LoCoNet_ASD / train.py
xiziwang
push files
2e36228
raw
history blame
7.53 kB
import time, os, torch, argparse, warnings, glob, pandas, json
from utils.tools import *
from dlhammer import bootstrap
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
import torch.multiprocessing as mp
import torch.distributed as dist
from xxlib.utils.distributed import all_gather, all_reduce
from torch import nn
from dataLoader_multiperson import train_loader, val_loader
from loconet import loconet
class MyCollator(object):
def __init__(self, cfg):
self.cfg = cfg
def __call__(self, data):
audiofeatures = [item[0] for item in data]
visualfeatures = [item[1] for item in data]
labels = [item[2] for item in data]
masks = [item[3] for item in data]
cut_limit = self.cfg.MODEL.CLIP_LENGTH
# pad audio
lengths = torch.tensor([t.shape[1] for t in audiofeatures])
max_len = max(lengths)
padded_audio = torch.stack([
torch.cat([i, i.new_zeros((i.shape[0], max_len - i.shape[1], i.shape[2]))], 1)
for i in audiofeatures
], 0)
if max_len > cut_limit * 4:
padded_audio = padded_audio[:, :, :cut_limit * 4, ...]
# pad video
lengths = torch.tensor([t.shape[1] for t in visualfeatures])
max_len = max(lengths)
padded_video = torch.stack([
torch.cat(
[i, i.new_zeros((i.shape[0], max_len - i.shape[1], i.shape[2], i.shape[3]))], 1)
for i in visualfeatures
], 0)
padded_labels = torch.stack(
[torch.cat([i, i.new_zeros((i.shape[0], max_len - i.shape[1]))], 1) for i in labels], 0)
padded_masks = torch.stack(
[torch.cat([i, i.new_zeros((i.shape[0], max_len - i.shape[1]))], 1) for i in masks], 0)
if max_len > cut_limit:
padded_video = padded_video[:, :, :cut_limit, ...]
padded_labels = padded_labels[:, :, :cut_limit, ...]
padded_masks = padded_masks[:, :, :cut_limit, ...]
return padded_audio, padded_video, padded_labels, padded_masks
class DataPrep():
def __init__(self, cfg, world_size, rank):
self.cfg = cfg
self.world_size = world_size
self.rank = rank
def train_dataloader(self):
loader = train_loader(self.cfg, trialFileName = self.cfg.trainTrialAVA, \
audioPath = os.path.join(self.cfg.audioPathAVA , 'train'), \
visualPath = os.path.join(self.cfg.visualPathAVA, 'train'), \
num_speakers=self.cfg.MODEL.NUM_SPEAKERS,
)
train_sampler = torch.utils.data.distributed.DistributedSampler(
loader, num_replicas=self.world_size, rank=self.rank)
collator = MyCollator(self.cfg)
trainLoader = torch.utils.data.DataLoader(loader,
batch_size=self.cfg.TRAIN.BATCH_SIZE,
pin_memory=False,
num_workers=self.cfg.NUM_WORKERS,
collate_fn=collator,
sampler=train_sampler)
return trainLoader
def val_dataloader(self):
loader = val_loader(self.cfg, trialFileName = self.cfg.evalTrialAVA, \
audioPath = os.path.join(self.cfg
.audioPathAVA , self.cfg
.evalDataType), \
visualPath = os.path.join(self.cfg
.visualPathAVA, self.cfg
.evalDataType), \
num_speakers = self.cfg.MODEL.NUM_SPEAKERS
)
valLoader = torch.utils.data.DataLoader(loader,
batch_size=self.cfg.VAL.BATCH_SIZE,
shuffle=False,
pin_memory=True,
num_workers=16)
return valLoader
def prepare_context_files(cfg):
path = os.path.join(cfg.DATA.dataPathAVA, "csv")
for phase in ["train", "val", "test"]:
csv_f = f"{phase}_loader.csv"
csv_orig = f"{phase}_orig.csv"
entity_f = os.path.join(path, phase + "_entity.json")
ts_f = os.path.join(path, phase + "_ts.json")
if os.path.exists(entity_f) and os.path.exists(ts_f):
continue
orig_df = pandas.read_csv(os.path.join(path, csv_orig))
entity_data = {}
ts_to_entity = {}
for index, row in orig_df.iterrows():
entity_id = row['entity_id']
video_id = row['video_id']
if row['label'] == "SPEAKING_AUDIBLE":
label = 1
else:
label = 0
ts = float(row['frame_timestamp'])
if video_id not in entity_data.keys():
entity_data[video_id] = {}
if entity_id not in entity_data[video_id].keys():
entity_data[video_id][entity_id] = {}
if ts not in entity_data[video_id][entity_id].keys():
entity_data[video_id][entity_id][ts] = []
entity_data[video_id][entity_id][ts] = label
if video_id not in ts_to_entity.keys():
ts_to_entity[video_id] = {}
if ts not in ts_to_entity[video_id].keys():
ts_to_entity[video_id][ts] = []
ts_to_entity[video_id][ts].append(entity_id)
with open(entity_f) as f:
json.dump(entity_data, f)
with open(ts_f) as f:
json.dump(ts_to_entity, f)
def main(gpu, world_size):
# The structure of this code is learnt from https://github.com/clovaai/voxceleb_trainer
cfg = bootstrap(print_cfg=False)
rank = gpu
dist.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank)
make_deterministic(seed=int(cfg.SEED))
torch.cuda.set_device(gpu)
device = torch.device("cuda:{}".format(gpu))
warnings.filterwarnings("ignore")
cfg = init_args(cfg)
data = DataPrep(cfg, world_size, rank)
if cfg.downloadAVA == True:
preprocess_AVA(cfg)
quit()
prepare_context_files(cfg)
modelfiles = glob.glob('%s/model_0*.model' % cfg.modelSavePath)
modelfiles.sort()
if len(modelfiles) >= 1:
print("Model %s loaded from previous state!" % modelfiles[-1])
epoch = int(os.path.splitext(os.path.basename(modelfiles[-1]))[0][6:]) + 1
s = loconet(cfg, rank, device)
s.loadParameters(modelfiles[-1])
else:
epoch = 1
s = loconet(cfg, rank, device)
while (1):
loss, lr = s.train_network(epoch=epoch, loader=data.train_dataloader())
s.saveParameters(cfg.modelSavePath + "/model_%04d.model" % epoch)
if epoch >= cfg.TRAIN.MAX_EPOCH:
quit()
epoch += 1
if __name__ == '__main__':
cfg = bootstrap()
world_size = cfg.NUM_GPUS #
os.environ['MASTER_ADDR'] = '127.0.0.1' #
os.environ['MASTER_PORT'] = str(random.randint(4000, 8888)) #
mp.spawn(main, nprocs=cfg.NUM_GPUS, args=(world_size,))