|
import torch |
|
import torch.nn as nn |
|
|
|
from attentionLayer import attentionLayer |
|
from convLayer import ConvLayer |
|
from torchvggish import vggish |
|
from visualEncoder import visualFrontend, visualConv1D, visualTCN |
|
|
|
|
|
class locoencoder(nn.Module): |
|
|
|
def __init__(self, cfg): |
|
super(locoencoder, self).__init__() |
|
self.cfg = cfg |
|
|
|
self.visualFrontend = visualFrontend(cfg) |
|
self.visualTCN = visualTCN() |
|
self.visualConv1D = visualConv1D() |
|
|
|
urls = { |
|
'vggish': |
|
"https://github.com/harritaylor/torchvggish/releases/download/v0.1/vggish-10086976.pth" |
|
} |
|
self.audioEncoder = vggish.VGGish(urls, preprocess=False, postprocess=False) |
|
self.audio_pool = nn.AdaptiveAvgPool1d(1) |
|
|
|
|
|
self.crossA2V = attentionLayer(d_model=128, nhead=8) |
|
self.crossV2A = attentionLayer(d_model=128, nhead=8) |
|
|
|
|
|
|
|
num_layers = self.cfg.av_layers |
|
layers = nn.ModuleList() |
|
for i in range(num_layers): |
|
layers.append(ConvLayer(cfg)) |
|
layers.append(attentionLayer(d_model=256, nhead=8)) |
|
self.convAV = layers |
|
|
|
def forward_visual_frontend(self, x): |
|
|
|
B, T, W, H = x.shape |
|
x = x.view(B * T, 1, 1, W, H) |
|
x = (x / 255 - 0.4161) / 0.1688 |
|
x = self.visualFrontend(x) |
|
x = x.view(B, T, 512) |
|
x = x.transpose(1, 2) |
|
x = self.visualTCN(x) |
|
x = self.visualConv1D(x) |
|
x = x.transpose(1, 2) |
|
return x |
|
|
|
def forward_audio_frontend(self, x): |
|
t = x.shape[-2] |
|
numFrames = t // 4 |
|
pad = 8 - (t % 8) |
|
x = torch.nn.functional.pad(x, (0, 0, 0, pad), "constant") |
|
|
|
x = self.audioEncoder(x) |
|
|
|
b, c, t2, freq = x.shape |
|
x = x.view(b * c, t2, freq) |
|
x = self.audio_pool(x) |
|
x = x.view(b, c, t2)[:, :, :numFrames] |
|
x = x.permute(0, 2, 1) |
|
return x |
|
|
|
def forward_cross_attention(self, x1, x2): |
|
x1_c = self.crossA2V(src=x1, tar=x2, adjust=self.cfg.adjust_attention) |
|
x2_c = self.crossV2A(src=x2, tar=x1, adjust=self.cfg.adjust_attention) |
|
return x1_c, x2_c |
|
|
|
def forward_audio_visual_backend(self, x1, x2, b=1, s=1): |
|
x = torch.cat((x1, x2), 2) |
|
for i, layer in enumerate(self.convAV): |
|
if i % 2 == 0: |
|
x, b, s = layer(x, b, s) |
|
else: |
|
x = layer(src=x, tar=x) |
|
|
|
x = torch.reshape(x, (-1, 256)) |
|
return x |
|
|
|
def forward_audio_backend(self, x): |
|
x = torch.reshape(x, (-1, 128)) |
|
return x |
|
|
|
def forward_visual_backend(self, x): |
|
x = torch.reshape(x, (-1, 128)) |
|
return x |
|
|