SuperSecureHuman
commited on
Commit
•
67fd722
1
Parent(s):
b5f588e
Initial Commit
Browse files- .gitattributes +1 -0
- PPO-LunarLander-v2.zip +3 -0
- PPO-LunarLander-v2/_stable_baselines3_version +1 -0
- PPO-LunarLander-v2/data +94 -0
- PPO-LunarLander-v2/policy.optimizer.pth +3 -0
- PPO-LunarLander-v2/policy.pth +3 -0
- PPO-LunarLander-v2/pytorch_variables.pth +3 -0
- PPO-LunarLander-v2/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a86ce21e79b432a1db1bb8c8ba62db354e806b9029ef76eb6e2b4ac7522aad1
|
3 |
+
size 144035
|
PPO-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0d6ff3200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0d6ff3290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0d6ff3320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0d6ff33b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb0d6ff3440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb0d6ff34d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0d6ff3560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb0d6ff35f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0d6ff3680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0d6ff3710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0d6ff37a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fb0d6fcb180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 131072,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651971392.2615504,
|
51 |
+
"learning_rate": 0.0002,
|
52 |
+
"tensorboard_log": "logs",
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxcL2hvbWUvdmVub20vbWluaWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFwvaG9tZS92ZW5vbS9taW5pY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDYTr090iA6lNjCPp+wd7+Zwui9JoRRPgAAgD8AAAAAwNEjPku8FD9d2Q++tVdhv8xNrD4Sl/g4AAAAAAAAAABWIJG+eA2KPyjNgb2EES6/6BnoviIW2b0AAAAAAAAAAACMJT7ksK8/qYCaPlGJoL4qgRQ+XxsSPgAAAAAAAAAA9mKJPhnVxz4HWro+2RN5v/KVLj37PVI+AAAAAAAAAACaewu+Fgu4P7DeGr+UAem9dy8RPniEID4AAAAAAAAAAOM5sT684Eg/er4iP64pP78FEW4+bP2VPQAAAAAAAAAAjUKRPWh8rT/KDyA/OTKQvijwTr13gYm8AAAAAAAAAAAaBgk9icuRPyiwMz4N8TC/HaegvDbO4TwAAAAAAAAAADMnoDtoI88/mGrgPXv/V74LUWK+gyYyvQAAAAAAAAAAzQPCvoA6vz71m9e+hEV7v7Es0L7Av1a+AAAAAAAAAAA9VLS+e4TsPdO3nL4zvI+/OMN9vk7+Tb0AAAAAAAAAAM2uoD2OjcY+oFpnvWVsnb+I3rc+4qi8vAAAAAAAAAAAktLuvjLKvj5R/Zg9vjqPv64uzr7AMbg+AAAAAAAAAAA6r18+XGOrPrJnMb5BSYG/25tdPgN5Mr4AAAAAAAAAAA2a1j2nebo+Ba8BPaCuUb/fgka9souUvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.3107200000000001,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqKs7FtvUSMCUhpRSlIwBbJRLWIwBdJRHQGQy1P3ztkZ1fZQoaAZoCWgPQwgnMJ3WbclZwJSGlFKUaBVLVWgWR0BkM7K3d9DydX2UKGgGaAloD0MIbVm+LsOCXMCUhpRSlGgVS29oFkdAZDRoV2zOX3V9lChoBmgJaA9DCJ8fRgiPlETAlIaUUpRoFUt5aBZHQGQ00rCm/Fl1fZQoaAZoCWgPQwgwSPq0iuJRwJSGlFKUaBVLbWgWR0BkNO1UlzEKdX2UKGgGaAloD0MISbw8nauJZcCUhpRSlGgVS2ZoFkdAZDWL7XQMQXV9lChoBmgJaA9DCDbNO07ROFPAlIaUUpRoFUtoaBZHQGQ19bHIZIh1fZQoaAZoCWgPQwiRup195RFPwJSGlFKUaBVLWGgWR0BkNuajN6gNdX2UKGgGaAloD0MIaF2j5UDvYMCUhpRSlGgVS0toFkdAZDcmfoRqXXV9lChoBmgJaA9DCJUoe0u502PAlIaUUpRoFUuUaBZHQGQ4R33YcvN1fZQoaAZoCWgPQwj2CDVDqtFRwJSGlFKUaBVLgGgWR0BkOZbhWHUMdX2UKGgGaAloD0MIApoIG55oTsCUhpRSlGgVS4RoFkdAZDqhrWRRuXV9lChoBmgJaA9DCCvZsRGIGz3AlIaUUpRoFUuHaBZHQGQ7nww0wal1fZQoaAZoCWgPQwgAH7x2afdWwJSGlFKUaBVLoWgWR0BkO8nCwbEQdX2UKGgGaAloD0MIhc/WwcFKO8CUhpRSlGgVS0hoFkdAZD0Lc9GI9HV9lChoBmgJaA9DCCvaHOc2flfAlIaUUpRoFUtyaBZHQGQ9rilzltF1fZQoaAZoCWgPQwiLh/ccWDFYwJSGlFKUaBVLgGgWR0BkPo8yN4qxdX2UKGgGaAloD0MI9goL7gfcSMCUhpRSlGgVS2toFkdAZECX/HYHxHV9lChoBmgJaA9DCGE0K9uHFCvAlIaUUpRoFUtaaBZHQGRA4oRZlnR1fZQoaAZoCWgPQwgJqHAEqfhMwJSGlFKUaBVLaGgWR0BkQSHj6vaDdX2UKGgGaAloD0MI3gVKCiyDWMCUhpRSlGgVS4JoFkdAZEEIsRQJonV9lChoBmgJaA9DCID0TZoGU1/AlIaUUpRoFUt2aBZHQGRBnhsImgJ1fZQoaAZoCWgPQwjlZOJWQQFawJSGlFKUaBVLZWgWR0BkQwyM1jy4dX2UKGgGaAloD0MI/nvw2qWrT8CUhpRSlGgVS3doFkdAZEOhW5painV9lChoBmgJaA9DCBr35jdM91bAlIaUUpRoFUtZaBZHQGRFLEtNBWx1fZQoaAZoCWgPQwh15h4SvslawJSGlFKUaBVLo2gWR0BkRTWAf+0gdX2UKGgGaAloD0MIlGx1OSXuT8CUhpRSlGgVS1toFkdAZEWN7SiM53V9lChoBmgJaA9DCEZfQZqxPlTAlIaUUpRoFUujaBZHQGRF7MgU1yh1fZQoaAZoCWgPQwg02qoksj1OwJSGlFKUaBVLSGgWR0BkRk9ECvHMdX2UKGgGaAloD0MIMJ+sGK7KUcCUhpRSlGgVS1xoFkdAZEeJ1q33H3V9lChoBmgJaA9DCPESnPrANWnAlIaUUpRoFUuIaBZHQGRIHQQcxTN1fZQoaAZoCWgPQwgA/b5/87VRwJSGlFKUaBVLR2gWR0BkSHuNPxhEdX2UKGgGaAloD0MItf8B1qqqVMCUhpRSlGgVS01oFkdAZEiX9itq6HV9lChoBmgJaA9DCP2/6siRnVnAlIaUUpRoFUtwaBZHQGRI9rwe/6B1fZQoaAZoCWgPQwhTPC6qxV5pwJSGlFKUaBVLTGgWR0BkSzJ8v24/dX2UKGgGaAloD0MIhgFLrmIiWMCUhpRSlGgVS2VoFkdAZEumw7kn1HV9lChoBmgJaA9DCOCgvfp4B1bAlIaUUpRoFUujaBZHQGRMHDR+jM51fZQoaAZoCWgPQwhzY3rCEnFVwJSGlFKUaBVLUGgWR0BkTjv7WNFSdX2UKGgGaAloD0MIx6ATQgd7WcCUhpRSlGgVS1RoFkdAZE5NPgvUSnV9lChoBmgJaA9DCMo1BTI7+0DAlIaUUpRoFUuKaBZHQGRQJyp71I11fZQoaAZoCWgPQwjo+dNGdaIjwJSGlFKUaBVLSmgWR0BkUFcv/R3NdX2UKGgGaAloD0MIPpY+dEHPQsCUhpRSlGgVS2toFkdAZFCC3gDRt3V9lChoBmgJaA9DCAqGcw2zv2TAlIaUUpRoFUudaBZHQGRRWWQfZEl1fZQoaAZoCWgPQwhGIjSCjXc5wJSGlFKUaBVLg2gWR0BkUvYzzmOmdX2UKGgGaAloD0MIqinJOhxbTsCUhpRSlGgVS1JoFkdAZFPG+bmU4nV9lChoBmgJaA9DCM0C7Q4p8EfAlIaUUpRoFUt/aBZHQGRTuUliSaF1fZQoaAZoCWgPQwjLnC6Lidk8wJSGlFKUaBVLnWgWR0BkVDMcIZ62dX2UKGgGaAloD0MIOiNKe4NYYMCUhpRSlGgVS1toFkdAZFXOmixmkHV9lChoBmgJaA9DCCmUha+vnlvAlIaUUpRoFUuDaBZHQGRWJ4B3iaR1fZQoaAZoCWgPQwiOVyB6UixfwJSGlFKUaBVLg2gWR0BkVpk9U0emdX2UKGgGaAloD0MIBHXKoxumUMCUhpRSlGgVS3BoFkdAZFdmL9/BnHV9lChoBmgJaA9DCA+dnndjS1PAlIaUUpRoFUupaBZHQGRZA/keZG91fZQoaAZoCWgPQwgC9Pv+TV1rwJSGlFKUaBVLXmgWR0BkWchC+lCUdX2UKGgGaAloD0MIgPChREtMTcCUhpRSlGgVS3BoFkdAZFm8KXv6THV9lChoBmgJaA9DCC0iismbo2fAlIaUUpRoFUtwaBZHQGRZ1q33HrB1fZQoaAZoCWgPQwiMFMrCVyNhwJSGlFKUaBVLpWgWR0BkWg/gR9PUdX2UKGgGaAloD0MIIeo+AKmpW8CUhpRSlGgVS15oFkdAZFq07bL2YnV9lChoBmgJaA9DCIRnQpPE5lDAlIaUUpRoFUt7aBZHQGRcQjUutfZ1fZQoaAZoCWgPQwh1kxgEVvhRwJSGlFKUaBVLSWgWR0BkXC4rjHXFdX2UKGgGaAloD0MI8IgK1c3zTMCUhpRSlGgVS4ZoFkdAZFzhuwX67HV9lChoBmgJaA9DCJ6Xio15Q2fAlIaUUpRoFUtwaBZHQGRdUNKAavR1fZQoaAZoCWgPQwgurvGZbMRwwJSGlFKUaBVLc2gWR0BkXivzOHFhdX2UKGgGaAloD0MILh1znrH5QsCUhpRSlGgVS2BoFkdAZF5uTibUgHV9lChoBmgJaA9DCD8djxmod1HAlIaUUpRoFUt7aBZHQGRe451eSjh1fZQoaAZoCWgPQwhoXg6777ZJwJSGlFKUaBVLh2gWR0BkYCW1MM7VdX2UKGgGaAloD0MIPKWD9f8JYcCUhpRSlGgVS1loFkdAZGBtE5Qxe3V9lChoBmgJaA9DCKBP5EnS607AlIaUUpRoFUtXaBZHQGRg6sQumJp1fZQoaAZoCWgPQwiNRj6veBhIwJSGlFKUaBVLWmgWR0BkYWj7ALy+dX2UKGgGaAloD0MIS3fX2ZCrQcCUhpRSlGgVS2NoFkdAZGIOH31zyXV9lChoBmgJaA9DCNzZVx6k10fAlIaUUpRoFUuPaBZHQGRi4XGff411fZQoaAZoCWgPQwhv1ArT95BDwJSGlFKUaBVLa2gWR0BkY+xUvPC3dX2UKGgGaAloD0MI4ezWMhm1VcCUhpRSlGgVS1FoFkdAZGQy57PY4HV9lChoBmgJaA9DCAvrxrsjFlfAlIaUUpRoFUt9aBZHQGRkzYdyT6l1fZQoaAZoCWgPQwj7zcR0IYFfwJSGlFKUaBVLTWgWR0BkZaRMewLWdX2UKGgGaAloD0MIM9/BTxwwHsCUhpRSlGgVS6FoFkdAZGXQ9ic5KnV9lChoBmgJaA9DCA3+fjFbO1rAlIaUUpRoFUtPaBZHQGRpWWY4Qz11fZQoaAZoCWgPQwiADYgQV8VawJSGlFKUaBVLimgWR0BkaaauwHJLdX2UKGgGaAloD0MIjSYXY2CbScCUhpRSlGgVS3BoFkdAZGpWjoIOY3V9lChoBmgJaA9DCBfUt8xpf2nAlIaUUpRoFUtKaBZHQGRrK2jO9nN1fZQoaAZoCWgPQwgN4ZhlT/FUwJSGlFKUaBVLbWgWR0Bka80DU3GXdX2UKGgGaAloD0MIjINLx5yPMsCUhpRSlGgVS59oFkdAZGwKP4mCy3V9lChoBmgJaA9DCO7Nb5ho/FXAlIaUUpRoFUueaBZHQGRtfgaWHDd1fZQoaAZoCWgPQwhYqDXNO55QwJSGlFKUaBVLV2gWR0Bkbbi++M6zdX2UKGgGaAloD0MI9P4/ThiIYMCUhpRSlGgVS3toFkdAZG7zJZGKAXV9lChoBmgJaA9DCBizJasixFzAlIaUUpRoFUuCaBZHQGRwhzV+Zw51fZQoaAZoCWgPQwhBnl2+9f1LwJSGlFKUaBVLR2gWR0BkcX/zasZHdX2UKGgGaAloD0MIYhHDDuO6Y8CUhpRSlGgVS2VoFkdAZHFS2phnanV9lChoBmgJaA9DCOUqFr8pbFTAlIaUUpRoFUuoaBZHQGRy6r/82rJ1fZQoaAZoCWgPQwgFhqxu9exKQJSGlFKUaBVLwmgWR0BkcsZpBX0YdX2UKGgGaAloD0MIU7RyLzCsV8CUhpRSlGgVS3doFkdAZHNq9oN/fHV9lChoBmgJaA9DCMhcGVQbRlTAlIaUUpRoFUuEaBZHQGRz/dAPd2x1fZQoaAZoCWgPQwif6Lrwg2dHwJSGlFKUaBVLX2gWR0BkdLFZPl+3dX2UKGgGaAloD0MIgZNt4A55VcCUhpRSlGgVS0NoFkdAZHV+OwPiDXV9lChoBmgJaA9DCJpC5zV2CUDAlIaUUpRoFUtTaBZHQGR1k61b7j11fZQoaAZoCWgPQwhAFTduMRVKwJSGlFKUaBVLSWgWR0Bkdendfsu4dX2UKGgGaAloD0MIAIv8+iG2J8CUhpRSlGgVS7BoFkdAZHftKqXF+HV9lChoBmgJaA9DCFWFBmLZ0ljAlIaUUpRoFUtxaBZHQGR4a7mMfih1fZQoaAZoCWgPQwh6GcVyS/dWwJSGlFKUaBVLXGgWR0BkeosNDtw8dX2UKGgGaAloD0MIJEil2FGGZcCUhpRSlGgVS5VoFkdAZHrbiZOSGXV9lChoBmgJaA9DCNofKLftnGHAlIaUUpRoFUuYaBZHQGR78f3evZB1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 40,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxcL2hvbWUvdmVub20vbWluaWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFwvaG9tZS92ZW5vbS9taW5pY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f9eea7cf815d87a37d901a58aac4a2dc74c87637b547530bf08e4dabee9407d
|
3 |
+
size 84829
|
PPO-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:351a466fed55b45d86a67ad059b11d57edfe52f705b997becfaa618ee54e7434
|
3 |
+
size 43201
|
PPO-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.17.5-zen1-1-zen-x86_64-with-arch #1 ZEN SMP PREEMPT Wed, 27 Apr 2022 20:56:14 +0000
|
2 |
+
Python: 3.7.12
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -833.76 +/- 405.42
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb0d6ff3200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb0d6ff3290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb0d6ff3320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb0d6ff33b0>", "_build": "<function ActorCriticPolicy._build at 0x7fb0d6ff3440>", "forward": "<function ActorCriticPolicy.forward at 0x7fb0d6ff34d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb0d6ff3560>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb0d6ff35f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb0d6ff3680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb0d6ff3710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb0d6ff37a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb0d6fcb180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651971392.2615504, "learning_rate": 0.0002, "tensorboard_log": "logs", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxcL2hvbWUvdmVub20vbWluaWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFwvaG9tZS92ZW5vbS9taW5pY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDYTr090iA6lNjCPp+wd7+Zwui9JoRRPgAAgD8AAAAAwNEjPku8FD9d2Q++tVdhv8xNrD4Sl/g4AAAAAAAAAABWIJG+eA2KPyjNgb2EES6/6BnoviIW2b0AAAAAAAAAAACMJT7ksK8/qYCaPlGJoL4qgRQ+XxsSPgAAAAAAAAAA9mKJPhnVxz4HWro+2RN5v/KVLj37PVI+AAAAAAAAAACaewu+Fgu4P7DeGr+UAem9dy8RPniEID4AAAAAAAAAAOM5sT684Eg/er4iP64pP78FEW4+bP2VPQAAAAAAAAAAjUKRPWh8rT/KDyA/OTKQvijwTr13gYm8AAAAAAAAAAAaBgk9icuRPyiwMz4N8TC/HaegvDbO4TwAAAAAAAAAADMnoDtoI88/mGrgPXv/V74LUWK+gyYyvQAAAAAAAAAAzQPCvoA6vz71m9e+hEV7v7Es0L7Av1a+AAAAAAAAAAA9VLS+e4TsPdO3nL4zvI+/OMN9vk7+Tb0AAAAAAAAAAM2uoD2OjcY+oFpnvWVsnb+I3rc+4qi8vAAAAAAAAAAAktLuvjLKvj5R/Zg9vjqPv64uzr7AMbg+AAAAAAAAAAA6r18+XGOrPrJnMb5BSYG/25tdPgN5Mr4AAAAAAAAAAA2a1j2nebo+Ba8BPaCuUb/fgka9souUvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqKs7FtvUSMCUhpRSlIwBbJRLWIwBdJRHQGQy1P3ztkZ1fZQoaAZoCWgPQwgnMJ3WbclZwJSGlFKUaBVLVWgWR0BkM7K3d9DydX2UKGgGaAloD0MIbVm+LsOCXMCUhpRSlGgVS29oFkdAZDRoV2zOX3V9lChoBmgJaA9DCJ8fRgiPlETAlIaUUpRoFUt5aBZHQGQ00rCm/Fl1fZQoaAZoCWgPQwgwSPq0iuJRwJSGlFKUaBVLbWgWR0BkNO1UlzEKdX2UKGgGaAloD0MISbw8nauJZcCUhpRSlGgVS2ZoFkdAZDWL7XQMQXV9lChoBmgJaA9DCDbNO07ROFPAlIaUUpRoFUtoaBZHQGQ19bHIZIh1fZQoaAZoCWgPQwiRup195RFPwJSGlFKUaBVLWGgWR0BkNuajN6gNdX2UKGgGaAloD0MIaF2j5UDvYMCUhpRSlGgVS0toFkdAZDcmfoRqXXV9lChoBmgJaA9DCJUoe0u502PAlIaUUpRoFUuUaBZHQGQ4R33YcvN1fZQoaAZoCWgPQwj2CDVDqtFRwJSGlFKUaBVLgGgWR0BkOZbhWHUMdX2UKGgGaAloD0MIApoIG55oTsCUhpRSlGgVS4RoFkdAZDqhrWRRuXV9lChoBmgJaA9DCCvZsRGIGz3AlIaUUpRoFUuHaBZHQGQ7nww0wal1fZQoaAZoCWgPQwgAH7x2afdWwJSGlFKUaBVLoWgWR0BkO8nCwbEQdX2UKGgGaAloD0MIhc/WwcFKO8CUhpRSlGgVS0hoFkdAZD0Lc9GI9HV9lChoBmgJaA9DCCvaHOc2flfAlIaUUpRoFUtyaBZHQGQ9rilzltF1fZQoaAZoCWgPQwiLh/ccWDFYwJSGlFKUaBVLgGgWR0BkPo8yN4qxdX2UKGgGaAloD0MI9goL7gfcSMCUhpRSlGgVS2toFkdAZECX/HYHxHV9lChoBmgJaA9DCGE0K9uHFCvAlIaUUpRoFUtaaBZHQGRA4oRZlnR1fZQoaAZoCWgPQwgJqHAEqfhMwJSGlFKUaBVLaGgWR0BkQSHj6vaDdX2UKGgGaAloD0MI3gVKCiyDWMCUhpRSlGgVS4JoFkdAZEEIsRQJonV9lChoBmgJaA9DCID0TZoGU1/AlIaUUpRoFUt2aBZHQGRBnhsImgJ1fZQoaAZoCWgPQwjlZOJWQQFawJSGlFKUaBVLZWgWR0BkQwyM1jy4dX2UKGgGaAloD0MI/nvw2qWrT8CUhpRSlGgVS3doFkdAZEOhW5painV9lChoBmgJaA9DCBr35jdM91bAlIaUUpRoFUtZaBZHQGRFLEtNBWx1fZQoaAZoCWgPQwh15h4SvslawJSGlFKUaBVLo2gWR0BkRTWAf+0gdX2UKGgGaAloD0MIlGx1OSXuT8CUhpRSlGgVS1toFkdAZEWN7SiM53V9lChoBmgJaA9DCEZfQZqxPlTAlIaUUpRoFUujaBZHQGRF7MgU1yh1fZQoaAZoCWgPQwg02qoksj1OwJSGlFKUaBVLSGgWR0BkRk9ECvHMdX2UKGgGaAloD0MIMJ+sGK7KUcCUhpRSlGgVS1xoFkdAZEeJ1q33H3V9lChoBmgJaA9DCPESnPrANWnAlIaUUpRoFUuIaBZHQGRIHQQcxTN1fZQoaAZoCWgPQwgA/b5/87VRwJSGlFKUaBVLR2gWR0BkSHuNPxhEdX2UKGgGaAloD0MItf8B1qqqVMCUhpRSlGgVS01oFkdAZEiX9itq6HV9lChoBmgJaA9DCP2/6siRnVnAlIaUUpRoFUtwaBZHQGRI9rwe/6B1fZQoaAZoCWgPQwhTPC6qxV5pwJSGlFKUaBVLTGgWR0BkSzJ8v24/dX2UKGgGaAloD0MIhgFLrmIiWMCUhpRSlGgVS2VoFkdAZEumw7kn1HV9lChoBmgJaA9DCOCgvfp4B1bAlIaUUpRoFUujaBZHQGRMHDR+jM51fZQoaAZoCWgPQwhzY3rCEnFVwJSGlFKUaBVLUGgWR0BkTjv7WNFSdX2UKGgGaAloD0MIx6ATQgd7WcCUhpRSlGgVS1RoFkdAZE5NPgvUSnV9lChoBmgJaA9DCMo1BTI7+0DAlIaUUpRoFUuKaBZHQGRQJyp71I11fZQoaAZoCWgPQwjo+dNGdaIjwJSGlFKUaBVLSmgWR0BkUFcv/R3NdX2UKGgGaAloD0MIPpY+dEHPQsCUhpRSlGgVS2toFkdAZFCC3gDRt3V9lChoBmgJaA9DCAqGcw2zv2TAlIaUUpRoFUudaBZHQGRRWWQfZEl1fZQoaAZoCWgPQwhGIjSCjXc5wJSGlFKUaBVLg2gWR0BkUvYzzmOmdX2UKGgGaAloD0MIqinJOhxbTsCUhpRSlGgVS1JoFkdAZFPG+bmU4nV9lChoBmgJaA9DCM0C7Q4p8EfAlIaUUpRoFUt/aBZHQGRTuUliSaF1fZQoaAZoCWgPQwjLnC6Lidk8wJSGlFKUaBVLnWgWR0BkVDMcIZ62dX2UKGgGaAloD0MIOiNKe4NYYMCUhpRSlGgVS1toFkdAZFXOmixmkHV9lChoBmgJaA9DCCmUha+vnlvAlIaUUpRoFUuDaBZHQGRWJ4B3iaR1fZQoaAZoCWgPQwiOVyB6UixfwJSGlFKUaBVLg2gWR0BkVpk9U0emdX2UKGgGaAloD0MIBHXKoxumUMCUhpRSlGgVS3BoFkdAZFdmL9/BnHV9lChoBmgJaA9DCA+dnndjS1PAlIaUUpRoFUupaBZHQGRZA/keZG91fZQoaAZoCWgPQwgC9Pv+TV1rwJSGlFKUaBVLXmgWR0BkWchC+lCUdX2UKGgGaAloD0MIgPChREtMTcCUhpRSlGgVS3BoFkdAZFm8KXv6THV9lChoBmgJaA9DCC0iismbo2fAlIaUUpRoFUtwaBZHQGRZ1q33HrB1fZQoaAZoCWgPQwiMFMrCVyNhwJSGlFKUaBVLpWgWR0BkWg/gR9PUdX2UKGgGaAloD0MIIeo+AKmpW8CUhpRSlGgVS15oFkdAZFq07bL2YnV9lChoBmgJaA9DCIRnQpPE5lDAlIaUUpRoFUt7aBZHQGRcQjUutfZ1fZQoaAZoCWgPQwh1kxgEVvhRwJSGlFKUaBVLSWgWR0BkXC4rjHXFdX2UKGgGaAloD0MI8IgK1c3zTMCUhpRSlGgVS4ZoFkdAZFzhuwX67HV9lChoBmgJaA9DCJ6Xio15Q2fAlIaUUpRoFUtwaBZHQGRdUNKAavR1fZQoaAZoCWgPQwgurvGZbMRwwJSGlFKUaBVLc2gWR0BkXivzOHFhdX2UKGgGaAloD0MILh1znrH5QsCUhpRSlGgVS2BoFkdAZF5uTibUgHV9lChoBmgJaA9DCD8djxmod1HAlIaUUpRoFUt7aBZHQGRe451eSjh1fZQoaAZoCWgPQwhoXg6777ZJwJSGlFKUaBVLh2gWR0BkYCW1MM7VdX2UKGgGaAloD0MIPKWD9f8JYcCUhpRSlGgVS1loFkdAZGBtE5Qxe3V9lChoBmgJaA9DCKBP5EnS607AlIaUUpRoFUtXaBZHQGRg6sQumJp1fZQoaAZoCWgPQwiNRj6veBhIwJSGlFKUaBVLWmgWR0BkYWj7ALy+dX2UKGgGaAloD0MIS3fX2ZCrQcCUhpRSlGgVS2NoFkdAZGIOH31zyXV9lChoBmgJaA9DCNzZVx6k10fAlIaUUpRoFUuPaBZHQGRi4XGff411fZQoaAZoCWgPQwhv1ArT95BDwJSGlFKUaBVLa2gWR0BkY+xUvPC3dX2UKGgGaAloD0MI4ezWMhm1VcCUhpRSlGgVS1FoFkdAZGQy57PY4HV9lChoBmgJaA9DCAvrxrsjFlfAlIaUUpRoFUt9aBZHQGRkzYdyT6l1fZQoaAZoCWgPQwj7zcR0IYFfwJSGlFKUaBVLTWgWR0BkZaRMewLWdX2UKGgGaAloD0MIM9/BTxwwHsCUhpRSlGgVS6FoFkdAZGXQ9ic5KnV9lChoBmgJaA9DCA3+fjFbO1rAlIaUUpRoFUtPaBZHQGRpWWY4Qz11fZQoaAZoCWgPQwiADYgQV8VawJSGlFKUaBVLimgWR0BkaaauwHJLdX2UKGgGaAloD0MIjSYXY2CbScCUhpRSlGgVS3BoFkdAZGpWjoIOY3V9lChoBmgJaA9DCBfUt8xpf2nAlIaUUpRoFUtKaBZHQGRrK2jO9nN1fZQoaAZoCWgPQwgN4ZhlT/FUwJSGlFKUaBVLbWgWR0Bka80DU3GXdX2UKGgGaAloD0MIjINLx5yPMsCUhpRSlGgVS59oFkdAZGwKP4mCy3V9lChoBmgJaA9DCO7Nb5ho/FXAlIaUUpRoFUueaBZHQGRtfgaWHDd1fZQoaAZoCWgPQwhYqDXNO55QwJSGlFKUaBVLV2gWR0Bkbbi++M6zdX2UKGgGaAloD0MI9P4/ThiIYMCUhpRSlGgVS3toFkdAZG7zJZGKAXV9lChoBmgJaA9DCBizJasixFzAlIaUUpRoFUuCaBZHQGRwhzV+Zw51fZQoaAZoCWgPQwhBnl2+9f1LwJSGlFKUaBVLR2gWR0BkcX/zasZHdX2UKGgGaAloD0MIYhHDDuO6Y8CUhpRSlGgVS2VoFkdAZHFS2phnanV9lChoBmgJaA9DCOUqFr8pbFTAlIaUUpRoFUuoaBZHQGRy6r/82rJ1fZQoaAZoCWgPQwgFhqxu9exKQJSGlFKUaBVLwmgWR0BkcsZpBX0YdX2UKGgGaAloD0MIU7RyLzCsV8CUhpRSlGgVS3doFkdAZHNq9oN/fHV9lChoBmgJaA9DCMhcGVQbRlTAlIaUUpRoFUuEaBZHQGRz/dAPd2x1fZQoaAZoCWgPQwif6Lrwg2dHwJSGlFKUaBVLX2gWR0BkdLFZPl+3dX2UKGgGaAloD0MIgZNt4A55VcCUhpRSlGgVS0NoFkdAZHV+OwPiDXV9lChoBmgJaA9DCJpC5zV2CUDAlIaUUpRoFUtTaBZHQGR1k61b7j11fZQoaAZoCWgPQwhAFTduMRVKwJSGlFKUaBVLSWgWR0Bkdendfsu4dX2UKGgGaAloD0MIAIv8+iG2J8CUhpRSlGgVS7BoFkdAZHftKqXF+HV9lChoBmgJaA9DCFWFBmLZ0ljAlIaUUpRoFUtxaBZHQGR4a7mMfih1fZQoaAZoCWgPQwh6GcVyS/dWwJSGlFKUaBVLXGgWR0BkeosNDtw8dX2UKGgGaAloD0MIJEil2FGGZcCUhpRSlGgVS5VoFkdAZHrbiZOSGXV9lChoBmgJaA9DCNofKLftnGHAlIaUUpRoFUuYaBZHQGR78f3evZB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV5wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxcL2hvbWUvdmVub20vbWluaWNvbmRhMy9lbnZzL1JML2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFwvaG9tZS92ZW5vbS9taW5pY29uZGEzL2VudnMvUkwvbGliL3B5dGhvbjMuNy9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGggfZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.17.5-zen1-1-zen-x86_64-with-arch #1 ZEN SMP PREEMPT Wed, 27 Apr 2022 20:56:14 +0000", "Python": "3.7.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9fb7f75391bb0678b4e8b226f69a31f7e43cef66417ee6553b5f1e24a334d63
|
3 |
+
size 96562
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -833.7571337535744, "std_reward": 405.42227466016806, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T06:44:01.296202"}
|