LoCoNet_ASD / dataLoader_multiperson.py
xiziwang
push files
2e36228
raw
history blame
17.5 kB
import os, torch, numpy, cv2, random, glob, python_speech_features, json, math
from scipy.io import wavfile
from torchvision.transforms import RandomCrop
from operator import itemgetter
from torchvggish import vggish_input, vggish_params, mel_features
def overlap(audio, noiseAudio):
snr = [random.uniform(-5, 5)]
if len(noiseAudio) < len(audio):
shortage = len(audio) - len(noiseAudio)
noiseAudio = numpy.pad(noiseAudio, (0, shortage), 'wrap')
else:
noiseAudio = noiseAudio[:len(audio)]
noiseDB = 10 * numpy.log10(numpy.mean(abs(noiseAudio**2)) + 1e-4)
cleanDB = 10 * numpy.log10(numpy.mean(abs(audio**2)) + 1e-4)
noiseAudio = numpy.sqrt(10**((cleanDB - noiseDB - snr) / 10)) * noiseAudio
audio = audio + noiseAudio
return audio.astype(numpy.int16)
def load_audio(data, dataPath, numFrames, audioAug, audioSet=None):
dataName = data[0]
fps = float(data[2])
audio = audioSet[dataName]
if audioAug == True:
augType = random.randint(0, 1)
if augType == 1:
audio = overlap(dataName, audio, audioSet)
else:
audio = audio
# fps is not always 25, in order to align the visual, we modify the window and step in MFCC extraction process based on fps
audio = python_speech_features.mfcc(audio,
16000,
numcep=13,
winlen=0.025 * 25 / fps,
winstep=0.010 * 25 / fps)
maxAudio = int(numFrames * 4)
if audio.shape[0] < maxAudio:
shortage = maxAudio - audio.shape[0]
audio = numpy.pad(audio, ((0, shortage), (0, 0)), 'wrap')
audio = audio[:int(round(numFrames * 4)), :]
return audio
def load_single_audio(audio, fps, numFrames, audioAug=False):
audio = python_speech_features.mfcc(audio,
16000,
numcep=13,
winlen=0.025 * 25 / fps,
winstep=0.010 * 25 / fps)
maxAudio = int(numFrames * 4)
if audio.shape[0] < maxAudio:
shortage = maxAudio - audio.shape[0]
audio = numpy.pad(audio, ((0, shortage), (0, 0)), 'wrap')
audio = audio[:int(round(numFrames * 4)), :]
return audio
def load_visual(data, dataPath, numFrames, visualAug):
dataName = data[0]
videoName = data[0][:11]
faceFolderPath = os.path.join(dataPath, videoName, dataName)
faceFiles = glob.glob("%s/*.jpg" % faceFolderPath)
sortedFaceFiles = sorted(faceFiles,
key=lambda data: (float(data.split('/')[-1][:-4])),
reverse=False)
faces = []
H = 112
if visualAug == True:
new = int(H * random.uniform(0.7, 1))
x, y = numpy.random.randint(0, H - new), numpy.random.randint(0, H - new)
M = cv2.getRotationMatrix2D((H / 2, H / 2), random.uniform(-15, 15), 1)
augType = random.choice(['orig', 'flip', 'crop', 'rotate'])
else:
augType = 'orig'
for faceFile in sortedFaceFiles[:numFrames]:
face = cv2.imread(faceFile)
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
face = cv2.resize(face, (H, H))
if augType == 'orig':
faces.append(face)
elif augType == 'flip':
faces.append(cv2.flip(face, 1))
elif augType == 'crop':
faces.append(cv2.resize(face[y:y + new, x:x + new], (H, H)))
elif augType == 'rotate':
faces.append(cv2.warpAffine(face, M, (H, H)))
faces = numpy.array(faces)
return faces
def load_label(data, numFrames):
res = []
labels = data[3].replace('[', '').replace(']', '')
labels = labels.split(',')
for label in labels:
res.append(int(label))
res = numpy.array(res[:numFrames])
return res
class train_loader(object):
def __init__(self, cfg, trialFileName, audioPath, visualPath, num_speakers):
self.cfg = cfg
self.audioPath = audioPath
self.visualPath = visualPath
self.candidate_speakers = num_speakers
self.path = os.path.join(cfg.DATA.dataPathAVA, "csv")
self.entity_data = json.load(open(os.path.join(self.path, 'train_entity.json')))
self.ts_to_entity = json.load(open(os.path.join(self.path, 'train_ts.json')))
self.mixLst = open(trialFileName).read().splitlines()
self.list_length = len(self.mixLst)
random.shuffle(self.mixLst)
def load_single_audio(self, audio, fps, numFrames, audioAug=False, aug_audio=None):
if audioAug:
augType = random.randint(0, 1)
if augType == 1:
audio = overlap(audio, aug_audio)
else:
audio = audio
res = vggish_input.waveform_to_examples(audio, 16000, numFrames, fps, return_tensor=False)
return res
def load_visual_label_mask(self, videoName, entityName, target_ts, context_ts, visualAug=True):
faceFolderPath = os.path.join(self.visualPath, videoName, entityName)
faces = []
H = 112
if visualAug == True:
new = int(H * random.uniform(0.7, 1))
x, y = numpy.random.randint(0, H - new), numpy.random.randint(0, H - new)
M = cv2.getRotationMatrix2D((H / 2, H / 2), random.uniform(-15, 15), 1)
augType = random.choice(['orig', 'flip', 'crop', 'rotate'])
else:
augType = 'orig'
labels_dict = self.entity_data[videoName][entityName]
labels = numpy.zeros(len(target_ts))
mask = numpy.zeros(len(target_ts))
for i, time in enumerate(target_ts):
if time not in context_ts:
faces.append(numpy.zeros((H, H)))
else:
labels[i] = labels_dict[time]
mask[i] = 1
time = "%.2f" % float(time)
faceFile = os.path.join(faceFolderPath, str(time) + '.jpg')
face = cv2.imread(faceFile)
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
face = cv2.resize(face, (H, H))
if augType == 'orig':
faces.append(face)
elif augType == 'flip':
faces.append(cv2.flip(face, 1))
elif augType == 'crop':
faces.append(cv2.resize(face[y:y + new, x:x + new], (H, H)))
elif augType == 'rotate':
faces.append(cv2.warpAffine(face, M, (H, H)))
faces = numpy.array(faces)
return faces, labels, mask
def get_speaker_context(self, videoName, target_entity, all_ts, center_ts):
context_speakers = list(self.ts_to_entity[videoName][center_ts])
context = {}
chosen_speakers = []
context[target_entity] = all_ts
context_speakers.remove(target_entity)
num_frames = len(all_ts)
for candidate in context_speakers:
candidate_ts = self.entity_data[videoName][candidate]
shared_ts = set(all_ts).intersection(set(candidate_ts))
if (len(shared_ts) > (num_frames / 2)):
context[candidate] = shared_ts
chosen_speakers.append(candidate)
context_speakers = chosen_speakers
random.shuffle(context_speakers)
if not context_speakers:
context_speakers.insert(0, target_entity) # make sure is at 0
while len(context_speakers) < self.candidate_speakers:
context_speakers.append(random.choice(context_speakers))
elif len(context_speakers) < self.candidate_speakers:
context_speakers.insert(0, target_entity) # make sure is at 0
while len(context_speakers) < self.candidate_speakers:
context_speakers.append(random.choice(context_speakers[1:]))
else:
context_speakers.insert(0, target_entity) # make sure is at 0
context_speakers = context_speakers[:self.candidate_speakers]
assert set(context_speakers).issubset(set(list(context.keys()))), target_entity
assert target_entity in context_speakers, target_entity
return context_speakers, context
def __getitem__(self, index):
target_video = self.mixLst[index]
data = target_video.split('\t')
fps = float(data[2])
videoName = data[0][:11]
target_entity = data[0]
all_ts = list(self.entity_data[videoName][target_entity].keys())
numFrames = int(data[1])
assert numFrames == len(all_ts)
center_ts = all_ts[math.floor(numFrames / 2)]
# get context speakers which have more than half time overlapped with target speaker
context_speakers, context = self.get_speaker_context(videoName, target_entity, all_ts,
center_ts)
if self.cfg.TRAIN.AUDIO_AUG:
other_indices = list(range(0, index)) + list(range(index + 1, self.list_length))
augment_entity = self.mixLst[random.choice(other_indices)]
augment_data = augment_entity.split('\t')
augment_entity = augment_data[0]
augment_videoname = augment_data[0][:11]
aug_sr, aug_audio = wavfile.read(
os.path.join(self.audioPath, augment_videoname, augment_entity + '.wav'))
else:
aug_audio = None
audio_path = os.path.join(self.audioPath, videoName, target_entity + '.wav')
sr, audio = wavfile.read(os.path.join(self.audioPath, videoName, target_entity + '.wav'))
audio = self.load_single_audio(audio,
fps,
numFrames,
audioAug=self.cfg.TRAIN.AUDIO_AUG,
aug_audio=aug_audio)
visualFeatures, labels, masks = [], [], []
# target_label = list(self.entity_data[videoName][target_entity].values())
visual, target_labels, target_masks = self.load_visual_label_mask(
videoName, target_entity, all_ts, all_ts)
for idx, context_entity in enumerate(context_speakers):
if context_entity == target_entity:
label = target_labels
visualfeat = visual
mask = target_masks
else:
visualfeat, label, mask = self.load_visual_label_mask(videoName, context_entity,
all_ts,
context[context_entity])
visualFeatures.append(visualfeat)
labels.append(label)
masks.append(mask)
audio = torch.FloatTensor(audio)[None, :, :]
visualFeatures = torch.FloatTensor(numpy.array(visualFeatures))
audio_t = audio.shape[1]
video_t = visualFeatures.shape[1]
if audio_t != video_t * 4:
print(visualFeatures.shape, audio.shape, videoName, target_entity, numFrames)
labels = torch.LongTensor(numpy.array(labels))
masks = torch.LongTensor(numpy.array(masks))
print(audio.shape)
return audio, visualFeatures, labels, masks
def __len__(self):
return len(self.mixLst)
class val_loader(object):
def __init__(self, cfg, trialFileName, audioPath, visualPath, num_speakers):
self.cfg = cfg
self.audioPath = audioPath
self.visualPath = visualPath
self.candidate_speakers = num_speakers
self.path = os.path.join(cfg.DATA.dataPathAVA, "csv")
self.entity_data = json.load(open(os.path.join(self.path, 'val_entity.json')))
self.ts_to_entity = json.load(open(os.path.join(self.path, 'val_ts.json')))
self.mixLst = open(trialFileName).read().splitlines()
def load_single_audio(self, audio, fps, numFrames, audioAug=False, aug_audio=None):
res = vggish_input.waveform_to_examples(audio, 16000, numFrames, fps, return_tensor=False)
return res
def load_visual_label_mask(self, videoName, entityName, target_ts, context_ts):
faceFolderPath = os.path.join(self.visualPath, videoName, entityName)
faces = []
H = 112
labels_dict = self.entity_data[videoName][entityName]
labels = numpy.zeros(len(target_ts))
mask = numpy.zeros(len(target_ts))
for i, time in enumerate(target_ts):
if time not in context_ts:
faces.append(numpy.zeros((H, H)))
else:
labels[i] = labels_dict[time]
mask[i] = 1
time = "%.2f" % float(time)
faceFile = os.path.join(faceFolderPath, str(time) + '.jpg')
face = cv2.imread(faceFile)
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
face = cv2.resize(face, (H, H))
faces.append(face)
faces = numpy.array(faces)
return faces, labels, mask
def get_speaker_context(self, videoName, target_entity, all_ts, center_ts):
context_speakers = list(self.ts_to_entity[videoName][center_ts])
context = {}
chosen_speakers = []
context[target_entity] = all_ts
context_speakers.remove(target_entity)
num_frames = len(all_ts)
for candidate in context_speakers:
candidate_ts = self.entity_data[videoName][candidate]
shared_ts = set(all_ts).intersection(set(candidate_ts))
context[candidate] = shared_ts
chosen_speakers.append(candidate)
# if (len(shared_ts) > (num_frames / 2)):
# context[candidate] = shared_ts
# chosen_speakers.append(candidate)
context_speakers = chosen_speakers
random.shuffle(context_speakers)
if not context_speakers:
context_speakers.insert(0, target_entity) # make sure is at 0
while len(context_speakers) < self.candidate_speakers:
context_speakers.append(random.choice(context_speakers))
elif len(context_speakers) < self.candidate_speakers:
context_speakers.insert(0, target_entity) # make sure is at 0
while len(context_speakers) < self.candidate_speakers:
context_speakers.append(random.choice(context_speakers[1:]))
else:
context_speakers.insert(0, target_entity) # make sure is at 0
context_speakers = context_speakers[:self.candidate_speakers]
assert set(context_speakers).issubset(set(list(context.keys()))), target_entity
return context_speakers, context
def __getitem__(self, index):
target_video = self.mixLst[index]
data = target_video.split('\t')
fps = float(data[2])
videoName = data[0][:11]
target_entity = data[0]
all_ts = list(self.entity_data[videoName][target_entity].keys())
numFrames = int(data[1])
# print(numFrames, len(all_ts))
assert numFrames == len(all_ts)
center_ts = all_ts[math.floor(numFrames / 2)]
# get context speakers which have more than half time overlapped with target speaker
context_speakers, context = self.get_speaker_context(videoName, target_entity, all_ts,
center_ts)
sr, audio = wavfile.read(os.path.join(self.audioPath, videoName, target_entity + '.wav'))
audio = self.load_single_audio(audio, fps, numFrames, audioAug=False)
visualFeatures, labels, masks = [], [], []
# target_label = list(self.entity_data[videoName][target_entity].values())
target_visual, target_labels, target_masks = self.load_visual_label_mask(
videoName, target_entity, all_ts, all_ts)
for idx, context_entity in enumerate(context_speakers):
if context_entity == target_entity:
label = target_labels
visualfeat = target_visual
mask = target_masks
else:
visualfeat, label, mask = self.load_visual_label_mask(videoName, context_entity,
all_ts,
context[context_entity])
visualFeatures.append(visualfeat)
labels.append(label)
masks.append(mask)
audio = torch.FloatTensor(audio)[None, :, :]
visualFeatures = torch.FloatTensor(numpy.array(visualFeatures))
audio_t = audio.shape[1]
video_t = visualFeatures.shape[1]
if audio_t != video_t * 4:
print(visualFeatures.shape, audio.shape, videoName, target_entity, numFrames)
labels = torch.LongTensor(numpy.array(labels))
masks = torch.LongTensor(numpy.array(masks))
return audio, visualFeatures, labels, masks
def __len__(self):
return len(self.mixLst)