Suprabound commited on
Commit
3297f25
1 Parent(s): 84083ce

Initial commit, first train antbullet

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1515.19 +/- 159.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31183d177d5a16613266c97ef11b9b4de0a1e6c93ec602871db0fdb9af3ae804
3
+ size 129265
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fecf8f2f1f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fecf8f2f280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fecf8f2f310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fecf8f2f3a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fecf8f2f430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fecf8f2f4c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fecf8f2f550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fecf8f2f5e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fecf8f2f670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fecf8f2f700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fecf8f2f790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fecf8f2f820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fecf8f30700>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1679443873316512389,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHbPl78pa0M+pvYKP59wMMDIGp8+TuSLPfsuoT3CAvo/n2eAP6agEb014Wm/lXYWvC1LqL98QjM/8pG9PsNfGL/XKY4/CgIUQKTlXT/AIoo8cyTGvp6upD9loni/U9D4uznfVD9rBw3AdJD5v6LCiD+skIa//l2DPSe5CD/psok/uPetv5uzZ74OQqY+Xz/xP6cmdD84mA6/Hro0vzRgCT+XUEe/kE0iwKix/r6lZJ6/SxbxPuPPe78RysG9I3eZP/J2Or8f852+/BZ6v8RrRj0531Q/awcNwARNAz8Kmm+/1KIcPxeC9r/enOu/MJ6kPgUeyL6/AjU+mK1IP1cgVD47QHs/4I6BvjM0gj/7xA+/LBsWvxRpCD88Hpu/EryJv/jXaz8JD1Q/bdWtPkCWC79NZuy+Lwz+PuOrB79jOY8/Od9UP3JZ6D50kPm/Cppvv62fyb1GC84/Gp+FvjBgWD4K+O2/WYcrPtCfer5InCm+rMjVvpuiob9ARTw+7plFvs0BeL/x2QzAv/iDPjTxA74smJG/4mS9v3OhSD6qbGo/kZeTvh8Z47+VS02/jd1NPznfVD9yWeg+BE0DPwqab7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACslSW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoa4TvAAAAABFpuu/AAAAAGz+gD0AAAAAT7UAQAAAAAB4hry8AAAAAHBh8D8AAAAAUlCbPQAAAABk+uG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJORjNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHofwz0AAAAAXzLavwAAAADqPxg8AAAAAOln5D8AAAAA3abKPQAAAACsK/4/AAAAAEyZEL4AAAAA2TcAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtoBbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBe7Xu9AAAAAD2X8L8AAAAAS6D1vQAAAADRw+I/AAAAAAnLWjwAAAAAhhLxPwAAAADmhjs9AAAAAOwr4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtp402AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaSEOvgAAAAA0C/O/AAAAAB6poT0AAAAA8vDhPwAAAAB1rDs9AAAAAC4P6D8AAAAACuKwPQAAAAA4tgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIwG/2f02+CMAWyUTegDjAF0lEdArE9X05EMLHV9lChoBkdAjgMgSvkilmgHTegDaAhHQKxQYcurZJ11fZQoaAZHQI1+fyy2QXBoB03oA2gIR0CsU7vGyX2NdX2UKGgGR0COgELzf779aAdN6ANoCEdArFcAgaFVUHV9lChoBkdAjRRCiqQzUWgHTegDaAhHQKxa+P4mCy11fZQoaAZHQI8YotYjjaRoB03oA2gIR0CsXBGyon8bdX2UKGgGR0CN27cJtzjnaAdN6ANoCEdArF+sZLqUvHV9lChoBkdAjFN/NZ/0/WgHTegDaAhHQKxjKrMkhRt1fZQoaAZHQIvqpMBZIQRoB03oA2gIR0CsZ2TY287IdX2UKGgGR0CLpvfKp1ifaAdN6ANoCEdArGh1zwMH8nV9lChoBkdAjlycslLOA2gHTegDaAhHQKxr4R15jYt1fZQoaAZHQJGStTGYKIBoB03oA2gIR0Csbyjvuw5edX2UKGgGR0CSgGAdGRV7aAdN6ANoCEdArHMZOWSlnHV9lChoBkdAkOHaZQYUFmgHTegDaAhHQKx0LLZBcA11fZQoaAZHQJFxHu9eyAxoB03oA2gIR0Csd5Vi4J/odX2UKGgGR0CThQS+g13uaAdN6ANoCEdArHrrcsUZenV9lChoBkdAkcWbPt2LYWgHTegDaAhHQKx/Dz4k/r11fZQoaAZHQJRe3NJOFg5oB03oA2gIR0CsgC8F6iTMdX2UKGgGR0CRi7GPxQSBaAdN6ANoCEdArIOf95yEMHV9lChoBkdAkxuQ00m+kGgHTegDaAhHQKyHAdCE6DJ1fZQoaAZHQJSZaqMm4RVoB03oA2gIR0CsiwIexOcldX2UKGgGR0CVC+Udq+JxaAdN6ANoCEdArIwVqveP73V9lChoBkdAk0gTsUqQR2gHTegDaAhHQKyPeMOPNml1fZQoaAZHQJTIlM8HObBoB03oA2gIR0CsksVfmcOLdX2UKGgGR0CYiCf7JnxsaAdN6ANoCEdArJbKbrkbP3V9lChoBkdAkysZ8rqdH2gHTegDaAhHQKyX7iYLLIR1fZQoaAZHQJS+1mWdEstoB03oA2gIR0Csm5baqS5idX2UKGgGR0CZ5BrAgxJvaAdN6ANoCEdArJ7up84Pw3V9lChoBkdAlw+rxiG34WgHTegDaAhHQKyi3pcophF1fZQoaAZHQJNIZ2GIsRRoB03oA2gIR0Cso+8UVSGbdX2UKGgGR0CVJimukk8iaAdN6ANoCEdArKdXvQWvbHV9lChoBkdAlomCTyJ9A2gHTegDaAhHQKyqnQizLOl1fZQoaAZHQJYCpz+3pfRoB03oA2gIR0Csrnx/3FkydX2UKGgGR0CWHKaK1og3aAdN6ANoCEdArK+OxOclPnV9lChoBkdAijI3A/LTyGgHTegDaAhHQKyzN3HJcPh1fZQoaAZHQJj92GetjkNoB03oA2gIR0CstrSnLq2SdX2UKGgGR0CXNipeu3c6aAdN6ANoCEdArLqJqdpZfXV9lChoBkdAlk8LzshPkGgHTegDaAhHQKy7lL+PzWh1fZQoaAZHQJZxVi5NGmVoB03oA2gIR0CsvvUeMhoudX2UKGgGR0CX8zgYP5HmaAdN6ANoCEdArMI19YwIt3V9lChoBkdAlCrhmbsniWgHTegDaAhHQKzGHQMx46h1fZQoaAZHQJHRQ7Rv3rVoB03oA2gIR0CsxzRQSBbwdX2UKGgGR0CReBFfReC1aAdN6ANoCEdArMql1+y7gHV9lChoBkdAltVnVsk6cWgHTegDaAhHQKzOC4vN/vx1fZQoaAZHQJZfIvSMLndoB03oA2gIR0Cs0iZ2yLQ5dX2UKGgGR0CVahjI7vG7aAdN6ANoCEdArNM0OEug6HV9lChoBkdAkQx4IWxhUmgHTegDaAhHQKzWoTi83/B1fZQoaAZHQJt5SPvKEFpoB03oA2gIR0Cs2gO01IiDdX2UKGgGR0CTcyLaEi+taAdN6ANoCEdArN3qVD8cdnV9lChoBkdAl6lNqk/KQ2gHTegDaAhHQKze+TrVvuR1fZQoaAZHQJW7x+5OJtVoB03oA2gIR0Cs4lRFZxJedX2UKGgGR0CVpoZuhsZYaAdNeQNoCEdArORQmJFb3XV9lChoBkdAmERNVWCEpWgHTegDaAhHQKzprQLNOdp1fZQoaAZHQJxHsWRA8jloB03oA2gIR0Cs6tAr6LwXdX2UKGgGR0CZ/0XJYDDCaAdN6ANoCEdArO5QeHSF5HV9lChoBkdAmXSd9H+ZPWgHTegDaAhHQKzwP+w1R+B1fZQoaAZHQJoditT1kDpoB03oA2gIR0Cs9WFt8/lidX2UKGgGR0CbbCMwDeTFaAdN6ANoCEdArPZ1SXMQmXV9lChoBkdAm87dfw7T2GgHTegDaAhHQKz5zx+8Xep1fZQoaAZHQJs09Z4fOlhoB03oA2gIR0Cs+8cwHqu9dX2UKGgGR0CXSxd30PH1aAdN6ANoCEdArQDuu/1xsHV9lChoBkdAnl7/CAMDwGgHTegDaAhHQK0CEvugHu91fZQoaAZHQJYpAAT7EYRoB03oA2gIR0CtBbalLvkSdX2UKGgGR0CZrJyBTXJ6aAdN6ANoCEdArQfOLpA2RHV9lChoBkdAm8zysS00FmgHTegDaAhHQK0M+ddVvMt1fZQoaAZHQJjX4/jbSJFoB03oA2gIR0CtDgBpHqeLdX2UKGgGR0CZ0p63iJfqaAdN6ANoCEdArRFVJnQIEHV9lChoBkdAmPSiE12q1mgHTegDaAhHQK0TZtGd7OV1fZQoaAZHQJPTux/ustFoB03oA2gIR0CtGJnUMG5ddX2UKGgGR0CZTJaS9ugpaAdN6ANoCEdArRmn95yEMHV9lChoBkdAlXoK1LJ0XGgHTegDaAhHQK0dEkTpPh11fZQoaAZHQJpoi1TisGRoB03oA2gIR0CtHyq+JxecdX2UKGgGR0Cc8bRbbDdhaAdN6ANoCEdArSR48QqZt3V9lChoBkdAmZELKA8SwmgHTegDaAhHQK0lg7e2uxN1fZQoaAZHQJqDLqB3A21oB03oA2gIR0CtKOFTNt65dX2UKGgGR0CZL0LBbfP5aAdN6ANoCEdArSrZ0MgEEHV9lChoBkdAm4ycqFyq/GgHTegDaAhHQK0wBKGL1mJ1fZQoaAZHQJrwRb3XZoRoB03oA2gIR0CtMRDGkvbodX2UKGgGR0CY9XegL7XQaAdN6ANoCEdArTRq3iJfpnV9lChoBkdAms8D/ACW/2gHTegDaAhHQK02WzdDYyx1fZQoaAZHQJt6aSLZSNxoB03oA2gIR0CtO7+ii7CjdX2UKGgGR0CcMkH446wMaAdN6ANoCEdArTzjg4wRG3V9lChoBkdAleH6lHjIaWgHTegDaAhHQK1AT5yEL6V1fZQoaAZHQJb63Ilt0mtoB03oA2gIR0CtQkRzRx95dX2UKGgGR0CaKiFrVOKwaAdN6ANoCEdArUdh0bLlm3V9lChoBkdAnPXaNp/PPmgHTegDaAhHQK1IbPv8ZUF1fZQoaAZHQJyqHKfWcz9oB03oA2gIR0CtS8LSeAd5dX2UKGgGR0CaV5gKnei0aAdN6ANoCEdArU20X+ERJ3V9lChoBkdAl3Thu4wyqWgHTegDaAhHQK1TEUVzp5h1fZQoaAZHQJnymbayrxRoB03oA2gIR0CtVDYxcmjTdX2UKGgGR0CYNHerdWQwaAdN6ANoCEdArVe8RWcSXnV9lChoBkdAnP2FijL0SWgHTegDaAhHQK1ZwFbmlqJ1fZQoaAZHQJYN8avRqoJoB03oA2gIR0CtXuRvNu+AdX2UKGgGR0CZgG65Gz8haAdN6ANoCEdArV/xMzuWr3V9lChoBkdAmAAbWNFSbmgHTegDaAhHQK1jP9oexOd1fZQoaAZHQJNtxNzr/sFoB03oA2gIR0CtZTugg5imdX2UKGgGR0CbeBnDR+jNaAdN6ANoCEdArWpjb8FY+3V9lChoBkdAmXL65Gz8g2gHTegDaAhHQK1raxZ+x4Z1fZQoaAZHQJoMARChN/RoB03oA2gIR0CtbsesPrfMdX2UKGgGR0CZJ5VlwtJ4aAdN6ANoCEdArXDlw5vLo3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d8ef6fbb70718467723618dc385a17fb5b032fb944ffb9daae11cfce2fbee64
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c6a768c6883c4b529d444d581156bb3f0df2e7134176a7be8411dc875acf7aa
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fecf8f2f1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fecf8f2f280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fecf8f2f310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fecf8f2f3a0>", "_build": "<function ActorCriticPolicy._build at 0x7fecf8f2f430>", "forward": "<function ActorCriticPolicy.forward at 0x7fecf8f2f4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fecf8f2f550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fecf8f2f5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fecf8f2f670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fecf8f2f700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fecf8f2f790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fecf8f2f820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fecf8f30700>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679443873316512389, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHbPl78pa0M+pvYKP59wMMDIGp8+TuSLPfsuoT3CAvo/n2eAP6agEb014Wm/lXYWvC1LqL98QjM/8pG9PsNfGL/XKY4/CgIUQKTlXT/AIoo8cyTGvp6upD9loni/U9D4uznfVD9rBw3AdJD5v6LCiD+skIa//l2DPSe5CD/psok/uPetv5uzZ74OQqY+Xz/xP6cmdD84mA6/Hro0vzRgCT+XUEe/kE0iwKix/r6lZJ6/SxbxPuPPe78RysG9I3eZP/J2Or8f852+/BZ6v8RrRj0531Q/awcNwARNAz8Kmm+/1KIcPxeC9r/enOu/MJ6kPgUeyL6/AjU+mK1IP1cgVD47QHs/4I6BvjM0gj/7xA+/LBsWvxRpCD88Hpu/EryJv/jXaz8JD1Q/bdWtPkCWC79NZuy+Lwz+PuOrB79jOY8/Od9UP3JZ6D50kPm/Cppvv62fyb1GC84/Gp+FvjBgWD4K+O2/WYcrPtCfer5InCm+rMjVvpuiob9ARTw+7plFvs0BeL/x2QzAv/iDPjTxA74smJG/4mS9v3OhSD6qbGo/kZeTvh8Z47+VS02/jd1NPznfVD9yWeg+BE0DPwqab7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACslSW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAoa4TvAAAAABFpuu/AAAAAGz+gD0AAAAAT7UAQAAAAAB4hry8AAAAAHBh8D8AAAAAUlCbPQAAAABk+uG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJORjNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHofwz0AAAAAXzLavwAAAADqPxg8AAAAAOln5D8AAAAA3abKPQAAAACsK/4/AAAAAEyZEL4AAAAA2TcAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACtoBbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBe7Xu9AAAAAD2X8L8AAAAAS6D1vQAAAADRw+I/AAAAAAnLWjwAAAAAhhLxPwAAAADmhjs9AAAAAOwr4L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtp402AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAaSEOvgAAAAA0C/O/AAAAAB6poT0AAAAA8vDhPwAAAAB1rDs9AAAAAC4P6D8AAAAACuKwPQAAAAA4tgDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIwG/2f02+CMAWyUTegDjAF0lEdArE9X05EMLHV9lChoBkdAjgMgSvkilmgHTegDaAhHQKxQYcurZJ11fZQoaAZHQI1+fyy2QXBoB03oA2gIR0CsU7vGyX2NdX2UKGgGR0COgELzf779aAdN6ANoCEdArFcAgaFVUHV9lChoBkdAjRRCiqQzUWgHTegDaAhHQKxa+P4mCy11fZQoaAZHQI8YotYjjaRoB03oA2gIR0CsXBGyon8bdX2UKGgGR0CN27cJtzjnaAdN6ANoCEdArF+sZLqUvHV9lChoBkdAjFN/NZ/0/WgHTegDaAhHQKxjKrMkhRt1fZQoaAZHQIvqpMBZIQRoB03oA2gIR0CsZ2TY287IdX2UKGgGR0CLpvfKp1ifaAdN6ANoCEdArGh1zwMH8nV9lChoBkdAjlycslLOA2gHTegDaAhHQKxr4R15jYt1fZQoaAZHQJGStTGYKIBoB03oA2gIR0Csbyjvuw5edX2UKGgGR0CSgGAdGRV7aAdN6ANoCEdArHMZOWSlnHV9lChoBkdAkOHaZQYUFmgHTegDaAhHQKx0LLZBcA11fZQoaAZHQJFxHu9eyAxoB03oA2gIR0Csd5Vi4J/odX2UKGgGR0CThQS+g13uaAdN6ANoCEdArHrrcsUZenV9lChoBkdAkcWbPt2LYWgHTegDaAhHQKx/Dz4k/r11fZQoaAZHQJRe3NJOFg5oB03oA2gIR0CsgC8F6iTMdX2UKGgGR0CRi7GPxQSBaAdN6ANoCEdArIOf95yEMHV9lChoBkdAkxuQ00m+kGgHTegDaAhHQKyHAdCE6DJ1fZQoaAZHQJSZaqMm4RVoB03oA2gIR0CsiwIexOcldX2UKGgGR0CVC+Udq+JxaAdN6ANoCEdArIwVqveP73V9lChoBkdAk0gTsUqQR2gHTegDaAhHQKyPeMOPNml1fZQoaAZHQJTIlM8HObBoB03oA2gIR0CsksVfmcOLdX2UKGgGR0CYiCf7JnxsaAdN6ANoCEdArJbKbrkbP3V9lChoBkdAkysZ8rqdH2gHTegDaAhHQKyX7iYLLIR1fZQoaAZHQJS+1mWdEstoB03oA2gIR0Csm5baqS5idX2UKGgGR0CZ5BrAgxJvaAdN6ANoCEdArJ7up84Pw3V9lChoBkdAlw+rxiG34WgHTegDaAhHQKyi3pcophF1fZQoaAZHQJNIZ2GIsRRoB03oA2gIR0Cso+8UVSGbdX2UKGgGR0CVJimukk8iaAdN6ANoCEdArKdXvQWvbHV9lChoBkdAlomCTyJ9A2gHTegDaAhHQKyqnQizLOl1fZQoaAZHQJYCpz+3pfRoB03oA2gIR0Csrnx/3FkydX2UKGgGR0CWHKaK1og3aAdN6ANoCEdArK+OxOclPnV9lChoBkdAijI3A/LTyGgHTegDaAhHQKyzN3HJcPh1fZQoaAZHQJj92GetjkNoB03oA2gIR0CstrSnLq2SdX2UKGgGR0CXNipeu3c6aAdN6ANoCEdArLqJqdpZfXV9lChoBkdAlk8LzshPkGgHTegDaAhHQKy7lL+PzWh1fZQoaAZHQJZxVi5NGmVoB03oA2gIR0CsvvUeMhoudX2UKGgGR0CX8zgYP5HmaAdN6ANoCEdArMI19YwIt3V9lChoBkdAlCrhmbsniWgHTegDaAhHQKzGHQMx46h1fZQoaAZHQJHRQ7Rv3rVoB03oA2gIR0CsxzRQSBbwdX2UKGgGR0CReBFfReC1aAdN6ANoCEdArMql1+y7gHV9lChoBkdAltVnVsk6cWgHTegDaAhHQKzOC4vN/vx1fZQoaAZHQJZfIvSMLndoB03oA2gIR0Cs0iZ2yLQ5dX2UKGgGR0CVahjI7vG7aAdN6ANoCEdArNM0OEug6HV9lChoBkdAkQx4IWxhUmgHTegDaAhHQKzWoTi83/B1fZQoaAZHQJt5SPvKEFpoB03oA2gIR0Cs2gO01IiDdX2UKGgGR0CTcyLaEi+taAdN6ANoCEdArN3qVD8cdnV9lChoBkdAl6lNqk/KQ2gHTegDaAhHQKze+TrVvuR1fZQoaAZHQJW7x+5OJtVoB03oA2gIR0Cs4lRFZxJedX2UKGgGR0CVpoZuhsZYaAdNeQNoCEdArORQmJFb3XV9lChoBkdAmERNVWCEpWgHTegDaAhHQKzprQLNOdp1fZQoaAZHQJxHsWRA8jloB03oA2gIR0Cs6tAr6LwXdX2UKGgGR0CZ/0XJYDDCaAdN6ANoCEdArO5QeHSF5HV9lChoBkdAmXSd9H+ZPWgHTegDaAhHQKzwP+w1R+B1fZQoaAZHQJoditT1kDpoB03oA2gIR0Cs9WFt8/lidX2UKGgGR0CbbCMwDeTFaAdN6ANoCEdArPZ1SXMQmXV9lChoBkdAm87dfw7T2GgHTegDaAhHQKz5zx+8Xep1fZQoaAZHQJs09Z4fOlhoB03oA2gIR0Cs+8cwHqu9dX2UKGgGR0CXSxd30PH1aAdN6ANoCEdArQDuu/1xsHV9lChoBkdAnl7/CAMDwGgHTegDaAhHQK0CEvugHu91fZQoaAZHQJYpAAT7EYRoB03oA2gIR0CtBbalLvkSdX2UKGgGR0CZrJyBTXJ6aAdN6ANoCEdArQfOLpA2RHV9lChoBkdAm8zysS00FmgHTegDaAhHQK0M+ddVvMt1fZQoaAZHQJjX4/jbSJFoB03oA2gIR0CtDgBpHqeLdX2UKGgGR0CZ0p63iJfqaAdN6ANoCEdArRFVJnQIEHV9lChoBkdAmPSiE12q1mgHTegDaAhHQK0TZtGd7OV1fZQoaAZHQJPTux/ustFoB03oA2gIR0CtGJnUMG5ddX2UKGgGR0CZTJaS9ugpaAdN6ANoCEdArRmn95yEMHV9lChoBkdAlXoK1LJ0XGgHTegDaAhHQK0dEkTpPh11fZQoaAZHQJpoi1TisGRoB03oA2gIR0CtHyq+JxecdX2UKGgGR0Cc8bRbbDdhaAdN6ANoCEdArSR48QqZt3V9lChoBkdAmZELKA8SwmgHTegDaAhHQK0lg7e2uxN1fZQoaAZHQJqDLqB3A21oB03oA2gIR0CtKOFTNt65dX2UKGgGR0CZL0LBbfP5aAdN6ANoCEdArSrZ0MgEEHV9lChoBkdAm4ycqFyq/GgHTegDaAhHQK0wBKGL1mJ1fZQoaAZHQJrwRb3XZoRoB03oA2gIR0CtMRDGkvbodX2UKGgGR0CY9XegL7XQaAdN6ANoCEdArTRq3iJfpnV9lChoBkdAms8D/ACW/2gHTegDaAhHQK02WzdDYyx1fZQoaAZHQJt6aSLZSNxoB03oA2gIR0CtO7+ii7CjdX2UKGgGR0CcMkH446wMaAdN6ANoCEdArTzjg4wRG3V9lChoBkdAleH6lHjIaWgHTegDaAhHQK1AT5yEL6V1fZQoaAZHQJb63Ilt0mtoB03oA2gIR0CtQkRzRx95dX2UKGgGR0CaKiFrVOKwaAdN6ANoCEdArUdh0bLlm3V9lChoBkdAnPXaNp/PPmgHTegDaAhHQK1IbPv8ZUF1fZQoaAZHQJyqHKfWcz9oB03oA2gIR0CtS8LSeAd5dX2UKGgGR0CaV5gKnei0aAdN6ANoCEdArU20X+ERJ3V9lChoBkdAl3Thu4wyqWgHTegDaAhHQK1TEUVzp5h1fZQoaAZHQJnymbayrxRoB03oA2gIR0CtVDYxcmjTdX2UKGgGR0CYNHerdWQwaAdN6ANoCEdArVe8RWcSXnV9lChoBkdAnP2FijL0SWgHTegDaAhHQK1ZwFbmlqJ1fZQoaAZHQJYN8avRqoJoB03oA2gIR0CtXuRvNu+AdX2UKGgGR0CZgG65Gz8haAdN6ANoCEdArV/xMzuWr3V9lChoBkdAmAAbWNFSbmgHTegDaAhHQK1jP9oexOd1fZQoaAZHQJNtxNzr/sFoB03oA2gIR0CtZTugg5imdX2UKGgGR0CbeBnDR+jNaAdN6ANoCEdArWpjb8FY+3V9lChoBkdAmXL65Gz8g2gHTegDaAhHQK1raxZ+x4Z1fZQoaAZHQJoMARChN/RoB03oA2gIR0CtbsesPrfMdX2UKGgGR0CZJ5VlwtJ4aAdN6ANoCEdArXDlw5vLo3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2abe8b82f861aa566c9aef6f7af95cb4b7249b88cc04ea2c831a1b9531215ef8
3
+ size 1023607
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1515.1866919544125, "std_reward": 159.31056870922617, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-22T01:04:07.070745"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59bfde236c66301d6f8dbc156846daf0ad610190844e1a28a5f901551b30ab47
3
+ size 2136