhpRSlGgVSzJoFkdAljoVId2gWnV9lChoBmgJaA9DCL2qs1pgD/i/lIaUUpRoFUsyaBZHQJY5oePq9oN1fZQoaAZoCWgPQwjwoq8gzVgFwJSGlFKUaBVLMmgWR0CWOS2DQJHBdX2UKGgGaAloD0MIi28ofLYO+7+UhpRSlGgVSzJoFkdAljxr3sXzlXV9lChoBmgJaA9DCD+O5sjK7/6/lIaUUpRoFUsyaBZHQJY798KG+K11fZQoaAZoCWgPQwgkXwmkxC4GwJSGlFKUaBVLMmgWR0CWO4QaJhvzdX2UKGgGaAloD0MIx/SEJR7wAcCUhpRSlGgVSzJoFkdAljsPaYeDF3V9lChoBmgJaA9DCAn+t5Idm/6/lIaUUpRoFUsyaBZHQJY+TsMRYih1fZQoaAZoCWgPQwjzdK4oJaQBwJSGlFKUaBVLMmgWR0CWPdp9JBgNdX2UKGgGaAloD0MIK01KQbcXBsCUhpRSlGgVSzJoFkdAlj1m+K0laHV9lChoBmgJaA9DCOEmo8owrvO/lIaUUpRoFUsyaBZHQJY88oJAt4B1fZQoaAZoCWgPQwgls3qH2+H7v5SGlFKUaBVLMmgWR0CWQC5BC2MLdX2UKGgGaAloD0MI/d07akzI/L+UhpRSlGgVSzJoFkdAlj+59JBgNXV9lChoBmgJaA9DCLFppRDI5fa/lIaUUpRoFUsyaBZHQJY/RkauOjt1fZQoaAZoCWgPQwg57pQO1v/0v5SGlFKUaBVLMmgWR0CWPtHzH0btdX2UKGgGaAloD0MIICi37XuU+b+UhpRSlGgVSzJoFkdAlkH8twrDqHV9lChoBmgJaA9DCCBEMuTYegLAlIaUUpRoFUsyaBZHQJZBiNVBD5V1fZQoaAZoCWgPQwiUF5mAX2P7v5SGlFKUaBVLMmgWR0CWQRVRUFSsdX2UKGgGaAloD0MIxYzw9iCkCcCUhpRSlGgVSzJoFkdAlkCgrYoRZnV9lChoBmgJaA9DCNHmOLcJFwnAlIaUUpRoFUsyaBZHQJZD2dd3Srp1fZQoaAZoCWgPQwhIpkOn590JwJSGlFKUaBVLMmgWR0CWQ2X9R77bdX2UKGgGaAloD0MIfH2tS41Q/b+UhpRSlGgVSzJoFkdAlkLyqp97W3V9lChoBmgJaA9DCJ4lyAioEATAlIaUUpRoFUsyaBZHQJZCfgrH2h91fZQoaAZoCWgPQwiFJLN6h7sHwJSGlFKUaBVLMmgWR0CWRboFV1fWdX2UKGgGaAloD0MIL8N/uoHC+b+UhpRSlGgVSzJoFkdAlkVFz+3pfXV9lChoBmgJaA9DCA72Jobk5P+/lIaUUpRoFUsyaBZHQJZE0r/bTMJ1fZQoaAZoCWgPQwh5r1qZ8Mv9v5SGlFKUaBVLMmgWR0CWRF6GgzxgdX2UKGgGaAloD0MIkxywq8nT/7+UhpRSlGgVSzJoFkdAlkerc0tRN3V9lChoBmgJaA9DCCxF8pVACvm/lIaUUpRoFUsyaBZHQJZHN72L5yl1fZQoaAZoCWgPQwggtvRoqgcLwJSGlFKUaBVLMmgWR0CWRsRf4REndX2UKGgGaAloD0MIoFT7dDwGAcCUhpRSlGgVSzJoFkdAlkZQOOKfnXV9lChoBmgJaA9DCCf5Eb9irQPAlIaUUpRoFUsyaBZHQJZJkE4ecQR1fZQoaAZoCWgPQwg4vYv34xYDwJSGlFKUaBVLMmgWR0CWSRxn3+MqdX2UKGgGaAloD0MIR8uBHmp7A8CUhpRSlGgVSzJoFkdAlkipGnXNDHV9lChoBmgJaA9DCHwKgPEMmgHAlIaUUpRoFUsyaBZHQJZINRWLgoB1fZQoaAZoCWgPQwgSoRFsXD8CwJSGlFKUaBVLMmgWR0CWS2jGDL8rdX2UKGgGaAloD0MIqWvtfarK+r+UhpRSlGgVSzJoFkdAlkr08mrsB3V9lChoBmgJaA9DCFJ8fEJ2vgjAlIaUUpRoFUsyaBZHQJZKgTpPhyd1fZQoaAZoCWgPQwgAVkeOdOYCwJSGlFKUaBVLMmgWR0CWSgz3h4t6dX2UKGgGaAloD0MI7pdPVgw3BMCUhpRSlGgVSzJoFkdAlk1ENayKN3V9lChoBmgJaA9DCAfvq3KhkgHAlIaUUpRoFUsyaBZHQJZMz+85CF91fZQoaAZoCWgPQwhm+iXirZMCwJSGlFKUaBVLMmgWR0CWTFx46fapdX2UKGgGaAloD0MIdY4B2etdAMCUhpRSlGgVSzJoFkdAlkvn5i3G43V9lChoBmgJaA9DCPqAQGfSdhDAlIaUUpRoFUsyaBZHQJZPKTINmUZ1fZQoaAZoCWgPQwimKm1xjc8BwJSGlFKUaBVLMmgWR0CWTrU5dWyUdX2UKGgGaAloD0MIW5iFdk5z/r+UhpRSlGgVSzJoFkdAlk5Bg3Lmp3V9lChoBmgJaA9DCNEeL6TDw/+/lIaUUpRoFUsyaBZHQJZNzTkQwsZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (706 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.609018813027069, "std_reward": 0.6946944205853682, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-16T14:19:33.698292"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ab1d8cfe93e85c4428d31f7f03eeeb1c15493e887d13f8799b626f414b86f64
|
3 |
+
size 2387
|