Svetlana0303
commited on
Commit
•
6c53c56
1
Parent(s):
a77ff6b
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: Regression_BERT_NOaug_MSEloss
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# Regression_BERT_NOaug_MSEloss
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.4928
|
20 |
+
- Mse: 0.4928
|
21 |
+
- Mae: 0.6337
|
22 |
+
- R2: 0.0926
|
23 |
+
- Accuracy: 0.4737
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 2e-05
|
43 |
+
- train_batch_size: 4
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 20
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:|
|
54 |
+
| No log | 1.0 | 33 | 0.3184 | 0.3184 | 0.5205 | 0.0487 | 0.5946 |
|
55 |
+
| No log | 2.0 | 66 | 0.2439 | 0.2439 | 0.3571 | 0.2712 | 0.7027 |
|
56 |
+
| No log | 3.0 | 99 | 0.2950 | 0.2950 | 0.3792 | 0.1185 | 0.6757 |
|
57 |
+
| No log | 4.0 | 132 | 0.3179 | 0.3179 | 0.4267 | 0.0503 | 0.6757 |
|
58 |
+
| No log | 5.0 | 165 | 0.2869 | 0.2869 | 0.3984 | 0.1426 | 0.6757 |
|
59 |
+
| No log | 6.0 | 198 | 0.2967 | 0.2967 | 0.3688 | 0.1134 | 0.7027 |
|
60 |
+
| No log | 7.0 | 231 | 0.2797 | 0.2797 | 0.3599 | 0.1643 | 0.7027 |
|
61 |
+
| No log | 8.0 | 264 | 0.2730 | 0.2730 | 0.3438 | 0.1844 | 0.7027 |
|
62 |
+
| No log | 9.0 | 297 | 0.2813 | 0.2813 | 0.3623 | 0.1596 | 0.7027 |
|
63 |
+
| No log | 10.0 | 330 | 0.2733 | 0.2733 | 0.3296 | 0.1835 | 0.7027 |
|
64 |
+
| No log | 11.0 | 363 | 0.2770 | 0.2770 | 0.3432 | 0.1725 | 0.7027 |
|
65 |
+
| No log | 12.0 | 396 | 0.3009 | 0.3009 | 0.3574 | 0.1010 | 0.6757 |
|
66 |
+
| No log | 13.0 | 429 | 0.2735 | 0.2735 | 0.3318 | 0.1827 | 0.7027 |
|
67 |
+
| No log | 14.0 | 462 | 0.2787 | 0.2787 | 0.3341 | 0.1672 | 0.7027 |
|
68 |
+
| No log | 15.0 | 495 | 0.2790 | 0.2790 | 0.3312 | 0.1663 | 0.7297 |
|
69 |
+
| 0.0804 | 16.0 | 528 | 0.2683 | 0.2683 | 0.3229 | 0.1984 | 0.7027 |
|
70 |
+
| 0.0804 | 17.0 | 561 | 0.2749 | 0.2749 | 0.3273 | 0.1785 | 0.7297 |
|
71 |
+
| 0.0804 | 18.0 | 594 | 0.2709 | 0.2709 | 0.3202 | 0.1906 | 0.7297 |
|
72 |
+
| 0.0804 | 19.0 | 627 | 0.2711 | 0.2711 | 0.3205 | 0.1901 | 0.7297 |
|
73 |
+
| 0.0804 | 20.0 | 660 | 0.2694 | 0.2694 | 0.3197 | 0.1950 | 0.7297 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.28.1
|
79 |
+
- Pytorch 2.0.0+cu118
|
80 |
+
- Datasets 2.12.0
|
81 |
+
- Tokenizers 0.13.3
|