|
import os, torch, numpy, cv2, random, glob, python_speech_features, json, math
|
|
from scipy.io import wavfile
|
|
from torchvision.transforms import RandomCrop
|
|
from operator import itemgetter
|
|
from torchvggish import vggish_input, vggish_params, mel_features
|
|
|
|
|
|
def overlap(audio, noiseAudio):
|
|
snr = [random.uniform(-5, 5)]
|
|
if len(noiseAudio) < len(audio):
|
|
shortage = len(audio) - len(noiseAudio)
|
|
noiseAudio = numpy.pad(noiseAudio, (0, shortage), 'wrap')
|
|
else:
|
|
noiseAudio = noiseAudio[:len(audio)]
|
|
noiseDB = 10 * numpy.log10(numpy.mean(abs(noiseAudio**2)) + 1e-4)
|
|
cleanDB = 10 * numpy.log10(numpy.mean(abs(audio**2)) + 1e-4)
|
|
noiseAudio = numpy.sqrt(10**((cleanDB - noiseDB - snr) / 10)) * noiseAudio
|
|
audio = audio + noiseAudio
|
|
return audio.astype(numpy.int16)
|
|
|
|
|
|
def load_audio(data, dataPath, numFrames, audioAug, audioSet=None):
|
|
dataName = data[0]
|
|
fps = float(data[2])
|
|
audio = audioSet[dataName]
|
|
if audioAug == True:
|
|
augType = random.randint(0, 1)
|
|
if augType == 1:
|
|
audio = overlap(dataName, audio, audioSet)
|
|
else:
|
|
audio = audio
|
|
|
|
audio = python_speech_features.mfcc(audio,
|
|
16000,
|
|
numcep=13,
|
|
winlen=0.025 * 25 / fps,
|
|
winstep=0.010 * 25 / fps)
|
|
maxAudio = int(numFrames * 4)
|
|
if audio.shape[0] < maxAudio:
|
|
shortage = maxAudio - audio.shape[0]
|
|
audio = numpy.pad(audio, ((0, shortage), (0, 0)), 'wrap')
|
|
audio = audio[:int(round(numFrames * 4)), :]
|
|
return audio
|
|
|
|
|
|
def load_single_audio(audio, fps, numFrames, audioAug=False):
|
|
audio = python_speech_features.mfcc(audio,
|
|
16000,
|
|
numcep=13,
|
|
winlen=0.025 * 25 / fps,
|
|
winstep=0.010 * 25 / fps)
|
|
maxAudio = int(numFrames * 4)
|
|
if audio.shape[0] < maxAudio:
|
|
shortage = maxAudio - audio.shape[0]
|
|
audio = numpy.pad(audio, ((0, shortage), (0, 0)), 'wrap')
|
|
audio = audio[:int(round(numFrames * 4)), :]
|
|
return audio
|
|
|
|
|
|
def load_visual(data, dataPath, numFrames, visualAug):
|
|
dataName = data[0]
|
|
videoName = data[0][:11]
|
|
faceFolderPath = os.path.join(dataPath, videoName, dataName)
|
|
faceFiles = glob.glob("%s/*.jpg" % faceFolderPath)
|
|
sortedFaceFiles = sorted(faceFiles,
|
|
key=lambda data: (float(data.split('/')[-1][:-4])),
|
|
reverse=False)
|
|
faces = []
|
|
H = 112
|
|
if visualAug == True:
|
|
new = int(H * random.uniform(0.7, 1))
|
|
x, y = numpy.random.randint(0, H - new), numpy.random.randint(0, H - new)
|
|
M = cv2.getRotationMatrix2D((H / 2, H / 2), random.uniform(-15, 15), 1)
|
|
augType = random.choice(['orig', 'flip', 'crop', 'rotate'])
|
|
else:
|
|
augType = 'orig'
|
|
for faceFile in sortedFaceFiles[:numFrames]:
|
|
face = cv2.imread(faceFile)
|
|
|
|
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
|
|
face = cv2.resize(face, (H, H))
|
|
if augType == 'orig':
|
|
faces.append(face)
|
|
elif augType == 'flip':
|
|
faces.append(cv2.flip(face, 1))
|
|
elif augType == 'crop':
|
|
faces.append(cv2.resize(face[y:y + new, x:x + new], (H, H)))
|
|
elif augType == 'rotate':
|
|
faces.append(cv2.warpAffine(face, M, (H, H)))
|
|
faces = numpy.array(faces)
|
|
return faces
|
|
|
|
|
|
def load_label(data, numFrames):
|
|
res = []
|
|
labels = data[3].replace('[', '').replace(']', '')
|
|
labels = labels.split(',')
|
|
for label in labels:
|
|
res.append(int(label))
|
|
res = numpy.array(res[:numFrames])
|
|
return res
|
|
|
|
|
|
class train_loader(object):
|
|
|
|
def __init__(self, cfg, trialFileName, audioPath, visualPath, num_speakers):
|
|
self.cfg = cfg
|
|
self.audioPath = audioPath
|
|
self.visualPath = visualPath
|
|
self.candidate_speakers = num_speakers
|
|
self.path = os.path.join(cfg.DATA.dataPathAVA, "csv")
|
|
self.entity_data = json.load(open(os.path.join(self.path, 'train_entity.json')))
|
|
self.ts_to_entity = json.load(open(os.path.join(self.path, 'train_ts.json')))
|
|
self.mixLst = open(trialFileName).read().splitlines()
|
|
self.list_length = len(self.mixLst)
|
|
random.shuffle(self.mixLst)
|
|
|
|
def load_single_audio(self, audio, fps, numFrames, audioAug=False, aug_audio=None):
|
|
if audioAug:
|
|
augType = random.randint(0, 1)
|
|
if augType == 1:
|
|
audio = overlap(audio, aug_audio)
|
|
else:
|
|
audio = audio
|
|
|
|
res = vggish_input.waveform_to_examples(audio, 16000, numFrames, fps, return_tensor=False)
|
|
return res
|
|
|
|
def load_visual_label_mask(self, videoName, entityName, target_ts, context_ts, visualAug=True):
|
|
|
|
faceFolderPath = os.path.join(self.visualPath, videoName, entityName)
|
|
|
|
faces = []
|
|
H = 112
|
|
if visualAug == True:
|
|
new = int(H * random.uniform(0.7, 1))
|
|
x, y = numpy.random.randint(0, H - new), numpy.random.randint(0, H - new)
|
|
M = cv2.getRotationMatrix2D((H / 2, H / 2), random.uniform(-15, 15), 1)
|
|
augType = random.choice(['orig', 'flip', 'crop', 'rotate'])
|
|
else:
|
|
augType = 'orig'
|
|
labels_dict = self.entity_data[videoName][entityName]
|
|
labels = numpy.zeros(len(target_ts))
|
|
mask = numpy.zeros(len(target_ts))
|
|
|
|
for i, time in enumerate(target_ts):
|
|
if time not in context_ts:
|
|
faces.append(numpy.zeros((H, H)))
|
|
else:
|
|
labels[i] = labels_dict[time]
|
|
mask[i] = 1
|
|
time = "%.2f" % float(time)
|
|
faceFile = os.path.join(faceFolderPath, str(time) + '.jpg')
|
|
|
|
face = cv2.imread(faceFile)
|
|
|
|
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
|
|
face = cv2.resize(face, (H, H))
|
|
if augType == 'orig':
|
|
faces.append(face)
|
|
elif augType == 'flip':
|
|
faces.append(cv2.flip(face, 1))
|
|
elif augType == 'crop':
|
|
faces.append(cv2.resize(face[y:y + new, x:x + new], (H, H)))
|
|
elif augType == 'rotate':
|
|
faces.append(cv2.warpAffine(face, M, (H, H)))
|
|
faces = numpy.array(faces)
|
|
return faces, labels, mask
|
|
|
|
def get_speaker_context(self, videoName, target_entity, all_ts, center_ts):
|
|
|
|
context_speakers = list(self.ts_to_entity[videoName][center_ts])
|
|
context = {}
|
|
chosen_speakers = []
|
|
context[target_entity] = all_ts
|
|
context_speakers.remove(target_entity)
|
|
num_frames = len(all_ts)
|
|
for candidate in context_speakers:
|
|
candidate_ts = self.entity_data[videoName][candidate]
|
|
shared_ts = set(all_ts).intersection(set(candidate_ts))
|
|
if (len(shared_ts) > (num_frames / 2)):
|
|
context[candidate] = shared_ts
|
|
chosen_speakers.append(candidate)
|
|
context_speakers = chosen_speakers
|
|
random.shuffle(context_speakers)
|
|
if not context_speakers:
|
|
context_speakers.insert(0, target_entity)
|
|
while len(context_speakers) < self.candidate_speakers:
|
|
context_speakers.append(random.choice(context_speakers))
|
|
elif len(context_speakers) < self.candidate_speakers:
|
|
context_speakers.insert(0, target_entity)
|
|
while len(context_speakers) < self.candidate_speakers:
|
|
context_speakers.append(random.choice(context_speakers[1:]))
|
|
else:
|
|
context_speakers.insert(0, target_entity)
|
|
context_speakers = context_speakers[:self.candidate_speakers]
|
|
|
|
assert set(context_speakers).issubset(set(list(context.keys()))), target_entity
|
|
assert target_entity in context_speakers, target_entity
|
|
|
|
return context_speakers, context
|
|
|
|
def __getitem__(self, index):
|
|
|
|
target_video = self.mixLst[index]
|
|
data = target_video.split('\t')
|
|
fps = float(data[2])
|
|
videoName = data[0][:11]
|
|
target_entity = data[0]
|
|
all_ts = list(self.entity_data[videoName][target_entity].keys())
|
|
numFrames = int(data[1])
|
|
assert numFrames == len(all_ts)
|
|
|
|
center_ts = all_ts[math.floor(numFrames / 2)]
|
|
|
|
|
|
context_speakers, context = self.get_speaker_context(videoName, target_entity, all_ts,
|
|
center_ts)
|
|
|
|
if self.cfg.TRAIN.AUDIO_AUG:
|
|
other_indices = list(range(0, index)) + list(range(index + 1, self.list_length))
|
|
augment_entity = self.mixLst[random.choice(other_indices)]
|
|
augment_data = augment_entity.split('\t')
|
|
augment_entity = augment_data[0]
|
|
augment_videoname = augment_data[0][:11]
|
|
aug_sr, aug_audio = wavfile.read(
|
|
os.path.join(self.audioPath, augment_videoname, augment_entity + '.wav'))
|
|
else:
|
|
aug_audio = None
|
|
|
|
audio_path = os.path.join(self.audioPath, videoName, target_entity + '.wav')
|
|
sr, audio = wavfile.read(os.path.join(self.audioPath, videoName, target_entity + '.wav'))
|
|
audio = self.load_single_audio(audio,
|
|
fps,
|
|
numFrames,
|
|
audioAug=self.cfg.TRAIN.AUDIO_AUG,
|
|
aug_audio=aug_audio)
|
|
|
|
visualFeatures, labels, masks = [], [], []
|
|
|
|
|
|
visual, target_labels, target_masks = self.load_visual_label_mask(
|
|
videoName, target_entity, all_ts, all_ts)
|
|
|
|
for idx, context_entity in enumerate(context_speakers):
|
|
if context_entity == target_entity:
|
|
label = target_labels
|
|
visualfeat = visual
|
|
mask = target_masks
|
|
else:
|
|
visualfeat, label, mask = self.load_visual_label_mask(videoName, context_entity,
|
|
all_ts,
|
|
context[context_entity])
|
|
visualFeatures.append(visualfeat)
|
|
labels.append(label)
|
|
masks.append(mask)
|
|
|
|
audio = torch.FloatTensor(audio)[None, :, :]
|
|
visualFeatures = torch.FloatTensor(numpy.array(visualFeatures))
|
|
audio_t = audio.shape[1]
|
|
video_t = visualFeatures.shape[1]
|
|
if audio_t != video_t * 4:
|
|
print(visualFeatures.shape, audio.shape, videoName, target_entity, numFrames)
|
|
labels = torch.LongTensor(numpy.array(labels))
|
|
masks = torch.LongTensor(numpy.array(masks))
|
|
print(audio.shape)
|
|
return audio, visualFeatures, labels, masks
|
|
|
|
def __len__(self):
|
|
return len(self.mixLst)
|
|
|
|
|
|
class val_loader(object):
|
|
|
|
def __init__(self, cfg, trialFileName, audioPath, visualPath, num_speakers):
|
|
self.cfg = cfg
|
|
self.audioPath = audioPath
|
|
self.visualPath = visualPath
|
|
self.candidate_speakers = num_speakers
|
|
self.path = os.path.join(cfg.DATA.dataPathAVA, "csv")
|
|
self.entity_data = json.load(open(os.path.join(self.path, 'val_entity.json')))
|
|
self.ts_to_entity = json.load(open(os.path.join(self.path, 'val_ts.json')))
|
|
self.mixLst = open(trialFileName).read().splitlines()
|
|
|
|
def load_single_audio(self, audio, fps, numFrames, audioAug=False, aug_audio=None):
|
|
|
|
res = vggish_input.waveform_to_examples(audio, 16000, numFrames, fps, return_tensor=False)
|
|
return res
|
|
|
|
def load_visual_label_mask(self, videoName, entityName, target_ts, context_ts):
|
|
|
|
faceFolderPath = os.path.join(self.visualPath, videoName, entityName)
|
|
|
|
faces = []
|
|
H = 112
|
|
labels_dict = self.entity_data[videoName][entityName]
|
|
labels = numpy.zeros(len(target_ts))
|
|
mask = numpy.zeros(len(target_ts))
|
|
|
|
for i, time in enumerate(target_ts):
|
|
if time not in context_ts:
|
|
faces.append(numpy.zeros((H, H)))
|
|
else:
|
|
labels[i] = labels_dict[time]
|
|
mask[i] = 1
|
|
time = "%.2f" % float(time)
|
|
faceFile = os.path.join(faceFolderPath, str(time) + '.jpg')
|
|
|
|
face = cv2.imread(faceFile)
|
|
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
|
|
face = cv2.resize(face, (H, H))
|
|
faces.append(face)
|
|
faces = numpy.array(faces)
|
|
return faces, labels, mask
|
|
|
|
def get_speaker_context(self, videoName, target_entity, all_ts, center_ts):
|
|
|
|
context_speakers = list(self.ts_to_entity[videoName][center_ts])
|
|
context = {}
|
|
chosen_speakers = []
|
|
context[target_entity] = all_ts
|
|
context_speakers.remove(target_entity)
|
|
num_frames = len(all_ts)
|
|
for candidate in context_speakers:
|
|
candidate_ts = self.entity_data[videoName][candidate]
|
|
shared_ts = set(all_ts).intersection(set(candidate_ts))
|
|
context[candidate] = shared_ts
|
|
chosen_speakers.append(candidate)
|
|
|
|
|
|
|
|
context_speakers = chosen_speakers
|
|
random.shuffle(context_speakers)
|
|
if not context_speakers:
|
|
context_speakers.insert(0, target_entity)
|
|
while len(context_speakers) < self.candidate_speakers:
|
|
context_speakers.append(random.choice(context_speakers))
|
|
elif len(context_speakers) < self.candidate_speakers:
|
|
context_speakers.insert(0, target_entity)
|
|
while len(context_speakers) < self.candidate_speakers:
|
|
context_speakers.append(random.choice(context_speakers[1:]))
|
|
else:
|
|
context_speakers.insert(0, target_entity)
|
|
context_speakers = context_speakers[:self.candidate_speakers]
|
|
|
|
assert set(context_speakers).issubset(set(list(context.keys()))), target_entity
|
|
|
|
return context_speakers, context
|
|
|
|
def __getitem__(self, index):
|
|
|
|
target_video = self.mixLst[index]
|
|
data = target_video.split('\t')
|
|
fps = float(data[2])
|
|
videoName = data[0][:11]
|
|
target_entity = data[0]
|
|
all_ts = list(self.entity_data[videoName][target_entity].keys())
|
|
numFrames = int(data[1])
|
|
|
|
assert numFrames == len(all_ts)
|
|
|
|
center_ts = all_ts[math.floor(numFrames / 2)]
|
|
|
|
|
|
context_speakers, context = self.get_speaker_context(videoName, target_entity, all_ts,
|
|
center_ts)
|
|
|
|
sr, audio = wavfile.read(os.path.join(self.audioPath, videoName, target_entity + '.wav'))
|
|
audio = self.load_single_audio(audio, fps, numFrames, audioAug=False)
|
|
|
|
visualFeatures, labels, masks = [], [], []
|
|
|
|
|
|
target_visual, target_labels, target_masks = self.load_visual_label_mask(
|
|
videoName, target_entity, all_ts, all_ts)
|
|
|
|
for idx, context_entity in enumerate(context_speakers):
|
|
if context_entity == target_entity:
|
|
label = target_labels
|
|
visualfeat = target_visual
|
|
mask = target_masks
|
|
else:
|
|
visualfeat, label, mask = self.load_visual_label_mask(videoName, context_entity,
|
|
all_ts,
|
|
context[context_entity])
|
|
visualFeatures.append(visualfeat)
|
|
labels.append(label)
|
|
masks.append(mask)
|
|
|
|
audio = torch.FloatTensor(audio)[None, :, :]
|
|
visualFeatures = torch.FloatTensor(numpy.array(visualFeatures))
|
|
audio_t = audio.shape[1]
|
|
video_t = visualFeatures.shape[1]
|
|
if audio_t != video_t * 4:
|
|
print(visualFeatures.shape, audio.shape, videoName, target_entity, numFrames)
|
|
labels = torch.LongTensor(numpy.array(labels))
|
|
masks = torch.LongTensor(numpy.array(masks))
|
|
|
|
return audio, visualFeatures, labels, masks
|
|
|
|
def __len__(self):
|
|
return len(self.mixLst)
|
|
|