Upload 14 files
Browse files- README.md +202 -0
- adapter_config.json +31 -0
- adapter_model.safetensors +3 -0
- conda-environment.yaml +0 -0
- config.yaml +680 -0
- optimizer.pt +3 -0
- output.log +51 -0
- requirements.txt +862 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +77 -0
- training_args.bin +3 -0
- wandb-metadata.json +66 -0
- wandb-summary.json +1 -0
README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: meta-llama/Meta-Llama-3-8B
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.7.1
|
adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "meta-llama/Meta-Llama-3-8B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 32,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 16,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"down_proj",
|
23 |
+
"up_proj",
|
24 |
+
"o_proj",
|
25 |
+
"q_proj",
|
26 |
+
"v_proj",
|
27 |
+
"gate_proj",
|
28 |
+
"k_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM"
|
31 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac3fa2b1c2b2f0dab0f3b5ce7e696d0e5f5f2ae1b672190d13de884428872a45
|
3 |
+
size 167832240
|
conda-environment.yaml
ADDED
File without changes
|
config.yaml
ADDED
@@ -0,0 +1,680 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.10.13
|
7 |
+
cli_version: 0.16.6
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.36.2
|
10 |
+
is_jupyter_run: true
|
11 |
+
is_kaggle_kernel: true
|
12 |
+
start_time: 1714028759.0
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 2
|
17 |
+
- 3
|
18 |
+
- 5
|
19 |
+
- 11
|
20 |
+
- 12
|
21 |
+
- 49
|
22 |
+
- 51
|
23 |
+
- 53
|
24 |
+
- 55
|
25 |
+
- 71
|
26 |
+
- 98
|
27 |
+
- 105
|
28 |
+
2:
|
29 |
+
- 1
|
30 |
+
- 2
|
31 |
+
- 3
|
32 |
+
- 5
|
33 |
+
- 11
|
34 |
+
- 12
|
35 |
+
- 49
|
36 |
+
- 51
|
37 |
+
- 53
|
38 |
+
- 55
|
39 |
+
- 71
|
40 |
+
- 98
|
41 |
+
- 105
|
42 |
+
3:
|
43 |
+
- 7
|
44 |
+
- 13
|
45 |
+
- 23
|
46 |
+
4: 3.10.13
|
47 |
+
5: 0.16.6
|
48 |
+
6: 4.36.2
|
49 |
+
8:
|
50 |
+
- 1
|
51 |
+
- 2
|
52 |
+
- 5
|
53 |
+
9:
|
54 |
+
1: transformers_trainer
|
55 |
+
13: linux-x86_64
|
56 |
+
m:
|
57 |
+
- 1: train/global_step
|
58 |
+
6:
|
59 |
+
- 3
|
60 |
+
- 1: train/loss
|
61 |
+
5: 1
|
62 |
+
6:
|
63 |
+
- 1
|
64 |
+
- 1: train/learning_rate
|
65 |
+
5: 1
|
66 |
+
6:
|
67 |
+
- 1
|
68 |
+
- 1: train/epoch
|
69 |
+
5: 1
|
70 |
+
6:
|
71 |
+
- 1
|
72 |
+
- 1: eval/loss
|
73 |
+
5: 1
|
74 |
+
6:
|
75 |
+
- 1
|
76 |
+
- 1: eval/runtime
|
77 |
+
5: 1
|
78 |
+
6:
|
79 |
+
- 1
|
80 |
+
- 1: eval/samples_per_second
|
81 |
+
5: 1
|
82 |
+
6:
|
83 |
+
- 1
|
84 |
+
- 1: eval/steps_per_second
|
85 |
+
5: 1
|
86 |
+
6:
|
87 |
+
- 1
|
88 |
+
vocab_size:
|
89 |
+
desc: null
|
90 |
+
value: 128256
|
91 |
+
max_position_embeddings:
|
92 |
+
desc: null
|
93 |
+
value: 8192
|
94 |
+
hidden_size:
|
95 |
+
desc: null
|
96 |
+
value: 4096
|
97 |
+
intermediate_size:
|
98 |
+
desc: null
|
99 |
+
value: 14336
|
100 |
+
num_hidden_layers:
|
101 |
+
desc: null
|
102 |
+
value: 32
|
103 |
+
num_attention_heads:
|
104 |
+
desc: null
|
105 |
+
value: 32
|
106 |
+
num_key_value_heads:
|
107 |
+
desc: null
|
108 |
+
value: 8
|
109 |
+
hidden_act:
|
110 |
+
desc: null
|
111 |
+
value: silu
|
112 |
+
initializer_range:
|
113 |
+
desc: null
|
114 |
+
value: 0.02
|
115 |
+
rms_norm_eps:
|
116 |
+
desc: null
|
117 |
+
value: 1.0e-05
|
118 |
+
pretraining_tp:
|
119 |
+
desc: null
|
120 |
+
value: 1
|
121 |
+
use_cache:
|
122 |
+
desc: null
|
123 |
+
value: false
|
124 |
+
rope_theta:
|
125 |
+
desc: null
|
126 |
+
value: 500000.0
|
127 |
+
rope_scaling:
|
128 |
+
desc: null
|
129 |
+
value: null
|
130 |
+
attention_bias:
|
131 |
+
desc: null
|
132 |
+
value: false
|
133 |
+
attention_dropout:
|
134 |
+
desc: null
|
135 |
+
value: 0.0
|
136 |
+
return_dict:
|
137 |
+
desc: null
|
138 |
+
value: true
|
139 |
+
output_hidden_states:
|
140 |
+
desc: null
|
141 |
+
value: false
|
142 |
+
output_attentions:
|
143 |
+
desc: null
|
144 |
+
value: false
|
145 |
+
torchscript:
|
146 |
+
desc: null
|
147 |
+
value: false
|
148 |
+
torch_dtype:
|
149 |
+
desc: null
|
150 |
+
value: bfloat16
|
151 |
+
use_bfloat16:
|
152 |
+
desc: null
|
153 |
+
value: false
|
154 |
+
tf_legacy_loss:
|
155 |
+
desc: null
|
156 |
+
value: false
|
157 |
+
pruned_heads:
|
158 |
+
desc: null
|
159 |
+
value: {}
|
160 |
+
tie_word_embeddings:
|
161 |
+
desc: null
|
162 |
+
value: false
|
163 |
+
is_encoder_decoder:
|
164 |
+
desc: null
|
165 |
+
value: false
|
166 |
+
is_decoder:
|
167 |
+
desc: null
|
168 |
+
value: false
|
169 |
+
cross_attention_hidden_size:
|
170 |
+
desc: null
|
171 |
+
value: null
|
172 |
+
add_cross_attention:
|
173 |
+
desc: null
|
174 |
+
value: false
|
175 |
+
tie_encoder_decoder:
|
176 |
+
desc: null
|
177 |
+
value: false
|
178 |
+
max_length:
|
179 |
+
desc: null
|
180 |
+
value: 20
|
181 |
+
min_length:
|
182 |
+
desc: null
|
183 |
+
value: 0
|
184 |
+
do_sample:
|
185 |
+
desc: null
|
186 |
+
value: false
|
187 |
+
early_stopping:
|
188 |
+
desc: null
|
189 |
+
value: false
|
190 |
+
num_beams:
|
191 |
+
desc: null
|
192 |
+
value: 1
|
193 |
+
num_beam_groups:
|
194 |
+
desc: null
|
195 |
+
value: 1
|
196 |
+
diversity_penalty:
|
197 |
+
desc: null
|
198 |
+
value: 0.0
|
199 |
+
temperature:
|
200 |
+
desc: null
|
201 |
+
value: 1.0
|
202 |
+
top_k:
|
203 |
+
desc: null
|
204 |
+
value: 50
|
205 |
+
top_p:
|
206 |
+
desc: null
|
207 |
+
value: 1.0
|
208 |
+
typical_p:
|
209 |
+
desc: null
|
210 |
+
value: 1.0
|
211 |
+
repetition_penalty:
|
212 |
+
desc: null
|
213 |
+
value: 1.0
|
214 |
+
length_penalty:
|
215 |
+
desc: null
|
216 |
+
value: 1.0
|
217 |
+
no_repeat_ngram_size:
|
218 |
+
desc: null
|
219 |
+
value: 0
|
220 |
+
encoder_no_repeat_ngram_size:
|
221 |
+
desc: null
|
222 |
+
value: 0
|
223 |
+
bad_words_ids:
|
224 |
+
desc: null
|
225 |
+
value: null
|
226 |
+
num_return_sequences:
|
227 |
+
desc: null
|
228 |
+
value: 1
|
229 |
+
chunk_size_feed_forward:
|
230 |
+
desc: null
|
231 |
+
value: 0
|
232 |
+
output_scores:
|
233 |
+
desc: null
|
234 |
+
value: false
|
235 |
+
return_dict_in_generate:
|
236 |
+
desc: null
|
237 |
+
value: false
|
238 |
+
forced_bos_token_id:
|
239 |
+
desc: null
|
240 |
+
value: null
|
241 |
+
forced_eos_token_id:
|
242 |
+
desc: null
|
243 |
+
value: null
|
244 |
+
remove_invalid_values:
|
245 |
+
desc: null
|
246 |
+
value: false
|
247 |
+
exponential_decay_length_penalty:
|
248 |
+
desc: null
|
249 |
+
value: null
|
250 |
+
suppress_tokens:
|
251 |
+
desc: null
|
252 |
+
value: null
|
253 |
+
begin_suppress_tokens:
|
254 |
+
desc: null
|
255 |
+
value: null
|
256 |
+
architectures:
|
257 |
+
desc: null
|
258 |
+
value:
|
259 |
+
- LlamaForCausalLM
|
260 |
+
finetuning_task:
|
261 |
+
desc: null
|
262 |
+
value: null
|
263 |
+
id2label:
|
264 |
+
desc: null
|
265 |
+
value:
|
266 |
+
'0': LABEL_0
|
267 |
+
'1': LABEL_1
|
268 |
+
label2id:
|
269 |
+
desc: null
|
270 |
+
value:
|
271 |
+
LABEL_0: 0
|
272 |
+
LABEL_1: 1
|
273 |
+
tokenizer_class:
|
274 |
+
desc: null
|
275 |
+
value: null
|
276 |
+
prefix:
|
277 |
+
desc: null
|
278 |
+
value: null
|
279 |
+
bos_token_id:
|
280 |
+
desc: null
|
281 |
+
value: 128000
|
282 |
+
pad_token_id:
|
283 |
+
desc: null
|
284 |
+
value: null
|
285 |
+
eos_token_id:
|
286 |
+
desc: null
|
287 |
+
value: 128001
|
288 |
+
sep_token_id:
|
289 |
+
desc: null
|
290 |
+
value: null
|
291 |
+
decoder_start_token_id:
|
292 |
+
desc: null
|
293 |
+
value: null
|
294 |
+
task_specific_params:
|
295 |
+
desc: null
|
296 |
+
value: null
|
297 |
+
problem_type:
|
298 |
+
desc: null
|
299 |
+
value: null
|
300 |
+
_name_or_path:
|
301 |
+
desc: null
|
302 |
+
value: meta-llama/Meta-Llama-3-8B
|
303 |
+
transformers_version:
|
304 |
+
desc: null
|
305 |
+
value: 4.36.2
|
306 |
+
model_type:
|
307 |
+
desc: null
|
308 |
+
value: llama
|
309 |
+
quantization_config:
|
310 |
+
desc: null
|
311 |
+
value:
|
312 |
+
quant_method: QuantizationMethod.BITS_AND_BYTES
|
313 |
+
load_in_8bit: false
|
314 |
+
load_in_4bit: true
|
315 |
+
llm_int8_threshold: 6.0
|
316 |
+
llm_int8_skip_modules: null
|
317 |
+
llm_int8_enable_fp32_cpu_offload: true
|
318 |
+
llm_int8_has_fp16_weight: false
|
319 |
+
bnb_4bit_quant_type: nf4
|
320 |
+
bnb_4bit_use_double_quant: true
|
321 |
+
bnb_4bit_compute_dtype: bfloat16
|
322 |
+
output_dir:
|
323 |
+
desc: null
|
324 |
+
value: /kaggle/working/trainer/
|
325 |
+
overwrite_output_dir:
|
326 |
+
desc: null
|
327 |
+
value: false
|
328 |
+
do_train:
|
329 |
+
desc: null
|
330 |
+
value: false
|
331 |
+
do_eval:
|
332 |
+
desc: null
|
333 |
+
value: true
|
334 |
+
do_predict:
|
335 |
+
desc: null
|
336 |
+
value: false
|
337 |
+
evaluation_strategy:
|
338 |
+
desc: null
|
339 |
+
value: epoch
|
340 |
+
prediction_loss_only:
|
341 |
+
desc: null
|
342 |
+
value: false
|
343 |
+
per_device_train_batch_size:
|
344 |
+
desc: null
|
345 |
+
value: 2
|
346 |
+
per_device_eval_batch_size:
|
347 |
+
desc: null
|
348 |
+
value: 2
|
349 |
+
per_gpu_train_batch_size:
|
350 |
+
desc: null
|
351 |
+
value: null
|
352 |
+
per_gpu_eval_batch_size:
|
353 |
+
desc: null
|
354 |
+
value: null
|
355 |
+
gradient_accumulation_steps:
|
356 |
+
desc: null
|
357 |
+
value: 4
|
358 |
+
eval_accumulation_steps:
|
359 |
+
desc: null
|
360 |
+
value: null
|
361 |
+
eval_delay:
|
362 |
+
desc: null
|
363 |
+
value: 0
|
364 |
+
learning_rate:
|
365 |
+
desc: null
|
366 |
+
value: 5.0e-05
|
367 |
+
weight_decay:
|
368 |
+
desc: null
|
369 |
+
value: 0.01
|
370 |
+
adam_beta1:
|
371 |
+
desc: null
|
372 |
+
value: 0.9
|
373 |
+
adam_beta2:
|
374 |
+
desc: null
|
375 |
+
value: 0.999
|
376 |
+
adam_epsilon:
|
377 |
+
desc: null
|
378 |
+
value: 1.0e-08
|
379 |
+
max_grad_norm:
|
380 |
+
desc: null
|
381 |
+
value: 1.0
|
382 |
+
num_train_epochs:
|
383 |
+
desc: null
|
384 |
+
value: 5
|
385 |
+
max_steps:
|
386 |
+
desc: null
|
387 |
+
value: -1
|
388 |
+
lr_scheduler_type:
|
389 |
+
desc: null
|
390 |
+
value: linear
|
391 |
+
lr_scheduler_kwargs:
|
392 |
+
desc: null
|
393 |
+
value: {}
|
394 |
+
warmup_ratio:
|
395 |
+
desc: null
|
396 |
+
value: 0.0
|
397 |
+
warmup_steps:
|
398 |
+
desc: null
|
399 |
+
value: 50
|
400 |
+
log_level:
|
401 |
+
desc: null
|
402 |
+
value: passive
|
403 |
+
log_level_replica:
|
404 |
+
desc: null
|
405 |
+
value: warning
|
406 |
+
log_on_each_node:
|
407 |
+
desc: null
|
408 |
+
value: true
|
409 |
+
logging_dir:
|
410 |
+
desc: null
|
411 |
+
value: /kaggle/working/logs
|
412 |
+
logging_strategy:
|
413 |
+
desc: null
|
414 |
+
value: epoch
|
415 |
+
logging_first_step:
|
416 |
+
desc: null
|
417 |
+
value: false
|
418 |
+
logging_steps:
|
419 |
+
desc: null
|
420 |
+
value: 500
|
421 |
+
logging_nan_inf_filter:
|
422 |
+
desc: null
|
423 |
+
value: true
|
424 |
+
save_strategy:
|
425 |
+
desc: null
|
426 |
+
value: epoch
|
427 |
+
save_steps:
|
428 |
+
desc: null
|
429 |
+
value: 500
|
430 |
+
save_total_limit:
|
431 |
+
desc: null
|
432 |
+
value: 5
|
433 |
+
save_safetensors:
|
434 |
+
desc: null
|
435 |
+
value: true
|
436 |
+
save_on_each_node:
|
437 |
+
desc: null
|
438 |
+
value: false
|
439 |
+
save_only_model:
|
440 |
+
desc: null
|
441 |
+
value: false
|
442 |
+
no_cuda:
|
443 |
+
desc: null
|
444 |
+
value: false
|
445 |
+
use_cpu:
|
446 |
+
desc: null
|
447 |
+
value: false
|
448 |
+
use_mps_device:
|
449 |
+
desc: null
|
450 |
+
value: false
|
451 |
+
seed:
|
452 |
+
desc: null
|
453 |
+
value: 42
|
454 |
+
data_seed:
|
455 |
+
desc: null
|
456 |
+
value: null
|
457 |
+
jit_mode_eval:
|
458 |
+
desc: null
|
459 |
+
value: false
|
460 |
+
use_ipex:
|
461 |
+
desc: null
|
462 |
+
value: false
|
463 |
+
bf16:
|
464 |
+
desc: null
|
465 |
+
value: false
|
466 |
+
fp16:
|
467 |
+
desc: null
|
468 |
+
value: true
|
469 |
+
fp16_opt_level:
|
470 |
+
desc: null
|
471 |
+
value: O1
|
472 |
+
half_precision_backend:
|
473 |
+
desc: null
|
474 |
+
value: auto
|
475 |
+
bf16_full_eval:
|
476 |
+
desc: null
|
477 |
+
value: false
|
478 |
+
fp16_full_eval:
|
479 |
+
desc: null
|
480 |
+
value: false
|
481 |
+
tf32:
|
482 |
+
desc: null
|
483 |
+
value: null
|
484 |
+
local_rank:
|
485 |
+
desc: null
|
486 |
+
value: 0
|
487 |
+
ddp_backend:
|
488 |
+
desc: null
|
489 |
+
value: null
|
490 |
+
tpu_num_cores:
|
491 |
+
desc: null
|
492 |
+
value: null
|
493 |
+
tpu_metrics_debug:
|
494 |
+
desc: null
|
495 |
+
value: false
|
496 |
+
debug:
|
497 |
+
desc: null
|
498 |
+
value: []
|
499 |
+
dataloader_drop_last:
|
500 |
+
desc: null
|
501 |
+
value: false
|
502 |
+
eval_steps:
|
503 |
+
desc: null
|
504 |
+
value: null
|
505 |
+
dataloader_num_workers:
|
506 |
+
desc: null
|
507 |
+
value: 0
|
508 |
+
past_index:
|
509 |
+
desc: null
|
510 |
+
value: -1
|
511 |
+
run_name:
|
512 |
+
desc: null
|
513 |
+
value: model_1_5epochs
|
514 |
+
disable_tqdm:
|
515 |
+
desc: null
|
516 |
+
value: false
|
517 |
+
remove_unused_columns:
|
518 |
+
desc: null
|
519 |
+
value: true
|
520 |
+
label_names:
|
521 |
+
desc: null
|
522 |
+
value: null
|
523 |
+
load_best_model_at_end:
|
524 |
+
desc: null
|
525 |
+
value: true
|
526 |
+
metric_for_best_model:
|
527 |
+
desc: null
|
528 |
+
value: loss
|
529 |
+
greater_is_better:
|
530 |
+
desc: null
|
531 |
+
value: false
|
532 |
+
ignore_data_skip:
|
533 |
+
desc: null
|
534 |
+
value: false
|
535 |
+
fsdp:
|
536 |
+
desc: null
|
537 |
+
value: []
|
538 |
+
fsdp_min_num_params:
|
539 |
+
desc: null
|
540 |
+
value: 0
|
541 |
+
fsdp_config:
|
542 |
+
desc: null
|
543 |
+
value:
|
544 |
+
min_num_params: 0
|
545 |
+
xla: false
|
546 |
+
xla_fsdp_grad_ckpt: false
|
547 |
+
fsdp_transformer_layer_cls_to_wrap:
|
548 |
+
desc: null
|
549 |
+
value: null
|
550 |
+
deepspeed:
|
551 |
+
desc: null
|
552 |
+
value: null
|
553 |
+
label_smoothing_factor:
|
554 |
+
desc: null
|
555 |
+
value: 0.0
|
556 |
+
optim:
|
557 |
+
desc: null
|
558 |
+
value: paged_adamw_8bit
|
559 |
+
optim_args:
|
560 |
+
desc: null
|
561 |
+
value: null
|
562 |
+
adafactor:
|
563 |
+
desc: null
|
564 |
+
value: false
|
565 |
+
group_by_length:
|
566 |
+
desc: null
|
567 |
+
value: false
|
568 |
+
length_column_name:
|
569 |
+
desc: null
|
570 |
+
value: length
|
571 |
+
report_to:
|
572 |
+
desc: null
|
573 |
+
value:
|
574 |
+
- wandb
|
575 |
+
ddp_find_unused_parameters:
|
576 |
+
desc: null
|
577 |
+
value: null
|
578 |
+
ddp_bucket_cap_mb:
|
579 |
+
desc: null
|
580 |
+
value: null
|
581 |
+
ddp_broadcast_buffers:
|
582 |
+
desc: null
|
583 |
+
value: null
|
584 |
+
dataloader_pin_memory:
|
585 |
+
desc: null
|
586 |
+
value: true
|
587 |
+
dataloader_persistent_workers:
|
588 |
+
desc: null
|
589 |
+
value: false
|
590 |
+
skip_memory_metrics:
|
591 |
+
desc: null
|
592 |
+
value: true
|
593 |
+
use_legacy_prediction_loop:
|
594 |
+
desc: null
|
595 |
+
value: false
|
596 |
+
push_to_hub:
|
597 |
+
desc: null
|
598 |
+
value: false
|
599 |
+
resume_from_checkpoint:
|
600 |
+
desc: null
|
601 |
+
value: null
|
602 |
+
hub_model_id:
|
603 |
+
desc: null
|
604 |
+
value: null
|
605 |
+
hub_strategy:
|
606 |
+
desc: null
|
607 |
+
value: every_save
|
608 |
+
hub_token:
|
609 |
+
desc: null
|
610 |
+
value: <HUB_TOKEN>
|
611 |
+
hub_private_repo:
|
612 |
+
desc: null
|
613 |
+
value: false
|
614 |
+
hub_always_push:
|
615 |
+
desc: null
|
616 |
+
value: false
|
617 |
+
gradient_checkpointing:
|
618 |
+
desc: null
|
619 |
+
value: true
|
620 |
+
gradient_checkpointing_kwargs:
|
621 |
+
desc: null
|
622 |
+
value:
|
623 |
+
use_reentrant: false
|
624 |
+
include_inputs_for_metrics:
|
625 |
+
desc: null
|
626 |
+
value: false
|
627 |
+
fp16_backend:
|
628 |
+
desc: null
|
629 |
+
value: auto
|
630 |
+
push_to_hub_model_id:
|
631 |
+
desc: null
|
632 |
+
value: null
|
633 |
+
push_to_hub_organization:
|
634 |
+
desc: null
|
635 |
+
value: null
|
636 |
+
push_to_hub_token:
|
637 |
+
desc: null
|
638 |
+
value: <PUSH_TO_HUB_TOKEN>
|
639 |
+
mp_parameters:
|
640 |
+
desc: null
|
641 |
+
value: ''
|
642 |
+
auto_find_batch_size:
|
643 |
+
desc: null
|
644 |
+
value: false
|
645 |
+
full_determinism:
|
646 |
+
desc: null
|
647 |
+
value: false
|
648 |
+
torchdynamo:
|
649 |
+
desc: null
|
650 |
+
value: null
|
651 |
+
ray_scope:
|
652 |
+
desc: null
|
653 |
+
value: last
|
654 |
+
ddp_timeout:
|
655 |
+
desc: null
|
656 |
+
value: 1800
|
657 |
+
torch_compile:
|
658 |
+
desc: null
|
659 |
+
value: false
|
660 |
+
torch_compile_backend:
|
661 |
+
desc: null
|
662 |
+
value: null
|
663 |
+
torch_compile_mode:
|
664 |
+
desc: null
|
665 |
+
value: null
|
666 |
+
dispatch_batches:
|
667 |
+
desc: null
|
668 |
+
value: null
|
669 |
+
split_batches:
|
670 |
+
desc: null
|
671 |
+
value: false
|
672 |
+
include_tokens_per_second:
|
673 |
+
desc: null
|
674 |
+
value: false
|
675 |
+
include_num_input_tokens_seen:
|
676 |
+
desc: null
|
677 |
+
value: false
|
678 |
+
neftune_noise_alpha:
|
679 |
+
desc: null
|
680 |
+
value: null
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13178e5090d1c2e736aa36acf28ae3fa57df1196133cb7820a60e0f21c6077cb
|
3 |
+
size 84581014
|
output.log
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
|
2 |
+
To disable this warning, you can either:
|
3 |
+
- Avoid using `tokenizers` before the fork if possible
|
4 |
+
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
|
5 |
+
/bin/bash: nvdia-smi: command not found
|
6 |
+
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
|
7 |
+
To disable this warning, you can either:
|
8 |
+
- Avoid using `tokenizers` before the fork if possible
|
9 |
+
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
|
10 |
+
adding: kaggle/working/ (stored 0%)
|
11 |
+
adding: kaggle/working/test.csv (deflated 81%)
|
12 |
+
adding: kaggle/working/trainer/ (stored 0%)
|
13 |
+
adding: kaggle/working/trainer/README.md (deflated 48%)
|
14 |
+
adding: kaggle/working/trainer/adapter_config.json (deflated 52%)
|
15 |
+
adding: kaggle/working/trainer/checkpoint-118/ (stored 0%)
|
16 |
+
adding: kaggle/working/trainer/checkpoint-118/rng_state.pth (deflated 25%)
|
17 |
+
adding: kaggle/working/trainer/checkpoint-118/optimizer.pt (deflated 16%)
|
18 |
+
adding: kaggle/working/trainer/checkpoint-118/README.md (deflated 66%)
|
19 |
+
adding: kaggle/working/trainer/checkpoint-118/scheduler.pt (deflated 56%)
|
20 |
+
adding: kaggle/working/trainer/checkpoint-118/adapter_config.json (deflated 52%)
|
21 |
+
adding: kaggle/working/trainer/checkpoint-118/training_args.bin (deflated 51%)
|
22 |
+
adding: kaggle/working/trainer/checkpoint-118/trainer_state.json (deflated 55%)
|
23 |
+
adding: kaggle/working/trainer/checkpoint-118/adapter_model.safetensors (deflated 8%)
|
24 |
+
adding: kaggle/working/trainer/checkpoint-472/ (stored 0%)
|
25 |
+
adding: kaggle/working/trainer/checkpoint-472/rng_state.pth (deflated 25%)
|
26 |
+
adding: kaggle/working/trainer/checkpoint-472/optimizer.pt (deflated 16%)
|
27 |
+
adding: kaggle/working/trainer/checkpoint-472/README.md (deflated 66%)
|
28 |
+
adding: kaggle/working/trainer/checkpoint-472/scheduler.pt (deflated 55%)
|
29 |
+
adding: kaggle/working/trainer/checkpoint-472/adapter_config.json (deflated 52%)
|
30 |
+
adding: kaggle/working/trainer/checkpoint-472/training_args.bin (deflated 51%)
|
31 |
+
adding: kaggle/working/trainer/checkpoint-472/trainer_state.json (deflated 71%)
|
32 |
+
adding: kaggle/working/trainer/checkpoint-472/adapter_model.safetensors (deflated 7%)
|
33 |
+
adding: kaggle/working/trainer/checkpoint-236/ (stored 0%)
|
34 |
+
adding: kaggle/working/trainer/checkpoint-236/rng_state.pth (deflated 25%)
|
35 |
+
adding: kaggle/working/trainer/checkpoint-236/optimizer.pt (deflated 16%)
|
36 |
+
adding: kaggle/working/trainer/checkpoint-236/README.md (deflated 66%)
|
37 |
+
adding: kaggle/working/trainer/checkpoint-236/scheduler.pt (deflated 56%)
|
38 |
+
adding: kaggle/working/trainer/checkpoint-236/adapter_config.json (deflated 52%)
|
39 |
+
adding: kaggle/working/trainer/checkpoint-236/training_args.bin (deflated 51%)
|
40 |
+
adding: kaggle/working/trainer/checkpoint-236/trainer_state.json (deflated 63%)
|
41 |
+
adding: kaggle/working/trainer/checkpoint-236/adapter_model.safetensors (deflated 7%)
|
42 |
+
adding: kaggle/working/trainer/training_args.bin (deflated 51%)
|
43 |
+
adding: kaggle/working/trainer/checkpoint-354/ (stored 0%)
|
44 |
+
adding: kaggle/working/trainer/checkpoint-354/rng_state.pth (deflated 25%)
|
45 |
+
adding: kaggle/working/trainer/checkpoint-354/optimizer.pt (deflated 16%)
|
46 |
+
adding: kaggle/working/trainer/checkpoint-354/README.md (deflated 66%)
|
47 |
+
adding: kaggle/working/trainer/checkpoint-354/scheduler.pt (deflated 55%)
|
48 |
+
adding: kaggle/working/trainer/checkpoint-354/adapter_config.json (deflated 52%)
|
49 |
+
adding: kaggle/working/trainer/checkpoint-354/training_args.bin (deflated 51%)
|
50 |
+
adding: kaggle/working/trainer/checkpoint-354/trainer_state.json (deflated 68%)
|
51 |
+
adding: kaggle/working/trainer/checkpoint-354/adapter_model.safetensors (deflated 7%)
|
requirements.txt
ADDED
@@ -0,0 +1,862 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Babel==2.14.0
|
2 |
+
Boruta==0.3
|
3 |
+
Brotli==1.0.9
|
4 |
+
CVXcanon==0.1.2
|
5 |
+
Cartopy==0.23.0
|
6 |
+
Cython==3.0.8
|
7 |
+
Deprecated==1.2.14
|
8 |
+
Farama-Notifications==0.0.4
|
9 |
+
Flask==3.0.3
|
10 |
+
Geohash==1.0
|
11 |
+
GitPython==3.1.41
|
12 |
+
ImageHash==4.3.1
|
13 |
+
Janome==0.5.0
|
14 |
+
Jinja2==3.1.2
|
15 |
+
LunarCalendar==0.0.9
|
16 |
+
Mako==1.3.3
|
17 |
+
Markdown==3.5.2
|
18 |
+
MarkupSafe==2.1.3
|
19 |
+
MarkupSafe==2.1.5
|
20 |
+
Pillow==9.5.0
|
21 |
+
PuLP==2.8.0
|
22 |
+
PyArabic==0.6.15
|
23 |
+
PyJWT==2.8.0
|
24 |
+
PyMeeus==0.5.12
|
25 |
+
PySocks==1.7.1
|
26 |
+
PyUpSet==0.1.1.post7
|
27 |
+
PyWavelets==1.5.0
|
28 |
+
PyYAML==6.0.1
|
29 |
+
Pygments==2.17.2
|
30 |
+
Pympler==1.0.1
|
31 |
+
QtPy==2.4.1
|
32 |
+
Rtree==1.2.0
|
33 |
+
SQLAlchemy==2.0.25
|
34 |
+
SecretStorage==3.3.3
|
35 |
+
Send2Trash==1.8.2
|
36 |
+
Shapely==1.8.5.post1
|
37 |
+
Shimmy==1.3.0
|
38 |
+
SimpleITK==2.3.1
|
39 |
+
TPOT==0.12.1
|
40 |
+
Theano-PyMC==1.1.2
|
41 |
+
Theano==1.0.5
|
42 |
+
Wand==0.6.13
|
43 |
+
Werkzeug==3.0.2
|
44 |
+
absl-py==1.4.0
|
45 |
+
accelerate==0.25.0
|
46 |
+
access==1.1.9
|
47 |
+
affine==2.4.0
|
48 |
+
aiobotocore==2.12.3
|
49 |
+
aiofiles==22.1.0
|
50 |
+
aiohttp-cors==0.7.0
|
51 |
+
aiohttp==3.9.1
|
52 |
+
aioitertools==0.11.0
|
53 |
+
aiorwlock==1.3.0
|
54 |
+
aiosignal==1.3.1
|
55 |
+
aiosqlite==0.19.0
|
56 |
+
albumentations==1.4.0
|
57 |
+
alembic==1.13.1
|
58 |
+
altair==5.3.0
|
59 |
+
annotated-types==0.6.0
|
60 |
+
annoy==1.17.3
|
61 |
+
anyio==4.2.0
|
62 |
+
apache-beam==2.46.0
|
63 |
+
aplus==0.11.0
|
64 |
+
appdirs==1.4.4
|
65 |
+
archspec==0.2.3
|
66 |
+
argon2-cffi-bindings==21.2.0
|
67 |
+
argon2-cffi==23.1.0
|
68 |
+
array-record==0.5.0
|
69 |
+
arrow==1.3.0
|
70 |
+
arviz==0.18.0
|
71 |
+
astroid==3.1.0
|
72 |
+
astropy-iers-data==0.2024.4.15.2.45.49
|
73 |
+
astropy==6.0.1
|
74 |
+
asttokens==2.4.1
|
75 |
+
astunparse==1.6.3
|
76 |
+
async-lru==2.0.4
|
77 |
+
async-timeout==4.0.3
|
78 |
+
attrs==23.2.0
|
79 |
+
audioread==3.0.1
|
80 |
+
autopep8==2.0.4
|
81 |
+
backoff==2.2.1
|
82 |
+
bayesian-optimization==1.4.3
|
83 |
+
beatrix_jupyterlab==2023.128.151533
|
84 |
+
beautifulsoup4==4.12.2
|
85 |
+
bitsandbytes==0.41.3
|
86 |
+
blake3==0.2.1
|
87 |
+
bleach==6.1.0
|
88 |
+
blessed==1.20.0
|
89 |
+
blinker==1.7.0
|
90 |
+
blis==0.7.10
|
91 |
+
blosc2==2.6.2
|
92 |
+
bokeh==3.4.1
|
93 |
+
boltons==23.1.1
|
94 |
+
boto3==1.26.100
|
95 |
+
botocore==1.34.69
|
96 |
+
bq_helper==0.4.1
|
97 |
+
bqplot==0.12.43
|
98 |
+
branca==0.7.1
|
99 |
+
brewer2mpl==1.4.1
|
100 |
+
brotlipy==0.7.0
|
101 |
+
cached-property==1.5.2
|
102 |
+
cachetools==4.2.4
|
103 |
+
cachetools==5.3.2
|
104 |
+
catalogue==2.0.10
|
105 |
+
catalyst==22.4
|
106 |
+
catboost==1.2.3
|
107 |
+
category-encoders==2.6.3
|
108 |
+
certifi==2024.2.2
|
109 |
+
cesium==0.12.1
|
110 |
+
cffi==1.16.0
|
111 |
+
charset-normalizer==3.3.2
|
112 |
+
chex==0.1.86
|
113 |
+
cleverhans==4.0.0
|
114 |
+
click-plugins==1.1.1
|
115 |
+
click==8.1.7
|
116 |
+
cligj==0.7.2
|
117 |
+
cloud-tpu-client==0.10
|
118 |
+
cloud-tpu-profiler==2.4.0
|
119 |
+
cloudpathlib==0.16.0
|
120 |
+
cloudpickle==2.2.1
|
121 |
+
cloudpickle==3.0.0
|
122 |
+
cmdstanpy==1.2.2
|
123 |
+
colorama==0.4.6
|
124 |
+
colorcet==3.1.0
|
125 |
+
colorful==0.5.6
|
126 |
+
colorlog==6.8.2
|
127 |
+
colorlover==0.3.0
|
128 |
+
comm==0.2.1
|
129 |
+
conda-libmamba-solver==23.7.0
|
130 |
+
conda-package-handling==2.2.0
|
131 |
+
conda==23.7.4
|
132 |
+
conda_package_streaming==0.9.0
|
133 |
+
confection==0.1.4
|
134 |
+
contextily==1.6.0
|
135 |
+
contourpy==1.2.0
|
136 |
+
contourpy==1.2.1
|
137 |
+
convertdate==2.4.0
|
138 |
+
crcmod==1.7
|
139 |
+
cryptography==41.0.7
|
140 |
+
cuda-python==12.4.0
|
141 |
+
cudf==23.8.0
|
142 |
+
cufflinks==0.17.3
|
143 |
+
cuml==23.8.0
|
144 |
+
cupy==13.0.0
|
145 |
+
cycler==0.12.1
|
146 |
+
cymem==2.0.8
|
147 |
+
cytoolz==0.12.3
|
148 |
+
daal4py==2024.3.0
|
149 |
+
daal==2024.3.0
|
150 |
+
dacite==1.8.1
|
151 |
+
dask-cuda==23.8.0
|
152 |
+
dask-cudf==23.8.0
|
153 |
+
dask-expr==1.0.11
|
154 |
+
dask==2024.4.1
|
155 |
+
dataclasses-json==0.6.4
|
156 |
+
dataproc_jupyter_plugin==0.1.66
|
157 |
+
datasets==2.18.0
|
158 |
+
datashader==0.16.0
|
159 |
+
datatile==1.0.3
|
160 |
+
db-dtypes==1.2.0
|
161 |
+
deap==1.4.1
|
162 |
+
debugpy==1.8.0
|
163 |
+
decorator==5.1.1
|
164 |
+
deepdiff==7.0.1
|
165 |
+
defusedxml==0.7.1
|
166 |
+
deprecation==2.1.0
|
167 |
+
descartes==1.1.0
|
168 |
+
dill==0.3.8
|
169 |
+
dipy==1.9.0
|
170 |
+
distlib==0.3.8
|
171 |
+
distributed==2023.7.1
|
172 |
+
distro==1.9.0
|
173 |
+
dm-tree==0.1.8
|
174 |
+
docker-pycreds==0.4.0
|
175 |
+
docker==7.0.0
|
176 |
+
docopt==0.6.2
|
177 |
+
docstring-parser==0.15
|
178 |
+
docstring-to-markdown==0.15
|
179 |
+
docutils==0.21.1
|
180 |
+
earthengine-api==0.1.399
|
181 |
+
easydict==1.13
|
182 |
+
easyocr==1.7.1
|
183 |
+
ecos==2.0.13
|
184 |
+
eli5==0.13.0
|
185 |
+
emoji==2.11.0
|
186 |
+
en-core-web-lg==3.7.1
|
187 |
+
en-core-web-sm==3.7.1
|
188 |
+
entrypoints==0.4
|
189 |
+
ephem==4.1.5
|
190 |
+
esda==2.5.1
|
191 |
+
essentia==2.1b6.dev1110
|
192 |
+
et-xmlfile==1.1.0
|
193 |
+
etils==1.6.0
|
194 |
+
exceptiongroup==1.2.0
|
195 |
+
executing==2.0.1
|
196 |
+
explainable-ai-sdk==1.3.3
|
197 |
+
fastai==2.7.14
|
198 |
+
fastapi==0.108.0
|
199 |
+
fastavro==1.9.3
|
200 |
+
fastcore==1.5.29
|
201 |
+
fastdownload==0.0.7
|
202 |
+
fasteners==0.19
|
203 |
+
fastjsonschema==2.19.1
|
204 |
+
fastprogress==1.0.3
|
205 |
+
fastrlock==0.8.2
|
206 |
+
fasttext==0.9.2
|
207 |
+
feather-format==0.4.1
|
208 |
+
featuretools==1.30.0
|
209 |
+
filelock==3.13.1
|
210 |
+
fiona==1.9.6
|
211 |
+
fitter==1.7.0
|
212 |
+
flake8==7.0.0
|
213 |
+
flashtext==2.7
|
214 |
+
flatbuffers==23.5.26
|
215 |
+
flax==0.8.2
|
216 |
+
folium==0.16.0
|
217 |
+
fonttools==4.47.0
|
218 |
+
fonttools==4.51.0
|
219 |
+
fqdn==1.5.1
|
220 |
+
frozendict==2.4.2
|
221 |
+
frozenlist==1.4.1
|
222 |
+
fsspec==2024.2.0
|
223 |
+
fsspec==2024.3.1
|
224 |
+
funcy==2.0
|
225 |
+
fury==0.10.0
|
226 |
+
future==1.0.0
|
227 |
+
fuzzywuzzy==0.18.0
|
228 |
+
gast==0.5.4
|
229 |
+
gatspy==0.3
|
230 |
+
gcsfs==2024.2.0
|
231 |
+
gensim==4.3.2
|
232 |
+
geographiclib==2.0
|
233 |
+
geojson==3.1.0
|
234 |
+
geopandas==0.14.3
|
235 |
+
geoplot==0.5.1
|
236 |
+
geopy==2.4.1
|
237 |
+
geoviews==1.12.0
|
238 |
+
ggplot==0.11.5
|
239 |
+
giddy==2.3.5
|
240 |
+
gitdb==4.0.11
|
241 |
+
google-ai-generativelanguage==0.6.2
|
242 |
+
google-api-core==2.11.1
|
243 |
+
google-api-core==2.18.0
|
244 |
+
google-api-python-client==2.126.0
|
245 |
+
google-apitools==0.5.31
|
246 |
+
google-auth-httplib2==0.2.0
|
247 |
+
google-auth-oauthlib==1.2.0
|
248 |
+
google-auth==2.26.1
|
249 |
+
google-cloud-aiplatform==0.6.0a1
|
250 |
+
google-cloud-artifact-registry==1.10.0
|
251 |
+
google-cloud-automl==1.0.1
|
252 |
+
google-cloud-bigquery==2.34.4
|
253 |
+
google-cloud-bigtable==1.7.3
|
254 |
+
google-cloud-core==2.4.1
|
255 |
+
google-cloud-datastore==2.19.0
|
256 |
+
google-cloud-dlp==3.14.0
|
257 |
+
google-cloud-jupyter-config==0.0.5
|
258 |
+
google-cloud-language==2.13.3
|
259 |
+
google-cloud-monitoring==2.18.0
|
260 |
+
google-cloud-pubsub==2.19.0
|
261 |
+
google-cloud-pubsublite==1.9.0
|
262 |
+
google-cloud-recommendations-ai==0.7.1
|
263 |
+
google-cloud-resource-manager==1.11.0
|
264 |
+
google-cloud-spanner==3.40.1
|
265 |
+
google-cloud-storage==1.44.0
|
266 |
+
google-cloud-translate==3.12.1
|
267 |
+
google-cloud-videointelligence==2.13.3
|
268 |
+
google-cloud-vision==2.8.0
|
269 |
+
google-crc32c==1.5.0
|
270 |
+
google-generativeai==0.5.1
|
271 |
+
google-pasta==0.2.0
|
272 |
+
google-resumable-media==2.7.0
|
273 |
+
googleapis-common-protos==1.62.0
|
274 |
+
gplearn==0.4.2
|
275 |
+
gpustat==1.0.0
|
276 |
+
gpxpy==1.6.2
|
277 |
+
graphviz==0.20.3
|
278 |
+
greenlet==3.0.3
|
279 |
+
grpc-google-iam-v1==0.12.7
|
280 |
+
grpcio-status==1.48.1
|
281 |
+
grpcio-status==1.48.2
|
282 |
+
grpcio==1.51.1
|
283 |
+
grpcio==1.60.0
|
284 |
+
gviz-api==1.10.0
|
285 |
+
gym-notices==0.0.8
|
286 |
+
gym==0.26.2
|
287 |
+
gymnasium==0.29.0
|
288 |
+
h11==0.14.0
|
289 |
+
h2o==3.46.0.1
|
290 |
+
h5netcdf==1.3.0
|
291 |
+
h5py==3.10.0
|
292 |
+
haversine==2.8.1
|
293 |
+
hdfs==2.7.3
|
294 |
+
hep-ml==0.7.2
|
295 |
+
hijri-converter==2.3.1
|
296 |
+
hmmlearn==0.3.2
|
297 |
+
holidays==0.24
|
298 |
+
holoviews==1.18.3
|
299 |
+
hpsklearn==0.1.0
|
300 |
+
html5lib==1.1
|
301 |
+
htmlmin==0.1.12
|
302 |
+
httpcore==1.0.5
|
303 |
+
httplib2==0.21.0
|
304 |
+
httptools==0.6.1
|
305 |
+
httpx==0.27.0
|
306 |
+
huggingface-hub==0.22.2
|
307 |
+
hunspell==0.5.5
|
308 |
+
hydra-slayer==0.5.0
|
309 |
+
hyperopt==0.2.7
|
310 |
+
hypertools==0.8.0
|
311 |
+
idna==3.6
|
312 |
+
igraph==0.11.4
|
313 |
+
imagecodecs==2024.1.1
|
314 |
+
imageio==2.33.1
|
315 |
+
imbalanced-learn==0.12.2
|
316 |
+
imgaug==0.4.0
|
317 |
+
importlib-metadata==6.11.0
|
318 |
+
importlib-metadata==7.0.1
|
319 |
+
importlib-resources==6.1.1
|
320 |
+
inequality==1.0.1
|
321 |
+
iniconfig==2.0.0
|
322 |
+
ipydatawidgets==4.3.5
|
323 |
+
ipykernel==6.28.0
|
324 |
+
ipyleaflet==0.18.2
|
325 |
+
ipympl==0.7.0
|
326 |
+
ipython-genutils==0.2.0
|
327 |
+
ipython-genutils==0.2.0
|
328 |
+
ipython-sql==0.5.0
|
329 |
+
ipython==8.20.0
|
330 |
+
ipyvolume==0.6.3
|
331 |
+
ipyvue==1.11.0
|
332 |
+
ipyvuetify==1.9.4
|
333 |
+
ipywebrtc==0.6.0
|
334 |
+
ipywidgets==7.7.1
|
335 |
+
isoduration==20.11.0
|
336 |
+
isort==5.13.2
|
337 |
+
isoweek==1.3.3
|
338 |
+
itsdangerous==2.2.0
|
339 |
+
jaraco.classes==3.3.0
|
340 |
+
jax-jumpy==1.0.0
|
341 |
+
jax==0.4.23
|
342 |
+
jaxlib==0.4.23.dev20240116
|
343 |
+
jedi==0.19.1
|
344 |
+
jeepney==0.8.0
|
345 |
+
jieba==0.42.1
|
346 |
+
jmespath==1.0.1
|
347 |
+
joblib==1.4.0
|
348 |
+
json5==0.9.14
|
349 |
+
jsonpatch==1.33
|
350 |
+
jsonpointer==2.4
|
351 |
+
jsonschema-specifications==2023.12.1
|
352 |
+
jsonschema==4.20.0
|
353 |
+
jupyter-console==6.6.3
|
354 |
+
jupyter-events==0.9.0
|
355 |
+
jupyter-http-over-ws==0.0.8
|
356 |
+
jupyter-lsp==1.5.1
|
357 |
+
jupyter-server-mathjax==0.2.6
|
358 |
+
jupyter-ydoc==0.2.5
|
359 |
+
jupyter_client==7.4.9
|
360 |
+
jupyter_client==8.6.0
|
361 |
+
jupyter_core==5.7.1
|
362 |
+
jupyter_server==2.12.5
|
363 |
+
jupyter_server_fileid==0.9.1
|
364 |
+
jupyter_server_proxy==4.1.0
|
365 |
+
jupyter_server_terminals==0.5.1
|
366 |
+
jupyter_server_ydoc==0.8.0
|
367 |
+
jupyterlab-lsp==5.1.0
|
368 |
+
jupyterlab-widgets==3.0.9
|
369 |
+
jupyterlab==4.1.6
|
370 |
+
jupyterlab_git==0.44.0
|
371 |
+
jupyterlab_pygments==0.3.0
|
372 |
+
jupyterlab_server==2.25.2
|
373 |
+
jupytext==1.16.0
|
374 |
+
kaggle-environments==1.14.3
|
375 |
+
kaggle==1.6.12
|
376 |
+
kagglehub==0.2.3
|
377 |
+
keras-cv==0.8.2
|
378 |
+
keras-nlp==0.9.3
|
379 |
+
keras-tuner==1.4.6
|
380 |
+
keras==3.2.1
|
381 |
+
kernels-mixer==0.0.7
|
382 |
+
keyring==24.3.0
|
383 |
+
keyrings.google-artifactregistry-auth==1.1.2
|
384 |
+
kfp-pipeline-spec==0.2.2
|
385 |
+
kfp-server-api==2.0.5
|
386 |
+
kfp==2.5.0
|
387 |
+
kiwisolver==1.4.5
|
388 |
+
kmapper==2.0.1
|
389 |
+
kmodes==0.12.2
|
390 |
+
korean-lunar-calendar==0.3.1
|
391 |
+
kornia==0.7.2
|
392 |
+
kornia_rs==0.1.3
|
393 |
+
kt-legacy==1.0.5
|
394 |
+
kubernetes==26.1.0
|
395 |
+
langcodes==3.3.0
|
396 |
+
langid==1.1.6
|
397 |
+
lazy_loader==0.3
|
398 |
+
learntools==0.3.4
|
399 |
+
leven==1.0.4
|
400 |
+
libclang==16.0.6
|
401 |
+
libmambapy==1.5.0
|
402 |
+
libpysal==4.9.2
|
403 |
+
librosa==0.10.1
|
404 |
+
lightgbm==4.2.0
|
405 |
+
lightning-utilities==0.11.2
|
406 |
+
lime==0.2.0.1
|
407 |
+
line-profiler==4.1.2
|
408 |
+
linkify-it-py==2.0.3
|
409 |
+
llvmlite==0.41.1
|
410 |
+
llvmlite==0.42.0
|
411 |
+
lml==0.1.0
|
412 |
+
locket==1.0.0
|
413 |
+
loguru==0.7.2
|
414 |
+
lxml==5.2.1
|
415 |
+
lz4==4.3.3
|
416 |
+
mamba==1.5.0
|
417 |
+
mapclassify==2.6.1
|
418 |
+
markdown-it-py==3.0.0
|
419 |
+
marshmallow==3.21.1
|
420 |
+
matplotlib-inline==0.1.6
|
421 |
+
matplotlib-venn==0.11.10
|
422 |
+
matplotlib==3.7.5
|
423 |
+
matplotlib==3.8.4
|
424 |
+
mccabe==0.7.0
|
425 |
+
mdit-py-plugins==0.4.0
|
426 |
+
mdurl==0.1.2
|
427 |
+
memory-profiler==0.61.0
|
428 |
+
menuinst==2.0.1
|
429 |
+
mercantile==1.2.1
|
430 |
+
mgwr==2.2.1
|
431 |
+
missingno==0.5.2
|
432 |
+
mistune==0.8.4
|
433 |
+
mizani==0.11.1
|
434 |
+
ml-dtypes==0.2.0
|
435 |
+
mlcrate==0.2.0
|
436 |
+
mlens==0.2.3
|
437 |
+
mlxtend==0.23.1
|
438 |
+
mne==1.6.1
|
439 |
+
mnist==0.2.2
|
440 |
+
momepy==0.7.0
|
441 |
+
more-itertools==10.2.0
|
442 |
+
mpld3==0.5.10
|
443 |
+
mpmath==1.3.0
|
444 |
+
msgpack==1.0.7
|
445 |
+
multidict==6.0.4
|
446 |
+
multimethod==1.10
|
447 |
+
multipledispatch==1.0.0
|
448 |
+
multiprocess==0.70.16
|
449 |
+
munkres==1.1.4
|
450 |
+
murmurhash==1.0.10
|
451 |
+
mypy-extensions==1.0.0
|
452 |
+
namex==0.0.8
|
453 |
+
nb-conda-kernels==2.3.1
|
454 |
+
nb_conda==2.2.1
|
455 |
+
nbclassic==1.0.0
|
456 |
+
nbclient==0.5.13
|
457 |
+
nbconvert==6.4.5
|
458 |
+
nbdime==3.2.0
|
459 |
+
nbformat==5.9.2
|
460 |
+
ndindex==1.8
|
461 |
+
nest-asyncio==1.5.8
|
462 |
+
networkx==3.2.1
|
463 |
+
nibabel==5.2.1
|
464 |
+
nilearn==0.10.4
|
465 |
+
ninja==1.11.1.1
|
466 |
+
nltk==3.2.4
|
467 |
+
nose==1.3.7
|
468 |
+
notebook==6.5.4
|
469 |
+
notebook==6.5.6
|
470 |
+
notebook_executor==0.2
|
471 |
+
notebook_shim==0.2.3
|
472 |
+
numba==0.58.1
|
473 |
+
numba==0.59.1
|
474 |
+
numexpr==2.10.0
|
475 |
+
numpy==1.26.4
|
476 |
+
nvidia-ml-py==11.495.46
|
477 |
+
nvtx==0.2.10
|
478 |
+
oauth2client==4.1.3
|
479 |
+
oauthlib==3.2.2
|
480 |
+
objsize==0.6.1
|
481 |
+
odfpy==1.4.1
|
482 |
+
olefile==0.47
|
483 |
+
onnx==1.16.0
|
484 |
+
opencensus-context==0.1.3
|
485 |
+
opencensus==0.11.4
|
486 |
+
opencv-contrib-python==4.9.0.80
|
487 |
+
opencv-python-headless==4.9.0.80
|
488 |
+
opencv-python==4.9.0.80
|
489 |
+
openpyxl==3.1.2
|
490 |
+
openslide-python==1.3.1
|
491 |
+
opentelemetry-api==1.22.0
|
492 |
+
opentelemetry-exporter-otlp-proto-common==1.22.0
|
493 |
+
opentelemetry-exporter-otlp-proto-grpc==1.22.0
|
494 |
+
opentelemetry-exporter-otlp-proto-http==1.22.0
|
495 |
+
opentelemetry-exporter-otlp==1.22.0
|
496 |
+
opentelemetry-proto==1.22.0
|
497 |
+
opentelemetry-sdk==1.22.0
|
498 |
+
opentelemetry-semantic-conventions==0.43b0
|
499 |
+
opt-einsum==3.3.0
|
500 |
+
optax==0.2.2
|
501 |
+
optree==0.11.0
|
502 |
+
optuna==3.6.1
|
503 |
+
orbax-checkpoint==0.5.9
|
504 |
+
ordered-set==4.1.0
|
505 |
+
orjson==3.9.10
|
506 |
+
ortools==9.4.1874
|
507 |
+
osmnx==1.9.2
|
508 |
+
overrides==7.4.0
|
509 |
+
packaging==21.3
|
510 |
+
pandas-datareader==0.10.0
|
511 |
+
pandas-profiling==3.6.6
|
512 |
+
pandas-summary==0.2.0
|
513 |
+
pandas==2.1.4
|
514 |
+
pandas==2.2.2
|
515 |
+
pandasql==0.7.3
|
516 |
+
pandocfilters==1.5.0
|
517 |
+
panel==1.4.1
|
518 |
+
papermill==2.5.0
|
519 |
+
param==2.1.0
|
520 |
+
parso==0.8.3
|
521 |
+
partd==1.4.1
|
522 |
+
path.py==12.5.0
|
523 |
+
path==16.14.0
|
524 |
+
pathos==0.3.2
|
525 |
+
pathy==0.10.3
|
526 |
+
patsy==0.5.6
|
527 |
+
pdf2image==1.17.0
|
528 |
+
peft==0.7.1
|
529 |
+
pettingzoo==1.24.0
|
530 |
+
pexpect==4.8.0
|
531 |
+
pexpect==4.9.0
|
532 |
+
phik==0.12.4
|
533 |
+
pickleshare==0.7.5
|
534 |
+
pillow==10.3.0
|
535 |
+
pip==23.3.2
|
536 |
+
pkgutil_resolve_name==1.3.10
|
537 |
+
platformdirs==4.2.0
|
538 |
+
plotly-express==0.4.1
|
539 |
+
plotly==5.18.0
|
540 |
+
plotnine==0.13.4
|
541 |
+
pluggy==1.4.0
|
542 |
+
pointpats==2.4.0
|
543 |
+
polars==0.20.21
|
544 |
+
polyglot==16.7.4
|
545 |
+
pooch==1.8.1
|
546 |
+
pox==0.3.4
|
547 |
+
ppca==0.0.4
|
548 |
+
ppft==1.7.6.8
|
549 |
+
preprocessing==0.1.13
|
550 |
+
preshed==3.0.9
|
551 |
+
prettytable==3.9.0
|
552 |
+
progressbar2==4.4.2
|
553 |
+
prometheus-client==0.19.0
|
554 |
+
promise==2.3
|
555 |
+
prompt-toolkit==3.0.42
|
556 |
+
prompt-toolkit==3.0.43
|
557 |
+
prophet==1.1.1
|
558 |
+
proto-plus==1.23.0
|
559 |
+
protobuf==3.20.3
|
560 |
+
protobuf==4.21.12
|
561 |
+
psutil==5.9.3
|
562 |
+
psutil==5.9.7
|
563 |
+
ptyprocess==0.7.0
|
564 |
+
pudb==2024.1
|
565 |
+
pure-eval==0.2.2
|
566 |
+
py-cpuinfo==9.0.0
|
567 |
+
py-spy==0.3.14
|
568 |
+
py4j==0.10.9.7
|
569 |
+
pyLDAvis==3.4.1
|
570 |
+
pyOpenSSL==23.3.0
|
571 |
+
pyaml==23.12.0
|
572 |
+
pyarrow-hotfix==0.6
|
573 |
+
pyarrow==15.0.2
|
574 |
+
pyasn1-modules==0.3.0
|
575 |
+
pyasn1==0.5.1
|
576 |
+
pybind11==2.12.0
|
577 |
+
pyclipper==1.3.0.post5
|
578 |
+
pycodestyle==2.11.1
|
579 |
+
pycosat==0.6.6
|
580 |
+
pycparser==2.21
|
581 |
+
pycryptodome==3.20.0
|
582 |
+
pyct==0.5.0
|
583 |
+
pycuda==2024.1
|
584 |
+
pydantic==2.5.3
|
585 |
+
pydantic==2.7.0
|
586 |
+
pydantic_core==2.14.6
|
587 |
+
pydantic_core==2.18.1
|
588 |
+
pydegensac==0.1.2
|
589 |
+
pydicom==2.4.4
|
590 |
+
pydocstyle==6.3.0
|
591 |
+
pydot==1.4.2
|
592 |
+
pydub==0.25.1
|
593 |
+
pyemd==1.0.0
|
594 |
+
pyerfa==2.0.1.4
|
595 |
+
pyexcel-io==0.6.6
|
596 |
+
pyexcel-ods==0.6.0
|
597 |
+
pyflakes==3.2.0
|
598 |
+
pygltflib==1.16.2
|
599 |
+
pykalman==0.9.7
|
600 |
+
pylibraft==23.8.0
|
601 |
+
pylint==3.1.0
|
602 |
+
pymc3==3.11.4
|
603 |
+
pymongo==3.13.0
|
604 |
+
pynndescent==0.5.12
|
605 |
+
pynvml==11.4.1
|
606 |
+
pynvrtc==9.2
|
607 |
+
pyparsing==3.1.1
|
608 |
+
pyparsing==3.1.2
|
609 |
+
pypdf==4.2.0
|
610 |
+
pyproj==3.6.1
|
611 |
+
pysal==24.1
|
612 |
+
pyshp==2.3.1
|
613 |
+
pytesseract==0.3.10
|
614 |
+
pytest==8.1.1
|
615 |
+
python-bidi==0.4.2
|
616 |
+
python-dateutil==2.9.0.post0
|
617 |
+
python-dotenv==1.0.0
|
618 |
+
python-json-logger==2.0.7
|
619 |
+
python-louvain==0.16
|
620 |
+
python-lsp-jsonrpc==1.1.2
|
621 |
+
python-lsp-server==1.11.0
|
622 |
+
python-slugify==8.0.4
|
623 |
+
python-utils==3.8.2
|
624 |
+
pythreejs==2.4.2
|
625 |
+
pytoolconfig==1.3.1
|
626 |
+
pytools==2024.1.1
|
627 |
+
pytorch-ignite==0.5.0.post2
|
628 |
+
pytorch-lightning==2.2.2
|
629 |
+
pytz==2023.3.post1
|
630 |
+
pytz==2024.1
|
631 |
+
pyu2f==0.1.5
|
632 |
+
pyviz_comms==3.0.2
|
633 |
+
pyzmq==24.0.1
|
634 |
+
pyzmq==25.1.2
|
635 |
+
qgrid==1.3.1
|
636 |
+
qtconsole==5.5.1
|
637 |
+
quantecon==0.7.2
|
638 |
+
qudida==0.0.4
|
639 |
+
raft-dask==23.8.0
|
640 |
+
rasterio==1.3.10
|
641 |
+
rasterstats==0.19.0
|
642 |
+
ray-cpp==2.9.0
|
643 |
+
ray==2.9.0
|
644 |
+
referencing==0.32.1
|
645 |
+
regex==2023.12.25
|
646 |
+
requests-oauthlib==1.3.1
|
647 |
+
requests-toolbelt==0.10.1
|
648 |
+
requests==2.31.0
|
649 |
+
retrying==1.3.3
|
650 |
+
retrying==1.3.4
|
651 |
+
rfc3339-validator==0.1.4
|
652 |
+
rfc3986-validator==0.1.1
|
653 |
+
rgf-python==3.12.0
|
654 |
+
rich-click==1.7.4
|
655 |
+
rich==13.7.0
|
656 |
+
rich==13.7.1
|
657 |
+
rmm==23.8.0
|
658 |
+
rope==1.13.0
|
659 |
+
rpds-py==0.16.2
|
660 |
+
rsa==4.9
|
661 |
+
ruamel-yaml-conda==0.15.100
|
662 |
+
ruamel.yaml.clib==0.2.7
|
663 |
+
ruamel.yaml==0.17.40
|
664 |
+
s2sphere==0.2.5
|
665 |
+
s3fs==2024.2.0
|
666 |
+
s3transfer==0.6.2
|
667 |
+
safetensors==0.4.3
|
668 |
+
scattertext==0.1.19
|
669 |
+
scikit-image==0.22.0
|
670 |
+
scikit-learn-intelex==2024.3.0
|
671 |
+
scikit-learn==1.2.2
|
672 |
+
scikit-multilearn==0.2.0
|
673 |
+
scikit-optimize==0.10.1
|
674 |
+
scikit-plot==0.3.7
|
675 |
+
scikit-surprise==1.1.3
|
676 |
+
scipy==1.11.4
|
677 |
+
scipy==1.13.0
|
678 |
+
seaborn==0.12.2
|
679 |
+
segment_anything==1.0
|
680 |
+
segregation==2.5
|
681 |
+
semver==3.0.2
|
682 |
+
sentencepiece==0.2.0
|
683 |
+
sentry-sdk==1.45.0
|
684 |
+
setproctitle==1.3.3
|
685 |
+
setuptools-git==1.2
|
686 |
+
setuptools-scm==8.0.4
|
687 |
+
setuptools==69.0.3
|
688 |
+
shap==0.44.1
|
689 |
+
shapely==2.0.4
|
690 |
+
shellingham==1.5.4
|
691 |
+
simpervisor==1.0.0
|
692 |
+
simplejson==3.19.2
|
693 |
+
six==1.16.0
|
694 |
+
sklearn-pandas==2.2.0
|
695 |
+
slicer==0.0.7
|
696 |
+
smart-open==6.4.0
|
697 |
+
smmap==5.0.1
|
698 |
+
sniffio==1.3.0
|
699 |
+
snowballstemmer==2.2.0
|
700 |
+
snuggs==1.4.7
|
701 |
+
sortedcontainers==2.4.0
|
702 |
+
soundfile==0.12.1
|
703 |
+
soupsieve==2.5
|
704 |
+
soxr==0.3.7
|
705 |
+
spacy-legacy==3.0.12
|
706 |
+
spacy-loggers==1.0.5
|
707 |
+
spacy==3.7.3
|
708 |
+
spaghetti==1.7.5.post1
|
709 |
+
spectral==0.23.1
|
710 |
+
spglm==1.1.0
|
711 |
+
sphinx-rtd-theme==0.2.4
|
712 |
+
spint==1.0.7
|
713 |
+
splot==1.1.5.post1
|
714 |
+
spopt==0.6.0
|
715 |
+
spreg==1.4.2
|
716 |
+
spvcm==0.3.0
|
717 |
+
sqlparse==0.4.4
|
718 |
+
squarify==0.4.3
|
719 |
+
srsly==2.4.8
|
720 |
+
stable-baselines3==2.1.0
|
721 |
+
stack-data==0.6.2
|
722 |
+
stack-data==0.6.3
|
723 |
+
stanio==0.5.0
|
724 |
+
starlette==0.32.0.post1
|
725 |
+
statsmodels==0.14.1
|
726 |
+
stemming==1.0.1
|
727 |
+
stop-words==2018.7.23
|
728 |
+
stopit==1.1.2
|
729 |
+
stumpy==1.12.0
|
730 |
+
sympy==1.12
|
731 |
+
tables==3.9.2
|
732 |
+
tabulate==0.9.0
|
733 |
+
tangled-up-in-unicode==0.2.0
|
734 |
+
tbb==2021.12.0
|
735 |
+
tblib==3.0.0
|
736 |
+
tenacity==8.2.3
|
737 |
+
tensorboard-data-server==0.7.2
|
738 |
+
tensorboard-plugin-profile==2.15.0
|
739 |
+
tensorboard==2.15.1
|
740 |
+
tensorboardX==2.6.2.2
|
741 |
+
tensorflow-cloud==0.1.16
|
742 |
+
tensorflow-datasets==4.9.4
|
743 |
+
tensorflow-decision-forests==1.8.1
|
744 |
+
tensorflow-estimator==2.15.0
|
745 |
+
tensorflow-hub==0.16.1
|
746 |
+
tensorflow-io-gcs-filesystem==0.35.0
|
747 |
+
tensorflow-io==0.35.0
|
748 |
+
tensorflow-metadata==0.14.0
|
749 |
+
tensorflow-probability==0.23.0
|
750 |
+
tensorflow-serving-api==2.14.1
|
751 |
+
tensorflow-text==2.15.0
|
752 |
+
tensorflow-transform==0.14.0
|
753 |
+
tensorflow==2.15.0
|
754 |
+
tensorstore==0.1.56
|
755 |
+
termcolor==2.4.0
|
756 |
+
terminado==0.18.0
|
757 |
+
testpath==0.6.0
|
758 |
+
text-unidecode==1.3
|
759 |
+
textblob==0.18.0.post0
|
760 |
+
texttable==1.7.0
|
761 |
+
tf_keras==2.15.1
|
762 |
+
tfp-nightly==0.24.0.dev0
|
763 |
+
thinc==8.2.2
|
764 |
+
threadpoolctl==3.2.0
|
765 |
+
tifffile==2023.12.9
|
766 |
+
timm==0.9.16
|
767 |
+
tinycss2==1.2.1
|
768 |
+
tobler==0.11.2
|
769 |
+
tokenizers==0.15.2
|
770 |
+
toml==0.10.2
|
771 |
+
tomli==2.0.1
|
772 |
+
tomlkit==0.12.4
|
773 |
+
toolz==0.12.1
|
774 |
+
torch==2.1.2
|
775 |
+
torchaudio==2.1.2
|
776 |
+
torchdata==0.7.1
|
777 |
+
torchinfo==1.8.0
|
778 |
+
torchmetrics==1.3.2
|
779 |
+
torchtext==0.16.2
|
780 |
+
torchvision==0.16.2
|
781 |
+
tornado==6.3.3
|
782 |
+
tqdm==4.66.1
|
783 |
+
traceml==1.0.8
|
784 |
+
traitlets==5.9.0
|
785 |
+
traittypes==0.2.1
|
786 |
+
transformers==4.36.2
|
787 |
+
treelite-runtime==3.2.0
|
788 |
+
treelite==3.2.0
|
789 |
+
truststore==0.8.0
|
790 |
+
trx-python==0.2.9
|
791 |
+
tsfresh==0.20.2
|
792 |
+
typeguard==4.1.5
|
793 |
+
typer==0.9.0
|
794 |
+
typer==0.9.4
|
795 |
+
types-python-dateutil==2.8.19.20240106
|
796 |
+
typing-inspect==0.9.0
|
797 |
+
typing-utils==0.1.0
|
798 |
+
typing_extensions==4.9.0
|
799 |
+
tzdata==2023.4
|
800 |
+
uc-micro-py==1.0.3
|
801 |
+
ucx-py==0.33.0
|
802 |
+
ujson==5.9.0
|
803 |
+
umap-learn==0.5.6
|
804 |
+
unicodedata2==15.1.0
|
805 |
+
update-checker==0.18.0
|
806 |
+
uri-template==1.3.0
|
807 |
+
uritemplate==3.0.1
|
808 |
+
urllib3==1.26.18
|
809 |
+
urllib3==2.1.0
|
810 |
+
urwid==2.6.10
|
811 |
+
urwid_readline==0.14
|
812 |
+
uvicorn==0.25.0
|
813 |
+
uvloop==0.19.0
|
814 |
+
vaex-astro==0.9.3
|
815 |
+
vaex-core==4.17.1
|
816 |
+
vaex-hdf5==0.14.1
|
817 |
+
vaex-jupyter==0.8.2
|
818 |
+
vaex-ml==0.18.3
|
819 |
+
vaex-server==0.9.0
|
820 |
+
vaex-viz==0.5.4
|
821 |
+
vaex==4.17.0
|
822 |
+
vec_noise==1.1.4
|
823 |
+
vecstack==0.4.0
|
824 |
+
virtualenv==20.21.0
|
825 |
+
visions==0.7.5
|
826 |
+
vowpalwabbit==9.9.0
|
827 |
+
vtk==9.3.0
|
828 |
+
wandb==0.16.6
|
829 |
+
wasabi==1.1.2
|
830 |
+
watchfiles==0.21.0
|
831 |
+
wavio==0.0.8
|
832 |
+
wcwidth==0.2.13
|
833 |
+
weasel==0.3.4
|
834 |
+
webcolors==1.13
|
835 |
+
webencodings==0.5.1
|
836 |
+
websocket-client==1.7.0
|
837 |
+
websockets==12.0
|
838 |
+
wfdb==4.1.2
|
839 |
+
whatthepatch==1.0.5
|
840 |
+
wheel==0.42.0
|
841 |
+
widgetsnbextension==3.6.6
|
842 |
+
witwidget==1.8.1
|
843 |
+
woodwork==0.30.0
|
844 |
+
wordcloud==1.9.3
|
845 |
+
wordsegment==1.3.1
|
846 |
+
wrapt==1.14.1
|
847 |
+
xarray-einstats==0.7.0
|
848 |
+
xarray==2024.3.0
|
849 |
+
xgboost==2.0.3
|
850 |
+
xvfbwrapper==0.2.9
|
851 |
+
xxhash==3.4.1
|
852 |
+
xyzservices==2024.4.0
|
853 |
+
y-py==0.6.2
|
854 |
+
yapf==0.40.2
|
855 |
+
yarl==1.9.3
|
856 |
+
yarl==1.9.4
|
857 |
+
ydata-profiling==4.6.4
|
858 |
+
yellowbrick==1.5
|
859 |
+
ypy-websocket==0.8.4
|
860 |
+
zict==3.0.0
|
861 |
+
zipp==3.17.0
|
862 |
+
zstandard==0.22.0
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc513ee60350b588563245f8e235409a1c540bf4e2255635f10584f28a56acaf
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77718530cc644ac9df1c886bd6366d3262d99a9cbd3ebc77eed933224f4b03df
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.08091000467538834,
|
3 |
+
"best_model_checkpoint": "/kaggle/working/trainer/checkpoint-472",
|
4 |
+
"epoch": 4.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 472,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 1.0,
|
13 |
+
"learning_rate": 4.388888888888889e-05,
|
14 |
+
"loss": 0.7936,
|
15 |
+
"step": 118
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 1.0,
|
19 |
+
"eval_loss": 0.1481190025806427,
|
20 |
+
"eval_runtime": 37.3733,
|
21 |
+
"eval_samples_per_second": 0.696,
|
22 |
+
"eval_steps_per_second": 0.348,
|
23 |
+
"step": 118
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 2.0,
|
27 |
+
"learning_rate": 3.2962962962962964e-05,
|
28 |
+
"loss": 0.1048,
|
29 |
+
"step": 236
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 2.0,
|
33 |
+
"eval_loss": 0.1020423024892807,
|
34 |
+
"eval_runtime": 37.3813,
|
35 |
+
"eval_samples_per_second": 0.696,
|
36 |
+
"eval_steps_per_second": 0.348,
|
37 |
+
"step": 236
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 3.0,
|
41 |
+
"learning_rate": 2.2037037037037038e-05,
|
42 |
+
"loss": 0.0731,
|
43 |
+
"step": 354
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"epoch": 3.0,
|
47 |
+
"eval_loss": 0.08479975163936615,
|
48 |
+
"eval_runtime": 37.4565,
|
49 |
+
"eval_samples_per_second": 0.694,
|
50 |
+
"eval_steps_per_second": 0.347,
|
51 |
+
"step": 354
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 4.0,
|
55 |
+
"learning_rate": 1.1111111111111112e-05,
|
56 |
+
"loss": 0.0518,
|
57 |
+
"step": 472
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 4.0,
|
61 |
+
"eval_loss": 0.08091000467538834,
|
62 |
+
"eval_runtime": 37.3984,
|
63 |
+
"eval_samples_per_second": 0.695,
|
64 |
+
"eval_steps_per_second": 0.348,
|
65 |
+
"step": 472
|
66 |
+
}
|
67 |
+
],
|
68 |
+
"logging_steps": 500,
|
69 |
+
"max_steps": 590,
|
70 |
+
"num_input_tokens_seen": 0,
|
71 |
+
"num_train_epochs": 5,
|
72 |
+
"save_steps": 500,
|
73 |
+
"total_flos": 1.748999270993756e+17,
|
74 |
+
"train_batch_size": 2,
|
75 |
+
"trial_name": null,
|
76 |
+
"trial_params": null
|
77 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05cd2b18a00bd366c2eb1651ba82f068e5dd0988fec2f9720ca54c19c676c666
|
3 |
+
size 4728
|
wandb-metadata.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.133+-x86_64-with-glibc2.31",
|
3 |
+
"python": "3.10.13",
|
4 |
+
"heartbeatAt": "2024-04-25T07:06:00.689254",
|
5 |
+
"startedAt": "2024-04-25T07:05:59.918645",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [],
|
9 |
+
"state": "running",
|
10 |
+
"program": "kaggle.ipynb",
|
11 |
+
"codePathLocal": null,
|
12 |
+
"root": "/kaggle/working",
|
13 |
+
"host": "2b6c16279610",
|
14 |
+
"username": "root",
|
15 |
+
"executable": "/opt/conda/bin/python3.10",
|
16 |
+
"cpu_count": 2,
|
17 |
+
"cpu_count_logical": 4,
|
18 |
+
"cpu_freq": {
|
19 |
+
"current": 2000.186,
|
20 |
+
"min": 0.0,
|
21 |
+
"max": 0.0
|
22 |
+
},
|
23 |
+
"cpu_freq_per_core": [
|
24 |
+
{
|
25 |
+
"current": 2000.186,
|
26 |
+
"min": 0.0,
|
27 |
+
"max": 0.0
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"current": 2000.186,
|
31 |
+
"min": 0.0,
|
32 |
+
"max": 0.0
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"current": 2000.186,
|
36 |
+
"min": 0.0,
|
37 |
+
"max": 0.0
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"current": 2000.186,
|
41 |
+
"min": 0.0,
|
42 |
+
"max": 0.0
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"disk": {
|
46 |
+
"/": {
|
47 |
+
"total": 8062.387607574463,
|
48 |
+
"used": 5612.996185302734
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"gpu": "Tesla T4",
|
52 |
+
"gpu_count": 2,
|
53 |
+
"gpu_devices": [
|
54 |
+
{
|
55 |
+
"name": "Tesla T4",
|
56 |
+
"memory_total": 16106127360
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"name": "Tesla T4",
|
60 |
+
"memory_total": 16106127360
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"memory": {
|
64 |
+
"total": 31.357559204101562
|
65 |
+
}
|
66 |
+
}
|
wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"train/loss": 0.0518, "train/learning_rate": 1.1111111111111112e-05, "train/epoch": 4.0, "train/global_step": 472, "_timestamp": 1714044453.3153298, "_runtime": 15693.386371850967, "_step": 7, "eval/loss": 0.08091000467538834, "eval/runtime": 37.3984, "eval/samples_per_second": 0.695, "eval/steps_per_second": 0.348}
|