SushantGautam
commited on
Commit
•
eac2634
1
Parent(s):
0f5ba98
Update script.py
Browse files
script.py
CHANGED
@@ -1,107 +1,3 @@
|
|
1 |
-
import subprocess
|
2 |
import sys
|
3 |
-
|
4 |
-
import
|
5 |
-
from torchvision import transforms
|
6 |
-
from torchvision.datasets import ImageFolder
|
7 |
-
from torchmetrics.image.fid import FrechetInceptionDistance
|
8 |
-
from torch.utils.data import DataLoader
|
9 |
-
from PIL import Image
|
10 |
-
import torch
|
11 |
-
from tqdm import tqdm
|
12 |
-
import pandas as pd
|
13 |
-
|
14 |
-
print("/tmp/data: ", ", ".join(os.listdir("/tmp/data")) if os.listdir("/tmp/data") else "The directory /tmp/data is empty.")
|
15 |
-
print("/tmp/: ",", ".join(os.listdir("/tmp/")) if os.listdir("/tmp/") else "The directory /tmp/ is empty.")
|
16 |
-
print("/tmp/model: ",", ".join(os.listdir("/tmp/model")) if os.listdir("/tmp/model") else "The directory /tmp/model is empty.")
|
17 |
-
|
18 |
-
# print("/tmp/model/script.py: ", open('/tmp/model/script.py').read())
|
19 |
-
print("/tmp/model/params.json: ", open('/tmp/model/params.json').read())
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
os.makedirs('/tmp/data/hub/checkpoints/', exist_ok=True)
|
24 |
-
os.environ['TORCH_HOME'] = '/tmp/data'
|
25 |
-
shutil.move('/tmp/data/weights-inception-2015-12-05-6726825d.pth', '/tmp/data/hub/checkpoints/')
|
26 |
-
|
27 |
-
print(f"Unzipping single")
|
28 |
-
with zipfile.ZipFile("/tmp/data/real-images-single.zip", 'r') as zip_ref: zip_ref.extractall("/tmp/data")
|
29 |
-
print(f"Unzipping multi")
|
30 |
-
with zipfile.ZipFile("/tmp/data/real-images-multi.zip", 'r') as zip_ref: zip_ref.extractall("/tmp/data")
|
31 |
-
|
32 |
-
# Directories with images
|
33 |
-
fdir2 = "/tmp/model/generated" # Directory with fake images
|
34 |
-
|
35 |
-
# Real data directories
|
36 |
-
|
37 |
-
real_dirs = {
|
38 |
-
"Single": "/tmp/data/real-images-single",
|
39 |
-
"Multiple": "/tmp/data/real-images-multi",
|
40 |
-
"Both": "/tmp/data/real-images-both"
|
41 |
-
}
|
42 |
-
## generate real-images-both directory
|
43 |
-
print("Preparing test dataset. . .")
|
44 |
-
target_directory= '/tmp/data/real-images-both/images'
|
45 |
-
os.makedirs(target_directory, exist_ok=True)
|
46 |
-
|
47 |
-
for directory in ["/tmp/data/real-images-single", "/tmp/data/real-images-multi"]:
|
48 |
-
print("for :"+ directory)
|
49 |
-
images_dir = os.path.join(directory, "images")
|
50 |
-
os.makedirs(images_dir, exist_ok=True)
|
51 |
-
subprocess.run(f"mv {directory}/*.* {images_dir}/", shell=True, check=True)
|
52 |
-
subprocess.run(f"ln {images_dir}/*.* {target_directory}/", shell=True, check=True)
|
53 |
-
|
54 |
-
print("link generated images")
|
55 |
-
# Organize directories for generated images
|
56 |
-
dest_generated = "/tmp/model/generated/images"
|
57 |
-
os.makedirs(dest_generated, exist_ok=True)
|
58 |
-
subprocess.run(f"ln {fdir2}/*.* {dest_generated}/", shell=True, check=True)
|
59 |
-
|
60 |
-
|
61 |
-
print("Init FID")
|
62 |
-
# Initialize FID metric
|
63 |
-
fid = FrechetInceptionDistance(feature=2048)
|
64 |
-
|
65 |
-
# Define image transformations
|
66 |
-
transform = transforms.Compose([
|
67 |
-
transforms.Resize((299, 299)),
|
68 |
-
transforms.ToTensor(),
|
69 |
-
])
|
70 |
-
|
71 |
-
# Prepare fake dataset and loader
|
72 |
-
generated_dataset = ImageFolder(root=fdir2, transform=transform)
|
73 |
-
generated_loader = DataLoader(generated_dataset, batch_size=50, shuffle=False)
|
74 |
-
|
75 |
-
# Compute FID scores for each real data directory
|
76 |
-
fid_scores = {}
|
77 |
-
for key, fdir1 in real_dirs.items():
|
78 |
-
print("for set: ", fdir1)
|
79 |
-
|
80 |
-
# Organize real images
|
81 |
-
dest_real = os.path.join(fdir1, "images")
|
82 |
-
|
83 |
-
# Create dataset and loader for real images
|
84 |
-
real_dataset = ImageFolder(root=fdir1, transform=transform)
|
85 |
-
real_loader = DataLoader(real_dataset, batch_size=50, shuffle=False)
|
86 |
-
|
87 |
-
# Reset FID metric for current folder
|
88 |
-
fid.reset()
|
89 |
-
|
90 |
-
# Process real images
|
91 |
-
for images, _ in tqdm(real_loader, desc=f"Processing real images: {key}"):
|
92 |
-
images = (images * 255).to(torch.uint8)
|
93 |
-
fid.update(images, real=True)
|
94 |
-
|
95 |
-
# Process generated images
|
96 |
-
for images, _ in tqdm(generated_loader, desc=f"Processing fake images: {key}"):
|
97 |
-
images = (images * 255).to(torch.uint8)
|
98 |
-
fid.update(images, real=False)
|
99 |
-
|
100 |
-
# Compute FID score
|
101 |
-
fid_score = fid.compute()
|
102 |
-
fid_scores[f"FID_Score_{key}"] = fid_score.item()
|
103 |
-
print(f"FID Score ({key}):", fid_score.item())
|
104 |
-
|
105 |
-
# Save FID scores to CSV
|
106 |
-
df = pd.DataFrame([fid_scores])
|
107 |
-
df.to_csv("submission.csv", index=False)
|
|
|
|
|
1 |
import sys
|
2 |
+
sys.path.insert(0, "/tmp/data")
|
3 |
+
import script
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|