Delete UCI_N6
Browse files- UCI_N6/jmlr_tables.tex +0 -469
- UCI_N6/wilcoxon_pairwise_all.csv +0 -76
- UCI_N6/wilcoxon_pairwise_all.json +0 -1427
- UCI_N6/wilcoxon_prep_all.json +0 -0
UCI_N6/jmlr_tables.tex
DELETED
|
@@ -1,469 +0,0 @@
|
|
| 1 |
-
% JMLR-ready tables for two-column papers
|
| 2 |
-
% Required packages (no siunitx):
|
| 3 |
-
% \usepackage{booktabs}
|
| 4 |
-
% \usepackage{threeparttable}
|
| 5 |
-
% \usepackage{threeparttablex} % for TableNotes + longtable
|
| 6 |
-
% \usepackage{longtable}
|
| 7 |
-
% Optional for landscape: \usepackage{pdflscape}
|
| 8 |
-
|
| 9 |
-
\begin{table*}[t]
|
| 10 |
-
\centering
|
| 11 |
-
\begin{threeparttable}
|
| 12 |
-
\caption{Model dimension ranges (min--max across all datasets and folds). Input/Output dimensions follow dataset label spaces.}
|
| 13 |
-
\label{tab:model-ranges}
|
| 14 |
-
\begin{tabular}{l r r r r r r}
|
| 15 |
-
\toprule
|
| 16 |
-
Algorithm & Width & Depth & Parameters & Padding & Input dim & Output dim \\
|
| 17 |
-
\midrule
|
| 18 |
-
AOL & 32--512 & 6--6 & 502--1245037 & 10--524 & 3--262 & 2--100 \\
|
| 19 |
-
Orthogonal & 32--512 & 6--6 & 507--1245042 & 10--524 & 3--262 & 2--100 \\
|
| 20 |
-
Sandwich & 32--512 & 6--6 & 1057--2620542 & 10--524 & 3--262 & 2--100 \\
|
| 21 |
-
SLL & 32--512 & 6--6 & 2326--1622697 & 10--524 & 3--262 & 2--100 \\
|
| 22 |
-
LDLT-L & 32--512 & 6--6 & 5480--1454611 & 10--524 & 3--262 & 2--100 \\
|
| 23 |
-
LDLT-R & 32--512 & 6--6 & 5577--1588756 & 10--524 & 3--262 & 2--100 \\
|
| 24 |
-
\bottomrule
|
| 25 |
-
\end{tabular}
|
| 26 |
-
\end{threeparttable}
|
| 27 |
-
\end{table*}
|
| 28 |
-
|
| 29 |
-
\begin{table*}[t]
|
| 30 |
-
\centering
|
| 31 |
-
\begin{threeparttable}
|
| 32 |
-
\caption{Sorted mean$\pm$std across $N$ datasets for each algorithm.}
|
| 33 |
-
\label{tab:metric_summary}
|
| 34 |
-
\begin{tabular}{l r lllll}
|
| 35 |
-
\toprule
|
| 36 |
-
& & & \multicolumn{4}{c}{Certified Accuracy} \\
|
| 37 |
-
\cmidrule(lr){4-7}
|
| 38 |
-
Algorithm & $N$ & Accuracy & 36/255 & 72/255 & 108/255 & 255/255 \\
|
| 39 |
-
\midrule
|
| 40 |
-
AOL & 121 & 0.6049\,\tiny$\pm$0.2396 & 0.2918\,\tiny$\pm$0.3122 & 0.2161\,\tiny$\pm$0.2949 & 0.1740\,\tiny$\pm$0.2722 & 0.0837\,\tiny$\pm$0.1782 \\
|
| 41 |
-
Orthogonal & 121 & 0.7036\,\tiny$\pm$0.1911 & 0.6071\,\tiny$\pm$0.2396 & 0.5068\,\tiny$\pm$0.2668 & 0.4233\,\tiny$\pm$0.2781 & 0.1983\,\tiny$\pm$0.2361 \\
|
| 42 |
-
Sandwich & 121 & 0.7163\,\tiny$\pm$0.1879 & \textbf{0.6284\,\tiny$\pm$0.2414} & \textbf{0.5525\,\tiny$\pm$0.2633} & \textbf{0.4743\,\tiny$\pm$0.2773} & \textbf{0.2476\,\tiny$\pm$0.2509} \\
|
| 43 |
-
SLL & 121 & 0.7011\,\tiny$\pm$0.1939 & 0.5866\,\tiny$\pm$0.2459 & 0.4810\,\tiny$\pm$0.2741 & 0.3932\,\tiny$\pm$0.2829 & 0.1882\,\tiny$\pm$0.2325 \\
|
| 44 |
-
\midrule
|
| 45 |
-
LDLT-L & 121 & \textbf{0.7245\,\tiny$\pm$0.1908} & 0.4665\,\tiny$\pm$0.3341 & 0.3863\,\tiny$\pm$0.3235 & 0.3226\,\tiny$\pm$0.3084 & 0.1562\,\tiny$\pm$0.2269 \\
|
| 46 |
-
LDLT-R & 121 & 0.6970\,\tiny$\pm$0.2021 & 0.6114\,\tiny$\pm$0.2325 & 0.5253\,\tiny$\pm$0.2552 & 0.4516\,\tiny$\pm$0.2645 & 0.2138\,\tiny$\pm$0.2275 \\
|
| 47 |
-
\bottomrule
|
| 48 |
-
\end{tabular}
|
| 49 |
-
\end{threeparttable}
|
| 50 |
-
\end{table*}
|
| 51 |
-
|
| 52 |
-
\begin{table}[t]
|
| 53 |
-
\centering
|
| 54 |
-
\begin{threeparttable}
|
| 55 |
-
{\small
|
| 56 |
-
\caption{Overall comparison on Mean Accuracy: average rank (lower is better) with Iman--Davenport $F=34.41$ (df=5,600), $p=1.11e-16$; Nemenyi CD$=0.969$. Counts are significant wins/losses after Holm within-metric at $\alpha=0.05$.}
|
| 57 |
-
\label{tab:overall:mean_test_acc}
|
| 58 |
-
\setlength{\tabcolsep}{4pt}
|
| 59 |
-
\begin{tabular}{@{}l r r r r r r@{}}
|
| 60 |
-
\toprule
|
| 61 |
-
Algorithm & \shortstack{Avg \\ rank} $\downarrow$ & \shortstack{sig \\ wins} & \shortstack{sig \\ losses} & \shortstack{net \\ wins} & \shortstack{win \\ share} & mean $r$ \\
|
| 62 |
-
\midrule
|
| 63 |
-
LDLT-L & 2.525 & 4 & 0 & 4 & 0.800 & 0.533 \\
|
| 64 |
-
Sandwich & 2.773 & 4 & 0 & 4 & 0.800 & 0.421 \\
|
| 65 |
-
Orthogonal & 3.479 & 1 & 2 & -1 & 0.200 & 0.654 \\
|
| 66 |
-
SLL & 3.545 & 1 & 2 & -1 & 0.200 & 0.621 \\
|
| 67 |
-
LDLT-R & 3.628 & 1 & 2 & -1 & 0.200 & 0.560 \\
|
| 68 |
-
AOL & 5.050 & 0 & 5 & -5 & 0.000 & 0.000 \\
|
| 69 |
-
\bottomrule
|
| 70 |
-
\end{tabular}
|
| 71 |
-
}
|
| 72 |
-
\end{threeparttable}
|
| 73 |
-
\end{table}
|
| 74 |
-
|
| 75 |
-
\begin{table}[t]
|
| 76 |
-
\centering
|
| 77 |
-
\begin{threeparttable}
|
| 78 |
-
{\small
|
| 79 |
-
\caption{Overall comparison on Mean Certified Accuracy (36/255): average rank (lower is better) with Iman--Davenport $F=71.33$ (df=5,600), $p=1.11e-16$; Nemenyi CD$=0.969$. Counts are significant wins/losses after Holm within-metric at $\alpha=0.05$.}
|
| 80 |
-
\label{tab:overall:mean_cert_acc_36}
|
| 81 |
-
\setlength{\tabcolsep}{4pt}
|
| 82 |
-
\begin{tabular}{@{}l r r r r r r@{}}
|
| 83 |
-
\toprule
|
| 84 |
-
Algorithm & \shortstack{Avg \\ rank} $\downarrow$ & \shortstack{sig \\ wins} & \shortstack{sig \\ losses} & \shortstack{net \\ wins} & \shortstack{win \\ share} & mean $r$ \\
|
| 85 |
-
\midrule
|
| 86 |
-
Sandwich & 2.380 & 4 & 0 & 4 & 0.800 & 0.574 \\
|
| 87 |
-
LDLT-R & 2.694 & 3 & 0 & 3 & 0.600 & 0.580 \\
|
| 88 |
-
SLL & 3.128 & 2 & 2 & 0 & 0.400 & 0.696 \\
|
| 89 |
-
Orthogonal & 3.252 & 2 & 1 & 1 & 0.400 & 0.671 \\
|
| 90 |
-
LDLT-L & 4.004 & 1 & 4 & -3 & 0.200 & 0.645 \\
|
| 91 |
-
AOL & 5.541 & 0 & 5 & -5 & 0.000 & 0.000 \\
|
| 92 |
-
\bottomrule
|
| 93 |
-
\end{tabular}
|
| 94 |
-
}
|
| 95 |
-
\end{threeparttable}
|
| 96 |
-
\end{table}
|
| 97 |
-
|
| 98 |
-
\begin{table}[t]
|
| 99 |
-
\centering
|
| 100 |
-
\begin{threeparttable}
|
| 101 |
-
{\small
|
| 102 |
-
\caption{Overall comparison on Mean Certified Accuracy (72/255): average rank (lower is better) with Iman--Davenport $F=111.54$ (df=5,600), $p=1.11e-16$; Nemenyi CD$=0.969$. Counts are significant wins/losses after Holm within-metric at $\alpha=0.05$.}
|
| 103 |
-
\label{tab:overall:mean_cert_acc_72}
|
| 104 |
-
\setlength{\tabcolsep}{4pt}
|
| 105 |
-
\begin{tabular}{@{}l r r r r r r@{}}
|
| 106 |
-
\toprule
|
| 107 |
-
Algorithm & \shortstack{Avg \\ rank} $\downarrow$ & \shortstack{sig \\ wins} & \shortstack{sig \\ losses} & \shortstack{net \\ wins} & \shortstack{win \\ share} & mean $r$ \\
|
| 108 |
-
\midrule
|
| 109 |
-
Sandwich & 2.041 & 5 & 0 & 5 & 1.000 & 0.599 \\
|
| 110 |
-
LDLT-R & 2.562 & 4 & 1 & 3 & 0.800 & 0.540 \\
|
| 111 |
-
SLL & 3.260 & 2 & 2 & 0 & 0.400 & 0.729 \\
|
| 112 |
-
Orthogonal & 3.273 & 2 & 2 & 0 & 0.400 & 0.707 \\
|
| 113 |
-
LDLT-L & 4.153 & 1 & 4 & -3 & 0.200 & 0.776 \\
|
| 114 |
-
AOL & 5.711 & 0 & 5 & -5 & 0.000 & 0.000 \\
|
| 115 |
-
\bottomrule
|
| 116 |
-
\end{tabular}
|
| 117 |
-
}
|
| 118 |
-
\end{threeparttable}
|
| 119 |
-
\end{table}
|
| 120 |
-
|
| 121 |
-
\begin{table}[t]
|
| 122 |
-
\centering
|
| 123 |
-
\begin{threeparttable}
|
| 124 |
-
{\small
|
| 125 |
-
\caption{Overall comparison on Mean Certified Accuracy (108/255): average rank (lower is better) with Iman--Davenport $F=129.26$ (df=5,600), $p=1.11e-16$; Nemenyi CD$=0.969$. Counts are significant wins/losses after Holm within-metric at $\alpha=0.05$.}
|
| 126 |
-
\label{tab:overall:mean_cert_acc_108}
|
| 127 |
-
\setlength{\tabcolsep}{4pt}
|
| 128 |
-
\begin{tabular}{@{}l r r r r r r@{}}
|
| 129 |
-
\toprule
|
| 130 |
-
Algorithm & \shortstack{Avg \\ rank} $\downarrow$ & \shortstack{sig \\ wins} & \shortstack{sig \\ losses} & \shortstack{net \\ wins} & \shortstack{win \\ share} & mean $r$ \\
|
| 131 |
-
\midrule
|
| 132 |
-
Sandwich & 2.083 & 4 & 0 & 4 & 0.800 & 0.704 \\
|
| 133 |
-
LDLT-R & 2.277 & 4 & 0 & 4 & 0.800 & 0.605 \\
|
| 134 |
-
Orthogonal & 3.248 & 3 & 2 & 1 & 0.600 & 0.546 \\
|
| 135 |
-
SLL & 3.430 & 2 & 3 & -1 & 0.400 & 0.702 \\
|
| 136 |
-
LDLT-L & 4.236 & 1 & 4 & -3 & 0.200 & 0.828 \\
|
| 137 |
-
AOL & 5.727 & 0 & 5 & -5 & 0.000 & 0.000 \\
|
| 138 |
-
\bottomrule
|
| 139 |
-
\end{tabular}
|
| 140 |
-
}
|
| 141 |
-
\end{threeparttable}
|
| 142 |
-
\end{table}
|
| 143 |
-
|
| 144 |
-
\begin{table}[t]
|
| 145 |
-
\centering
|
| 146 |
-
\begin{threeparttable}
|
| 147 |
-
{\small
|
| 148 |
-
\caption{Overall comparison on Mean Certified Accuracy (255/255): average rank (lower is better) with Iman--Davenport $F=91.19$ (df=5,600), $p=1.11e-16$; Nemenyi CD$=0.969$. Counts are significant wins/losses after Holm within-metric at $\alpha=0.05$.}
|
| 149 |
-
\label{tab:overall:mean_cert_acc_255}
|
| 150 |
-
\setlength{\tabcolsep}{4pt}
|
| 151 |
-
\begin{tabular}{@{}l r r r r r r@{}}
|
| 152 |
-
\toprule
|
| 153 |
-
Algorithm & \shortstack{Avg \\ rank} $\downarrow$ & \shortstack{sig \\ wins} & \shortstack{sig \\ losses} & \shortstack{net \\ wins} & \shortstack{win \\ share} & mean $r$ \\
|
| 154 |
-
\midrule
|
| 155 |
-
Sandwich & 2.037 & 5 & 0 & 5 & 1.000 & 0.652 \\
|
| 156 |
-
LDLT-R & 2.508 & 4 & 1 & 3 & 0.800 & 0.597 \\
|
| 157 |
-
SLL & 3.322 & 2 & 2 & 0 & 0.400 & 0.679 \\
|
| 158 |
-
Orthogonal & 3.459 & 2 & 2 & 0 & 0.400 & 0.653 \\
|
| 159 |
-
LDLT-L & 4.194 & 1 & 4 & -3 & 0.200 & 0.850 \\
|
| 160 |
-
AOL & 5.479 & 0 & 5 & -5 & 0.000 & 0.000 \\
|
| 161 |
-
\bottomrule
|
| 162 |
-
\end{tabular}
|
| 163 |
-
}
|
| 164 |
-
\end{threeparttable}
|
| 165 |
-
\end{table}
|
| 166 |
-
|
| 167 |
-
\begin{table}[t]
|
| 168 |
-
\centering
|
| 169 |
-
\begin{threeparttable}
|
| 170 |
-
{
|
| 171 |
-
\caption{Pairwise Wilcoxon outcomes for Mean Accuracy (Holm within-metric at $\alpha=0.05$): row vs. column (\textcolor{green}{$\blacktriangle$} win, \textcolor{red}{$\blacktriangledown$} loss, $\cdot$ none).}
|
| 172 |
-
\label{tab:signif:mean_test_acc}
|
| 173 |
-
\setlength{\tabcolsep}{3pt}
|
| 174 |
-
\begin{tabular}{@{}l c c c c c c @{}}
|
| 175 |
-
\toprule
|
| 176 |
-
& AOL & LDLT-L & LDLT-R & Orthogonal & Sandwich & SLL \\
|
| 177 |
-
\midrule
|
| 178 |
-
AOL & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} \\
|
| 179 |
-
LDLT-L & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} \\
|
| 180 |
-
LDLT-R & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & $\cdot$ & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & $\cdot$ \\
|
| 181 |
-
Orthogonal & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & $\cdot$ & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & $\cdot$ \\
|
| 182 |
-
Sandwich & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} \\
|
| 183 |
-
SLL & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & $\cdot$ & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & $\cdot$ \\
|
| 184 |
-
\bottomrule
|
| 185 |
-
\end{tabular}
|
| 186 |
-
}
|
| 187 |
-
\end{threeparttable}
|
| 188 |
-
\end{table}
|
| 189 |
-
|
| 190 |
-
\begin{table}[t]
|
| 191 |
-
\centering
|
| 192 |
-
\begin{threeparttable}
|
| 193 |
-
{
|
| 194 |
-
\caption{Pairwise Wilcoxon outcomes for Mean Certified Accuracy (36/255) (Holm within-metric at $\alpha=0.05$): row vs. column (\textcolor{green}{$\blacktriangle$} win, \textcolor{red}{$\blacktriangledown$} loss, $\cdot$ none).}
|
| 195 |
-
\label{tab:signif:mean_cert_acc_36}
|
| 196 |
-
\setlength{\tabcolsep}{3pt}
|
| 197 |
-
\begin{tabular}{@{}l c c c c c c @{}}
|
| 198 |
-
\toprule
|
| 199 |
-
& AOL & LDLT-L & LDLT-R & Orthogonal & Sandwich & SLL \\
|
| 200 |
-
\midrule
|
| 201 |
-
AOL & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} \\
|
| 202 |
-
LDLT-L & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} \\
|
| 203 |
-
LDLT-R & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & $\cdot$ & $\cdot$ & $\cdot$ & \textcolor{green}{$\blacktriangle$} \\
|
| 204 |
-
Orthogonal & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & $\cdot$ & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & $\cdot$ \\
|
| 205 |
-
Sandwich & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} \\
|
| 206 |
-
SLL & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & $\cdot$ \\
|
| 207 |
-
\bottomrule
|
| 208 |
-
\end{tabular}
|
| 209 |
-
}
|
| 210 |
-
\end{threeparttable}
|
| 211 |
-
\end{table}
|
| 212 |
-
|
| 213 |
-
\begin{table}[t]
|
| 214 |
-
\centering
|
| 215 |
-
\begin{threeparttable}
|
| 216 |
-
{
|
| 217 |
-
\caption{Pairwise Wilcoxon outcomes for Mean Certified Accuracy (72/255) (Holm within-metric at $\alpha=0.05$): row vs. column (\textcolor{green}{$\blacktriangle$} win, \textcolor{red}{$\blacktriangledown$} loss, $\cdot$ none).}
|
| 218 |
-
\label{tab:signif:mean_cert_acc_72}
|
| 219 |
-
\setlength{\tabcolsep}{3pt}
|
| 220 |
-
\begin{tabular}{@{}l c c c c c c @{}}
|
| 221 |
-
\toprule
|
| 222 |
-
& AOL & LDLT-L & LDLT-R & Orthogonal & Sandwich & SLL \\
|
| 223 |
-
\midrule
|
| 224 |
-
AOL & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} \\
|
| 225 |
-
LDLT-L & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} \\
|
| 226 |
-
LDLT-R & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{green}{$\blacktriangle$} \\
|
| 227 |
-
Orthogonal & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & $\cdot$ \\
|
| 228 |
-
Sandwich & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} \\
|
| 229 |
-
SLL & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & $\cdot$ \\
|
| 230 |
-
\bottomrule
|
| 231 |
-
\end{tabular}
|
| 232 |
-
}
|
| 233 |
-
\end{threeparttable}
|
| 234 |
-
\end{table}
|
| 235 |
-
|
| 236 |
-
\begin{table}[t]
|
| 237 |
-
\centering
|
| 238 |
-
\begin{threeparttable}
|
| 239 |
-
{
|
| 240 |
-
\caption{Pairwise Wilcoxon outcomes for Mean Certified Accuracy (108/255) (Holm within-metric at $\alpha=0.05$): row vs. column (\textcolor{green}{$\blacktriangle$} win, \textcolor{red}{$\blacktriangledown$} loss, $\cdot$ none).}
|
| 241 |
-
\label{tab:signif:mean_cert_acc_108}
|
| 242 |
-
\setlength{\tabcolsep}{3pt}
|
| 243 |
-
\begin{tabular}{@{}l c c c c c c @{}}
|
| 244 |
-
\toprule
|
| 245 |
-
& AOL & LDLT-L & LDLT-R & Orthogonal & Sandwich & SLL \\
|
| 246 |
-
\midrule
|
| 247 |
-
AOL & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} \\
|
| 248 |
-
LDLT-L & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} \\
|
| 249 |
-
LDLT-R & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} \\
|
| 250 |
-
Orthogonal & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & \textcolor{green}{$\blacktriangle$} \\
|
| 251 |
-
Sandwich & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} \\
|
| 252 |
-
SLL & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & $\cdot$ \\
|
| 253 |
-
\bottomrule
|
| 254 |
-
\end{tabular}
|
| 255 |
-
}
|
| 256 |
-
\end{threeparttable}
|
| 257 |
-
\end{table}
|
| 258 |
-
|
| 259 |
-
\begin{table}[t]
|
| 260 |
-
\centering
|
| 261 |
-
\begin{threeparttable}
|
| 262 |
-
{
|
| 263 |
-
\caption{Pairwise Wilcoxon outcomes for Mean Certified Accuracy (255/255) (Holm within-metric at $\alpha=0.05$): row vs. column (\textcolor{green}{$\blacktriangle$} win, \textcolor{red}{$\blacktriangledown$} loss, $\cdot$ none).}
|
| 264 |
-
\label{tab:signif:mean_cert_acc_255}
|
| 265 |
-
\setlength{\tabcolsep}{3pt}
|
| 266 |
-
\begin{tabular}{@{}l c c c c c c @{}}
|
| 267 |
-
\toprule
|
| 268 |
-
& AOL & LDLT-L & LDLT-R & Orthogonal & Sandwich & SLL \\
|
| 269 |
-
\midrule
|
| 270 |
-
AOL & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} \\
|
| 271 |
-
LDLT-L & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{red}{$\blacktriangledown$} \\
|
| 272 |
-
LDLT-R & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & \textcolor{green}{$\blacktriangle$} \\
|
| 273 |
-
Orthogonal & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & $\cdot$ \\
|
| 274 |
-
Sandwich & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & $\cdot$ & \textcolor{green}{$\blacktriangle$} \\
|
| 275 |
-
SLL & \textcolor{green}{$\blacktriangle$} & \textcolor{green}{$\blacktriangle$} & \textcolor{red}{$\blacktriangledown$} & $\cdot$ & \textcolor{red}{$\blacktriangledown$} & $\cdot$ \\
|
| 276 |
-
\bottomrule
|
| 277 |
-
\end{tabular}
|
| 278 |
-
}
|
| 279 |
-
\end{threeparttable}
|
| 280 |
-
\end{table}
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
\begin{table*}[t]
|
| 284 |
-
\centering
|
| 285 |
-
\begin{threeparttable}
|
| 286 |
-
\caption[Mean Accuracy]{Wilcoxon signed-rank tests (two-sided) for Mean Accuracy; $p$-values with Holm FWER corrections within-metric and global.}
|
| 287 |
-
\label{tab:wilcoxon:mean_test_acc}
|
| 288 |
-
\begingroup
|
| 289 |
-
\setlength{\tabcolsep}{4pt}
|
| 290 |
-
\begin{tabular}{ll r r r r r r r r r r r}
|
| 291 |
-
\toprule
|
| 292 |
-
\multicolumn{2}{c}{Algorithms} & \multicolumn{6}{c}{Run Statistics} & \multicolumn{5}{c}{Wilcoxon pairwise Statistics} \\\cmidrule(lr){1-2} \cmidrule(lr){3-8} \cmidrule(lr){9-13}
|
| 293 |
-
Alg A & Alg B & $n$ & wins$_A$ & wins$_B$ & ties & WinRate A & \shortstack{Median \\ $\Delta$ (A--B)} & $W$ & $p$ & $p_{\text{Holm,within}}$ & $p_{\text{Holm,global}}$ & $r$ \\
|
| 294 |
-
\midrule
|
| 295 |
-
AOL & LDLT-L & 121 & 16 & 105 & 0 & 0.1322 & -0.0632 & 409 & $2.1e-17^{***}$ & $3.2e-16^{***}$ & $0^{***}$ & 0.7715 \\
|
| 296 |
-
AOL & Sandwich & 121 & 23 & 98 & 0 & 0.1901 & -0.0656 & 698 & $0^{***}$ & $0^{***}$ & $0^{***}$ & 0.7036 \\
|
| 297 |
-
AOL & Orthogonal & 121 & 25 & 96 & 0 & 0.2066 & -0.0525 & 908 & $0^{***}$ & $0^{***}$ & $0^{***}$ & 0.6542 \\
|
| 298 |
-
AOL & SLL & 121 & 24 & 97 & 0 & 0.1983 & -0.0445 & 1047 & $0^{***}$ & $1.0e-10^{***}$ & $4.0e-10^{***}$ & 0.6215 \\
|
| 299 |
-
AOL & LDLT-R & 121 & 27 & 94 & 0 & 0.2231 & -0.0357 & 1307 & $7.0e-10^{***}$ & $7.8e-09^{***}$ & $2.4e-08^{***}$ & 0.5604 \\
|
| 300 |
-
LDLT-L & SLL & 121 & 86 & 35 & 0 & 0.7107 & 0.0103 & 1511 & $1.7e-08^{***}$ & $1.7e-07^{***}$ & $5.0e-07^{***}$ & 0.5124 \\
|
| 301 |
-
LDLT-L & LDLT-R & 121 & 87 & 34 & 0 & 0.7190 & 0.0125 & 1779 & $7.7e-07^{***}$ & $6.9e-06^{***}$ & $2.1e-05^{***}$ & 0.4494 \\
|
| 302 |
-
LDLT-L & Orthogonal & 121 & 78 & 43 & 0 & 0.6446 & 0.0104 & 2002 & $1.3e-05^{***}$ & $1.0e-04^{***}$ & $2.8e-04^{***}$ & 0.3969 \\
|
| 303 |
-
Orthogonal & Sandwich & 121 & 39 & 81 & 1 & 0.3264 & -0.0079 & 2171 & $1.3e-04^{***}$ & $9.4e-04^{***}$ & $2.5e-03^{**}$ & 0.3487 \\
|
| 304 |
-
Sandwich & SLL & 121 & 80 & 41 & 0 & 0.6612 & 0.0063 & 2279 & $2.6e-04^{***}$ & $1.6e-03^{**}$ & $4.5e-03^{**}$ & 0.3318 \\
|
| 305 |
-
LDLT-R & Sandwich & 121 & 47 & 74 & 0 & 0.3884 & -0.0101 & 2411 & $9.4e-04^{***}$ & $4.7e-03^{**}$ & $1.4e-02^{*}$ & 0.3008 \\
|
| 306 |
-
LDLT-L & Sandwich & 121 & 64 & 56 & 1 & 0.5331 & 0.0008 & 3145 & $2.0e-01$ & $8.2e-01$ & $1.0e+00$ & 0.1158 \\
|
| 307 |
-
LDLT-R & Orthogonal & 121 & 54 & 67 & 0 & 0.4463 & -0.0024 & 3206 & $2.1e-01$ & $8.2e-01$ & $1.0e+00$ & 0.1138 \\
|
| 308 |
-
Orthogonal & SLL & 121 & 60 & 61 & 0 & 0.4959 & -0.0000 & 3382 & $4.3e-01$ & $8.5e-01$ & $1.0e+00$ & 0.0724 \\
|
| 309 |
-
LDLT-R & SLL & 121 & 58 & 63 & 0 & 0.4793 & -0.0010 & 3627 & $8.7e-01$ & $8.7e-01$ & $1.0e+00$ & 0.0148 \\
|
| 310 |
-
\bottomrule
|
| 311 |
-
\end{tabular}
|
| 312 |
-
\begin{tablenotes}
|
| 313 |
-
\item Stars mark significance ($^*\,p\!\le\!0.05$, $^{**}\,p\!\le\!0.01$, $^{***}\,p\!\le\!0.001$).
|
| 314 |
-
\end{tablenotes}
|
| 315 |
-
\endgroup
|
| 316 |
-
\end{threeparttable}
|
| 317 |
-
\end{table*}
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
\begin{table*}[t]
|
| 322 |
-
\centering
|
| 323 |
-
\begin{threeparttable}
|
| 324 |
-
\caption[Mean Certified Accuracy (36/255)]{Wilcoxon signed-rank tests (two-sided) for Mean Certified Accuracy (36/255); $p$-values with Holm FWER corrections within-metric and global.}
|
| 325 |
-
\label{tab:wilcoxon:mean_cert_acc_36}
|
| 326 |
-
\begingroup
|
| 327 |
-
\setlength{\tabcolsep}{4pt}
|
| 328 |
-
\begin{tabular}{ll r r r r r r r r r r r}
|
| 329 |
-
\toprule
|
| 330 |
-
\multicolumn{2}{c}{Algorithms} & \multicolumn{6}{c}{Run Statistics} & \multicolumn{5}{c}{Wilcoxon pairwise Statistics} \\\cmidrule(lr){1-2} \cmidrule(lr){3-8} \cmidrule(lr){9-13}
|
| 331 |
-
Alg A & Alg B & $n$ & wins$_A$ & wins$_B$ & ties & WinRate A & \shortstack{Median \\ $\Delta$ (A--B)} & $W$ & $p$ & $p_{\text{Holm,within}}$ & $p_{\text{Holm,global}}$ & $r$ \\
|
| 332 |
-
\midrule
|
| 333 |
-
AOL & LDLT-R & 121 & 6 & 115 & 0 & 0.0496 & -0.2928 & 93 & $1.4e-20^{***}$ & $2.0e-19^{***}$ & $9.5e-19^{***}$ & 0.8458 \\
|
| 334 |
-
AOL & SLL & 121 & 7 & 114 & 0 & 0.0579 & -0.2868 & 156 & $6.2e-20^{***}$ & $8.7e-19^{***}$ & $4.1e-18^{***}$ & 0.8310 \\
|
| 335 |
-
AOL & Sandwich & 121 & 9 & 112 & 0 & 0.0744 & -0.3563 & 174 & $9.5e-20^{***}$ & $1.2e-18^{***}$ & $6.2e-18^{***}$ & 0.8268 \\
|
| 336 |
-
AOL & Orthogonal & 121 & 9 & 112 & 0 & 0.0744 & -0.2985 & 184 & $1.2e-19^{***}$ & $1.4e-18^{***}$ & $7.6e-18^{***}$ & 0.8245 \\
|
| 337 |
-
AOL & LDLT-L & 121 & 21 & 93 & 7 & 0.2025 & -0.1185 & 843 & $0^{***}$ & $1.0e-10^{***}$ & $3.0e-10^{***}$ & 0.6445 \\
|
| 338 |
-
LDLT-L & Sandwich & 121 & 31 & 90 & 0 & 0.2562 & -0.0772 & 975 & $0^{***}$ & $0^{***}$ & $1.0e-10^{***}$ & 0.6384 \\
|
| 339 |
-
LDLT-L & LDLT-R & 121 & 36 & 85 & 0 & 0.2975 & -0.0605 & 1205 & $1.0e-10^{***}$ & $1.2e-09^{***}$ & $5.1e-09^{***}$ & 0.5843 \\
|
| 340 |
-
LDLT-L & SLL & 121 & 36 & 85 & 0 & 0.2975 & -0.0489 & 1305 & $7.0e-10^{***}$ & $5.5e-09^{***}$ & $2.4e-08^{***}$ & 0.5608 \\
|
| 341 |
-
LDLT-L & Orthogonal & 121 & 42 & 79 & 0 & 0.3471 & -0.0531 & 1489 & $1.3e-08^{***}$ & $8.7e-08^{***}$ & $3.7e-07^{***}$ & 0.5176 \\
|
| 342 |
-
Sandwich & SLL & 121 & 84 & 35 & 2 & 0.7025 & 0.0174 & 1683 & $5.7e-07^{***}$ & $3.4e-06^{***}$ & $1.6e-05^{***}$ & 0.4586 \\
|
| 343 |
-
Orthogonal & Sandwich & 121 & 38 & 82 & 1 & 0.3182 & -0.0130 & 2067 & $4.3e-05^{***}$ & $2.1e-04^{***}$ & $9.0e-04^{***}$ & 0.3735 \\
|
| 344 |
-
LDLT-R & SLL & 121 & 71 & 49 & 1 & 0.5909 & 0.0081 & 2331 & $6.7e-04^{***}$ & $2.7e-03^{**}$ & $1.1e-02^{*}$ & 0.3104 \\
|
| 345 |
-
LDLT-R & Sandwich & 121 & 52 & 68 & 1 & 0.4339 & -0.0088 & 2802 & $3.0e-02^{*}$ & $9.1e-02$ & $3.0e-01$ & 0.1978 \\
|
| 346 |
-
Orthogonal & SLL & 121 & 58 & 63 & 0 & 0.4793 & -0.0016 & 3123 & $1.4e-01$ & $2.8e-01$ & $1.0e+00$ & 0.1333 \\
|
| 347 |
-
LDLT-R & Orthogonal & 121 & 76 & 45 & 0 & 0.6281 & 0.0060 & 3225 & $2.3e-01$ & $2.8e-01$ & $1.0e+00$ & 0.1093 \\
|
| 348 |
-
\bottomrule
|
| 349 |
-
\end{tabular}
|
| 350 |
-
\begin{tablenotes}
|
| 351 |
-
\item Stars mark significance ($^*\,p\!\le\!0.05$, $^{**}\,p\!\le\!0.01$, $^{***}\,p\!\le\!0.001$).
|
| 352 |
-
\end{tablenotes}
|
| 353 |
-
\endgroup
|
| 354 |
-
\end{threeparttable}
|
| 355 |
-
\end{table*}
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
\begin{table*}[t]
|
| 360 |
-
\centering
|
| 361 |
-
\begin{threeparttable}
|
| 362 |
-
\caption[Mean Certified Accuracy (72/255)]{Wilcoxon signed-rank tests (two-sided) for Mean Certified Accuracy (72/255); $p$-values with Holm FWER corrections within-metric and global.}
|
| 363 |
-
\label{tab:wilcoxon:mean_cert_acc_72}
|
| 364 |
-
\begingroup
|
| 365 |
-
\setlength{\tabcolsep}{4pt}
|
| 366 |
-
\begin{tabular}{ll r r r r r r r r r r r}
|
| 367 |
-
\toprule
|
| 368 |
-
\multicolumn{2}{c}{Algorithms} & \multicolumn{6}{c}{Run Statistics} & \multicolumn{5}{c}{Wilcoxon pairwise Statistics} \\\cmidrule(lr){1-2} \cmidrule(lr){3-8} \cmidrule(lr){9-13}
|
| 369 |
-
Alg A & Alg B & $n$ & wins$_A$ & wins$_B$ & ties & WinRate A & \shortstack{Median \\ $\Delta$ (A--B)} & $W$ & $p$ & $p_{\text{Holm,within}}$ & $p_{\text{Holm,global}}$ & $r$ \\
|
| 370 |
-
\midrule
|
| 371 |
-
AOL & SLL & 121 & 1 & 118 & 2 & 0.0165 & -0.2343 & 2 & $3.1e-21^{***}$ & $4.3e-20^{***}$ & $2.3e-19^{***}$ & 0.8672 \\
|
| 372 |
-
AOL & LDLT-R & 121 & 1 & 120 & 0 & 0.0083 & -0.2920 & 21 & $2.3e-21^{***}$ & $3.5e-20^{***}$ & $1.7e-19^{***}$ & 0.8628 \\
|
| 373 |
-
AOL & Orthogonal & 121 & 6 & 115 & 0 & 0.0496 & -0.2589 & 86 & $1.2e-20^{***}$ & $1.5e-19^{***}$ & $8.3e-19^{***}$ & 0.8473 \\
|
| 374 |
-
AOL & Sandwich & 121 & 7 & 114 & 0 & 0.0579 & -0.3205 & 90 & $1.3e-20^{***}$ & $1.5e-19^{***}$ & $8.9e-19^{***}$ & 0.8465 \\
|
| 375 |
-
AOL & LDLT-L & 121 & 10 & 93 & 18 & 0.1570 & -0.1040 & 284 & $0^{***}$ & $0^{***}$ & $0^{***}$ & 0.7759 \\
|
| 376 |
-
LDLT-L & Sandwich & 121 & 21 & 99 & 1 & 0.1777 & -0.0916 & 608 & $0^{***}$ & $0^{***}$ & $0^{***}$ & 0.7223 \\
|
| 377 |
-
LDLT-L & LDLT-R & 121 & 30 & 91 & 0 & 0.2479 & -0.0704 & 922 & $0^{***}$ & $0^{***}$ & $0^{***}$ & 0.6509 \\
|
| 378 |
-
Orthogonal & Sandwich & 121 & 19 & 99 & 3 & 0.1694 & -0.0301 & 1122 & $1.0e-10^{***}$ & $8.0e-10^{***}$ & $5.4e-09^{***}$ & 0.5905 \\
|
| 379 |
-
LDLT-L & SLL & 121 & 34 & 86 & 1 & 0.2851 & -0.0486 & 1161 & $1.0e-10^{***}$ & $8.0e-10^{***}$ & $4.1e-09^{***}$ & 0.5901 \\
|
| 380 |
-
Sandwich & SLL & 121 & 93 & 28 & 0 & 0.7686 & 0.0368 & 1188 & $1.0e-10^{***}$ & $8.0e-10^{***}$ & $4.0e-09^{***}$ & 0.5883 \\
|
| 381 |
-
LDLT-L & Orthogonal & 121 & 35 & 85 & 1 & 0.2934 & -0.0477 & 1257 & $5.0e-10^{***}$ & $2.6e-09^{***}$ & $1.9e-08^{***}$ & 0.5672 \\
|
| 382 |
-
LDLT-R & SLL & 121 & 82 & 39 & 0 & 0.6777 & 0.0152 & 1961 & $7.7e-06^{***}$ & $3.1e-05^{***}$ & $1.8e-04^{***}$ & 0.4066 \\
|
| 383 |
-
LDLT-R & Sandwich & 121 & 49 & 72 & 0 & 0.4050 & -0.0105 & 2635 & $6.4e-03^{**}$ & $1.9e-02^{*}$ & $8.3e-02$ & 0.2481 \\
|
| 384 |
-
LDLT-R & Orthogonal & 121 & 74 & 47 & 0 & 0.6116 & 0.0114 & 2675 & $8.7e-03^{**}$ & $1.9e-02^{*}$ & $1.0e-01$ & 0.2387 \\
|
| 385 |
-
Orthogonal & SLL & 121 & 62 & 59 & 0 & 0.5124 & 0.0025 & 2936 & $5.1e-02$ & $5.1e-02$ & $4.6e-01$ & 0.1774 \\
|
| 386 |
-
\bottomrule
|
| 387 |
-
\end{tabular}
|
| 388 |
-
\begin{tablenotes}
|
| 389 |
-
\item Stars mark significance ($^*\,p\!\le\!0.05$, $^{**}\,p\!\le\!0.01$, $^{***}\,p\!\le\!0.001$).
|
| 390 |
-
\end{tablenotes}
|
| 391 |
-
\endgroup
|
| 392 |
-
\end{threeparttable}
|
| 393 |
-
\end{table*}
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
\begin{table*}[t]
|
| 398 |
-
\centering
|
| 399 |
-
\begin{threeparttable}
|
| 400 |
-
\caption[Mean Certified Accuracy (108/255)]{Wilcoxon signed-rank tests (two-sided) for Mean Certified Accuracy (108/255); $p$-values with Holm FWER corrections within-metric and global.}
|
| 401 |
-
\label{tab:wilcoxon:mean_cert_acc_108}
|
| 402 |
-
\begingroup
|
| 403 |
-
\setlength{\tabcolsep}{4pt}
|
| 404 |
-
\begin{tabular}{ll r r r r r r r r r r r}
|
| 405 |
-
\toprule
|
| 406 |
-
\multicolumn{2}{c}{Algorithms} & \multicolumn{6}{c}{Run Statistics} & \multicolumn{5}{c}{Wilcoxon pairwise Statistics} \\\cmidrule(lr){1-2} \cmidrule(lr){3-8} \cmidrule(lr){9-13}
|
| 407 |
-
Alg A & Alg B & $n$ & wins$_A$ & wins$_B$ & ties & WinRate A & \shortstack{Median \\ $\Delta$ (A--B)} & $W$ & $p$ & $p_{\text{Holm,within}}$ & $p_{\text{Holm,global}}$ & $r$ \\
|
| 408 |
-
\midrule
|
| 409 |
-
AOL & SLL & 121 & 1 & 113 & 7 & 0.0372 & -0.1619 & 31 & $4.4e-20^{***}$ & $5.3e-19^{***}$ & $2.9e-18^{***}$ & 0.8596 \\
|
| 410 |
-
AOL & LDLT-R & 121 & 1 & 120 & 0 & 0.0083 & -0.2368 & 43 & $4.0e-21^{***}$ & $6.0e-20^{***}$ & $2.9e-19^{***}$ & 0.8576 \\
|
| 411 |
-
AOL & Orthogonal & 121 & 3 & 114 & 4 & 0.0413 & -0.1930 & 53 & $2.4e-20^{***}$ & $3.2e-19^{***}$ & $1.6e-18^{***}$ & 0.8544 \\
|
| 412 |
-
AOL & Sandwich & 121 & 4 & 115 & 2 & 0.0413 & -0.2776 & 82 & $2.3e-20^{***}$ & $3.2e-19^{***}$ & $1.6e-18^{***}$ & 0.8478 \\
|
| 413 |
-
AOL & LDLT-L & 121 & 5 & 91 & 25 & 0.1446 & -0.0716 & 108 & $5.0e-16^{***}$ & $0^{***}$ & $0^{***}$ & 0.8278 \\
|
| 414 |
-
LDLT-L & Sandwich & 121 & 16 & 103 & 2 & 0.1405 & -0.0699 & 532 & $8.0e-16^{***}$ & $0^{***}$ & $0^{***}$ & 0.7384 \\
|
| 415 |
-
LDLT-L & LDLT-R & 121 & 25 & 95 & 1 & 0.2107 & -0.0751 & 711 & $0^{***}$ & $0^{***}$ & $0^{***}$ & 0.6977 \\
|
| 416 |
-
Orthogonal & Sandwich & 121 & 20 & 97 & 4 & 0.1818 & -0.0322 & 1002 & $0^{***}$ & $2.0e-10^{***}$ & $1.1e-09^{***}$ & 0.6159 \\
|
| 417 |
-
Sandwich & SLL & 121 & 92 & 27 & 2 & 0.7686 & 0.0456 & 1046 & $0^{***}$ & $2.0e-10^{***}$ & $9.0e-10^{***}$ & 0.6134 \\
|
| 418 |
-
LDLT-L & Orthogonal & 121 & 31 & 86 & 4 & 0.2727 & -0.0380 & 1169 & $5.0e-10^{***}$ & $3.2e-09^{***}$ & $1.9e-08^{***}$ & 0.5738 \\
|
| 419 |
-
LDLT-L & SLL & 121 & 31 & 83 & 7 & 0.2851 & -0.0308 & 1220 & $6.0e-09^{***}$ & $3.0e-08^{***}$ & $1.9e-07^{***}$ & 0.5447 \\
|
| 420 |
-
LDLT-R & SLL & 121 & 92 & 29 & 0 & 0.7603 & 0.0294 & 1470 & $9.3e-09^{***}$ & $3.7e-08^{***}$ & $2.9e-07^{***}$ & 0.5220 \\
|
| 421 |
-
LDLT-R & Orthogonal & 121 & 84 & 37 & 0 & 0.6942 & 0.0207 & 2239 & $1.7e-04^{***}$ & $5.2e-04^{***}$ & $3.1e-03^{**}$ & 0.3412 \\
|
| 422 |
-
Orthogonal & SLL & 121 & 69 & 50 & 2 & 0.5785 & 0.0077 & 2708 & $2.2e-02^{*}$ & $4.5e-02^{*}$ & $2.4e-01$ & 0.2095 \\
|
| 423 |
-
LDLT-R & Sandwich & 121 & 59 & 62 & 0 & 0.4876 & -0.0023 & 3035 & $9.0e-02$ & $9.0e-02$ & $7.2e-01$ & 0.1540 \\
|
| 424 |
-
\bottomrule
|
| 425 |
-
\end{tabular}
|
| 426 |
-
\begin{tablenotes}
|
| 427 |
-
\item Stars mark significance ($^*\,p\!\le\!0.05$, $^{**}\,p\!\le\!0.01$, $^{***}\,p\!\le\!0.001$).
|
| 428 |
-
\end{tablenotes}
|
| 429 |
-
\endgroup
|
| 430 |
-
\end{threeparttable}
|
| 431 |
-
\end{table*}
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
\begin{table*}[t]
|
| 436 |
-
\centering
|
| 437 |
-
\begin{threeparttable}
|
| 438 |
-
\caption[Mean Certified Accuracy (255/255)]{Wilcoxon signed-rank tests (two-sided) for Mean Certified Accuracy (255/255); $p$-values with Holm FWER corrections within-metric and global.}
|
| 439 |
-
\label{tab:wilcoxon:mean_cert_acc_255}
|
| 440 |
-
\begingroup
|
| 441 |
-
\setlength{\tabcolsep}{4pt}
|
| 442 |
-
\begin{tabular}{ll r r r r r r r r r r r}
|
| 443 |
-
\toprule
|
| 444 |
-
\multicolumn{2}{c}{Algorithms} & \multicolumn{6}{c}{Run Statistics} & \multicolumn{5}{c}{Wilcoxon pairwise Statistics} \\\cmidrule(lr){1-2} \cmidrule(lr){3-8} \cmidrule(lr){9-13}
|
| 445 |
-
Alg A & Alg B & $n$ & wins$_A$ & wins$_B$ & ties & WinRate A & \shortstack{Median \\ $\Delta$ (A--B)} & $W$ & $p$ & $p_{\text{Holm,within}}$ & $p_{\text{Holm,global}}$ & $r$ \\
|
| 446 |
-
\midrule
|
| 447 |
-
AOL & LDLT-R & 121 & 0 & 107 & 14 & 0.0579 & -0.0753 & 0 & $2.8e-19^{***}$ & $4.2e-18^{***}$ & $1.7e-17^{***}$ & 0.8679 \\
|
| 448 |
-
AOL & SLL & 121 & 1 & 99 & 21 & 0.0950 & -0.0435 & 4 & $4.5e-18^{***}$ & $5.8e-17^{***}$ & $2.7e-16^{***}$ & 0.8666 \\
|
| 449 |
-
AOL & LDLT-L & 121 & 3 & 78 & 40 & 0.1901 & -0.0180 & 36 & $0^{***}$ & $0^{***}$ & $0^{***}$ & 0.8496 \\
|
| 450 |
-
AOL & Orthogonal & 121 & 2 & 97 & 22 & 0.1074 & -0.0518 & 61 & $3.6e-17^{***}$ & $4.4e-16^{***}$ & $0^{***}$ & 0.8466 \\
|
| 451 |
-
AOL & Sandwich & 121 & 3 & 107 & 11 & 0.0702 & -0.0914 & 67 & $5.5e-19^{***}$ & $7.7e-18^{***}$ & $3.4e-17^{***}$ & 0.8488 \\
|
| 452 |
-
Orthogonal & Sandwich & 121 & 12 & 97 & 12 & 0.1488 & -0.0259 & 367 & $0^{***}$ & $0^{***}$ & $0^{***}$ & 0.7616 \\
|
| 453 |
-
LDLT-L & Sandwich & 121 & 12 & 98 & 11 & 0.1446 & -0.0363 & 385 & $0^{***}$ & $0^{***}$ & $0^{***}$ & 0.7584 \\
|
| 454 |
-
LDLT-L & LDLT-R & 121 & 22 & 86 & 13 & 0.2355 & -0.0305 & 669 & $0^{***}$ & $0^{***}$ & $1.0e-10^{***}$ & 0.6706 \\
|
| 455 |
-
Sandwich & SLL & 121 & 83 & 28 & 10 & 0.7273 & 0.0187 & 1014 & $7.0e-10^{***}$ & $5.1e-09^{***}$ & $2.4e-08^{***}$ & 0.5846 \\
|
| 456 |
-
LDLT-L & SLL & 121 & 24 & 77 & 20 & 0.2810 & -0.0083 & 1120 & $8.3e-07^{***}$ & $5.0e-06^{***}$ & $2.1e-05^{***}$ & 0.4905 \\
|
| 457 |
-
LDLT-L & Orthogonal & 121 & 30 & 70 & 21 & 0.3347 & -0.0077 & 1191 & $4.5e-06^{***}$ & $1.8e-05^{***}$ & $1.1e-04^{***}$ & 0.4585 \\
|
| 458 |
-
LDLT-R & SLL & 121 & 80 & 29 & 12 & 0.7107 & 0.0156 & 1368 & $8.5e-07^{***}$ & $5.0e-06^{***}$ & $2.1e-05^{***}$ & 0.4716 \\
|
| 459 |
-
LDLT-R & Orthogonal & 121 & 76 & 34 & 11 & 0.6736 & 0.0123 & 1722 & $7.3e-05^{***}$ & $2.2e-04^{***}$ & $1.5e-03^{**}$ & 0.3780 \\
|
| 460 |
-
LDLT-R & Sandwich & 121 & 44 & 68 & 9 & 0.4008 & -0.0070 & 2043 & $1.1e-03^{**}$ & $2.3e-03^{**}$ & $1.6e-02^{*}$ & 0.3074 \\
|
| 461 |
-
Orthogonal & SLL & 121 & 53 & 51 & 17 & 0.5083 & 0.0000 & 2606 & $6.9e-01$ & $6.9e-01$ & $1.0e+00$ & 0.0393 \\
|
| 462 |
-
\bottomrule
|
| 463 |
-
\end{tabular}
|
| 464 |
-
\begin{tablenotes}
|
| 465 |
-
\item Stars mark significance ($^*\,p\!\le\!0.05$, $^{**}\,p\!\le\!0.01$, $^{***}\,p\!\le\!0.001$).
|
| 466 |
-
\end{tablenotes}
|
| 467 |
-
\endgroup
|
| 468 |
-
\end{threeparttable}
|
| 469 |
-
\end{table*}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
UCI_N6/wilcoxon_pairwise_all.csv
DELETED
|
@@ -1,76 +0,0 @@
|
|
| 1 |
-
metric,alg_a,alg_b,n_common,n_nonzero,wins_a,wins_b,ties,win_rate_a_over_b,mean_diff_a_minus_b,median_diff_a_minus_b,W_stat,p_two_sided,z_equiv,effect_size_r,p_holm_global,p_holm_within_metric
|
| 2 |
-
mean_cert_acc_108,aol,ldlt-resnet,121,121,1,120,0,0.008264462809917356,-0.27756937579256197,-0.23680263569999999,43.0,3.971911186286591e-21,-9.433351346128775,0.857577395102616,2.899495165989211e-19,5.957866779429887e-20
|
| 3 |
-
mean_cert_acc_108,aol,sandwich,121,119,4,115,2,0.04132231404958678,-0.3003505936595042,-0.2775541879,82.0,2.2832440515482022e-20,-9.248190838712615,0.8477802642077927,1.5754383955682595e-18,3.196541672167483e-19
|
| 4 |
-
mean_cert_acc_108,aol,ortho,121,117,3,114,4,0.04132231404958678,-0.24928130693223144,-0.1929709499,53.0,2.4216488584946992e-20,-9.241897120975947,0.8544136910831229,1.6467212237763955e-18,3.196541672167483e-19
|
| 5 |
-
mean_cert_acc_108,aol,sdp,121,114,1,113,7,0.0371900826446281,-0.21922742412561985,-0.1618937068,31.0,4.402939864544531e-20,-9.17772518836056,0.859572719401443,2.949969709244836e-18,5.2835278374534375e-19
|
| 6 |
-
mean_cert_acc_108,aol,ldlt,121,96,5,91,25,0.1446280991735537,-0.14859004186611569,-0.0715934783,108.0,5.031122992210323e-16,-8.110742844187337,0.8277992251328726,2.918051335481987e-14,5.534235291431355e-15
|
| 7 |
-
mean_cert_acc_108,ldlt,sandwich,121,119,16,103,2,0.14049586776859505,-0.15176055179338843,-0.06991830010000001,532.0,7.955949293607779e-16,-8.054875891781956,0.7383892623745293,4.534891097356434e-14,7.955949293607778e-15
|
| 8 |
-
mean_cert_acc_108,ldlt,ldlt-resnet,121,120,25,95,1,0.21074380165289255,-0.12897933392644628,-0.0750768315,711.0,2.119279523234749e-14,-7.643176019800993,0.6977233195045927,1.0596397616173746e-12,1.9073515709112743e-13
|
| 9 |
-
mean_cert_acc_108,sandwich,sdp,121,119,92,27,2,0.768595041322314,0.08112316953388428,0.0456349217,1046.0,2.203741621261607e-11,6.691845041287824,0.6134404291694237,9.47608897142491e-10,1.7629932970092855e-10
|
| 10 |
-
mean_cert_acc_108,ortho,sandwich,121,117,20,97,4,0.18181818181818182,-0.05106928672727272,-0.0322356224,1001.5,2.6982241694705535e-11,-6.662165233713968,0.6159173937376728,1.1332541511776325e-09,1.8887569186293875e-10
|
| 11 |
-
mean_cert_acc_108,ldlt,ortho,121,117,31,86,4,0.2727272727272727,-0.10069126506611571,-0.037954930200000014,1169.0,5.414495427550374e-10,-6.20659482933111,0.5737998949534099,1.9492183539181346e-08,3.248697256530224e-09
|
| 12 |
-
mean_cert_acc_108,ldlt,sdp,121,114,31,83,7,0.28512396694214875,-0.07063738225950414,-0.0307513103,1220.0,6.028970842431367e-09,-5.815952160338162,0.5447138274210623,1.9292706695780375e-07,3.0144854212156835e-08
|
| 13 |
-
mean_cert_acc_108,ldlt-resnet,sdp,121,121,92,29,0,0.7603305785123967,0.05834195166694215,0.02943234149999996,1470.0,9.3419869330056e-09,5.742262470887794,0.5220238609897995,2.896015949231736e-07,3.73679477320224e-08
|
| 14 |
-
mean_cert_acc_108,ldlt-resnet,ortho,121,121,84,37,0,0.6942148760330579,0.028288068860330577,0.020693764000000003,2239.0,0.00017461692075476892,3.7531634438099943,0.3411966767099995,0.0031431045735858406,0.0005238507622643068
|
| 15 |
-
mean_cert_acc_108,ortho,sdp,121,119,69,50,2,0.5785123966942148,0.030053882806611577,0.007734805400000044,2707.5,0.022262328422160898,2.2858620807716203,0.20954463338571241,0.24488561264376987,0.044524656844321796
|
| 16 |
-
mean_cert_acc_108,ldlt-resnet,sandwich,121,121,59,62,0,0.48760330578512395,-0.022781217866942153,-0.00227646530000003,3035.0,0.09022246362523051,-1.6942253809302392,0.15402048917547628,0.7217797090018441,0.09022246362523051
|
| 17 |
-
mean_cert_acc_255,aol,ldlt-resnet,121,107,0,107,14,0.05785123966942149,-0.13012088649173556,-0.07534636179999998,0.0,2.76996750319979e-19,-8.977496787439458,0.8678873724707945,1.7450795270158677e-17,4.154951254799685e-18
|
| 18 |
-
mean_cert_acc_255,aol,sandwich,121,110,3,107,11,0.07024793388429752,-0.16391362448842975,-0.0914320648,67.0,5.47642526250318e-19,-8.902172131588635,0.8487888090494454,3.3953836627519717e-17,7.666995367504452e-18
|
| 19 |
-
mean_cert_acc_255,aol,sdp,121,100,1,99,21,0.09504132231404959,-0.10447574966033059,-0.043450783900000005,4.0,4.463734493179987e-18,-8.666304171669932,0.8666304171669932,2.722878040839792e-16,5.802854841133983e-17
|
| 20 |
-
mean_cert_acc_255,aol,ortho,121,99,2,97,22,0.10743801652892562,-0.11459076743471074,-0.05179674919999999,61.0,3.6442146275228883e-17,-8.423814379367323,0.846625199998847,2.1500866302385042e-15,4.373057553027466e-16
|
| 21 |
-
mean_cert_acc_255,ldlt,sandwich,121,110,12,98,11,0.1446280991735537,-0.09138781576115705,-0.03625880179999996,385.0,1.8087600254343317e-15,-7.953800025107839,0.7583650766280977,1.0129056142432257e-13,1.989636027977765e-14
|
| 22 |
-
mean_cert_acc_255,ortho,sandwich,121,109,12,97,12,0.1487603305785124,-0.04932285705371901,-0.0258620679,367.0,1.8479421669945226e-15,-7.951145858516235,0.7615816500914148,1.0163681918469874e-13,1.989636027977765e-14
|
| 23 |
-
mean_cert_acc_255,aol,ldlt,121,81,3,78,40,0.19008264462809918,-0.07252580872727273,-0.0180000011,36.0,2.0692760364951348e-14,-7.646248493300708,0.8495831659223009,1.0553307786125188e-12,1.8623484328456214e-13
|
| 24 |
-
mean_cert_acc_255,ldlt,ldlt-resnet,121,108,22,86,13,0.23553719008264462,-0.05759507776446282,-0.03051157290000006,669.0,3.2009930486043397e-12,-6.968604880955203,0.6705543173159377,1.4724568023579962e-10,2.5607944388834718e-11
|
| 25 |
-
mean_cert_acc_255,sandwich,sdp,121,111,83,28,10,0.7272727272727273,0.059437874828099174,0.01872655469999998,1014.0,7.290838840470702e-10,6.15964458474609,0.5846475908605333,2.4135012522529935e-08,5.103587188329491e-09
|
| 26 |
-
mean_cert_acc_255,ldlt,sdp,121,101,24,77,20,0.2809917355371901,-0.031949940933057856,-0.0083265586,1120.0,8.264525789853738e-07,-4.9290149335535665,0.4904553169986217,2.148776705361972e-05,4.958715473912243e-06
|
| 27 |
-
mean_cert_acc_255,ldlt-resnet,sdp,121,109,80,29,12,0.7107438016528925,0.025645136831404965,0.015625,1368.5,8.506882131315028e-07,4.923364421074805,0.47157278542280645,2.148776705361972e-05,4.958715473912243e-06
|
| 28 |
-
mean_cert_acc_255,ldlt,ortho,121,100,30,70,21,0.3347107438016529,-0.04206495870743802,-0.007675599399999997,1191.0,4.539730104155671e-06,-4.585006178949154,0.4585006178949154,0.0001089535224997361,1.8158920416622684e-05
|
| 29 |
-
mean_cert_acc_255,ldlt-resnet,ortho,121,110,76,34,11,0.6735537190082644,0.015530119057024795,0.0123031566,1722.5,7.340425290385093e-05,3.9649730077287084,0.37804534302378984,0.0014680850580770185,0.0002202127587115528
|
| 30 |
-
mean_cert_acc_255,ldlt-resnet,sandwich,121,112,44,68,9,0.40082644628099173,-0.033792737996694217,-0.006987711899999999,2043.0,0.001142117810154983,-3.2529545065204624,0.3073753089449993,0.015989649342169763,0.002284235620309966
|
| 31 |
-
mean_cert_acc_255,ortho,sdp,121,104,53,51,17,0.5082644628099173,0.010115017774380166,0.0,2606.0,0.6887980651072516,0.4004867168703731,0.03927095354339887,1.0,0.6887980651072516
|
| 32 |
-
mean_cert_acc_36,aol,ldlt-resnet,121,121,6,115,0,0.049586776859504134,-0.3195985256429752,-0.2928244397,93.0,1.3524220958164444e-20,-9.304013275123774,0.8458193886476159,9.46695467071511e-19,2.0286331437246665e-19
|
| 33 |
-
mean_cert_acc_36,aol,sdp,121,121,7,114,0,0.05785123966942149,-0.29487104347272725,-0.2867985517,156.0,6.184471896701117e-20,-9.141057246118269,0.8310052041925698,4.0817514518227375e-18,8.6582606553815635e-19
|
| 34 |
-
mean_cert_acc_36,aol,sandwich,121,121,9,112,0,0.0743801652892562,-0.3366267439752066,-0.3562658951,174.0,9.50240904957694e-20,-9.094498380688126,0.8267725800625569,6.176565882225011e-18,1.2353131764450022e-18
|
| 35 |
-
mean_cert_acc_36,aol,ortho,121,121,9,112,0,0.0743801652892562,-0.3153361513099173,-0.2984701917,183.5,1.1909411544163069e-19,-9.069929438814437,0.8245390398922215,7.622023388264364e-18,1.4291293852995683e-18
|
| 36 |
-
mean_cert_acc_36,ldlt,sandwich,121,121,31,90,0,0.256198347107438,-0.16186784709090912,-0.07720418269999996,975.0,2.177320182273665e-12,-7.022628869046719,0.6384208062769745,1.0233404856686225e-10,2.3950522005010313e-11
|
| 37 |
-
mean_cert_acc_36,aol,ldlt,121,114,21,93,7,0.2024793388429752,-0.17475889688429755,-0.1185294129,843.0,5.906625670244248e-12,-6.8818836320461765,0.6445474566730744,2.6579815516099117e-10,5.906625670244248e-11
|
| 38 |
-
mean_cert_acc_36,ldlt,ldlt-resnet,121,121,36,85,0,0.2975206611570248,-0.14483962875867767,-0.06054405490000003,1205.0,1.2954054230165275e-10,-6.427710032994878,0.5843372757268072,5.0520811497644576e-09,1.1658648807148747e-09
|
| 39 |
-
mean_cert_acc_36,ldlt,sdp,121,121,36,85,0,0.2975206611570248,-0.12011214658842975,-0.048914968999999975,1305.0,6.870164641102856e-10,-6.169049669494079,0.5608226972267345,2.4045576243859998e-08,5.496131712882285e-09
|
| 40 |
-
mean_cert_acc_36,ldlt,ortho,121,121,42,79,0,0.34710743801652894,-0.14057725442561983,-0.05313736200000008,1489.0,1.2474259752304599e-08,-5.693114600652607,0.5175558727866006,3.74227792569138e-07,8.731981826613219e-08
|
| 41 |
-
mean_cert_acc_36,sandwich,sdp,121,119,84,35,2,0.7024793388429752,0.04175570050247934,0.017416268600000007,1683.0,5.655006341785244e-07,5.002641438632645,0.45859138879655953,1.5834017756998682e-05,3.393003805071146e-06
|
| 42 |
-
mean_cert_acc_36,ortho,sandwich,121,120,38,82,1,0.3181818181818182,-0.02129059266528926,-0.013042002900000016,2067.0,4.277000715808299e-05,-4.091982968151117,0.3735452294305518,0.0008981701503197428,0.00021385003579041495
|
| 43 |
-
mean_cert_acc_36,ldlt-resnet,sdp,121,120,71,49,1,0.5909090909090909,0.024727482170247932,0.008074492300000014,2331.0,0.0006723776229561895,3.4006015258523057,0.31043102746596585,0.010758041967299032,0.002689510491824758
|
| 44 |
-
mean_cert_acc_36,ldlt-resnet,sandwich,121,120,52,68,1,0.43388429752066116,-0.017028218332231407,-0.008829414899999999,2802.0,0.030226148960912597,-2.167114179932833,0.1978295535064203,0.30226148960912597,0.0906784468827378
|
| 45 |
-
mean_cert_acc_36,ortho,sdp,121,121,58,63,0,0.4793388429752066,0.020465107837190088,-0.0016042887999999644,3123.0,0.1424837402278625,1.466604261049536,0.13332766009541236,0.9973861815950376,0.284967480455725
|
| 46 |
-
mean_cert_acc_36,ldlt-resnet,ortho,121,121,76,45,0,0.628099173553719,0.004262374333057851,0.005987092899999991,3225.0,0.2290650698616885,1.2027706902787196,0.10934279002533814,1.0,0.284967480455725
|
| 47 |
-
mean_cert_acc_72,aol,ldlt-resnet,121,121,1,120,0,0.008264462809917356,-0.3092410627958678,-0.2919858993,21.0,2.3047485551154483e-21,-9.490252705264558,0.8627502459331416,1.7285614163365862e-19,3.4571228326731724e-20
|
| 48 |
-
mean_cert_acc_72,aol,sdp,121,119,1,118,2,0.01652892561983471,-0.2649477861495868,-0.23431782420000002,2.0,3.06956082705418e-21,-9.460335718166954,0.8672275534225952,2.2714750120200932e-19,4.297385157875852e-20
|
| 49 |
-
mean_cert_acc_72,aol,ortho,121,121,6,115,0,0.049586776859504134,-0.29073976685619835,-0.2589285746,86.5,1.15433610944114e-20,-9.320830096326201,0.8473481905751092,8.3112199879762075e-19,1.500636942273482e-19
|
| 50 |
-
mean_cert_acc_72,aol,sandwich,121,121,7,114,0,0.05785123966942149,-0.33645687826198345,-0.32054936889999996,90.0,1.2571587049174732e-20,-9.311773086028797,0.8465248260026179,8.92582680491406e-19,1.5085904459009678e-19
|
| 51 |
-
mean_cert_acc_72,ldlt,sandwich,121,120,21,99,1,0.17768595041322313,-0.1661887828859504,-0.09155106540000002,608.0,2.5143510494245837e-15,-7.9129129844919035,0.7223468228636237,1.3577495666892752e-13,2.765786154367042e-14
|
| 52 |
-
mean_cert_acc_72,aol,ldlt,121,103,10,93,18,0.15702479338842976,-0.1702680953760331,-0.1040100288,284.0,3.4232603031044563e-15,-7.874420413270477,0.7758896981769975,1.8143279606453618e-13,3.423260303104456e-14
|
| 53 |
-
mean_cert_acc_72,ldlt,ldlt-resnet,121,121,30,91,0,0.24793388429752067,-0.13897296741983473,-0.0703703724,922.0,8.084268131100275e-13,-7.159718861702142,0.650883532882013,3.8804487029281324e-11,7.2758413179902475e-12
|
| 54 |
-
mean_cert_acc_72,sandwich,sdp,121,121,93,28,0,0.768595041322314,0.07150909211239669,0.03682704640000001,1188.0,9.69177377400736e-11,6.471682294790014,0.5883347540718195,3.973627247343017e-09,7.753419019205888e-10
|
| 55 |
-
mean_cert_acc_72,ldlt,sdp,121,120,34,86,1,0.28512396694214875,-0.09467969077355372,-0.04857719500000002,1161.0,1.0151448930030595e-10,-6.464678372403863,0.5901416952635631,4.060579572012238e-09,7.753419019205888e-10
|
| 56 |
-
mean_cert_acc_72,ortho,sandwich,121,118,19,99,3,0.16942148760330578,-0.04571711140578512,-0.030128806799999963,1121.5,1.4156553253762546e-10,-6.414198632497565,0.5904748455235395,5.3794902364297675e-09,8.493931952257528e-10
|
| 57 |
-
mean_cert_acc_72,ldlt,ortho,121,120,35,85,1,0.29338842975206614,-0.12047167148016531,-0.04772219800000005,1257.0,5.189417983892635e-10,-6.213266938840658,0.5671910763673499,1.920084654040275e-08,2.5947089919463174e-09
|
| 58 |
-
mean_cert_acc_72,ldlt-resnet,sdp,121,121,82,39,0,0.6776859504132231,0.044293276646280993,0.01521807910000006,1961.0,7.7404645028487e-06,4.472239555029277,0.4065672322753888,0.0001780306835655201,3.09618580113948e-05
|
| 59 |
-
mean_cert_acc_72,ldlt-resnet,sandwich,121,121,49,72,0,0.4049586776859504,-0.0272158154661157,-0.010539218799999972,2635.0,0.006355236164498874,-2.728866834933439,0.24807880317576717,0.08261807013848536,0.019065708493496623
|
| 60 |
-
mean_cert_acc_72,ldlt-resnet,ortho,121,121,74,47,0,0.6115702479338843,0.018501295939669423,0.011391893000000097,2675.0,0.008654654351165116,2.6254026895331193,0.23867297177573812,0.10385585221398139,0.019065708493496623
|
| 61 |
-
mean_cert_acc_72,ortho,sdp,121,121,62,59,0,0.512396694214876,0.02579198070661157,0.0024819821999999547,2935.5,0.05098651424705218,1.9515932586868652,0.17741756897153318,0.45887862822346964,0.05098651424705218
|
| 62 |
-
mean_test_acc,aol,ldlt,121,121,16,105,0,0.1322314049586777,-0.11958352569586778,-0.06315010610000005,409.0,2.1268544183487774e-17,-8.486646526461245,0.7715133205873859,1.2761126510092665e-15,3.1902816275231663e-16
|
| 63 |
-
mean_test_acc,aol,sandwich,121,121,23,98,0,0.19008264462809918,-0.11132838667768594,-0.06561486950000006,698.0,1.0010877948097709e-14,-7.739118075943935,0.703556188722176,5.205656533010808e-13,1.4015229127336793e-13
|
| 64 |
-
mean_test_acc,aol,ortho,121,121,25,96,0,0.2066115702479339,-0.09866207272396695,-0.05250947429999997,908.0,6.203585473534351e-13,-7.195931312592255,0.6541755738720232,3.039756882031832e-11,8.064661115594657e-12
|
| 65 |
-
mean_test_acc,aol,sdp,121,121,24,97,0,0.19834710743801653,-0.09612382466942149,-0.044510062900000036,1047.0,8.121173320702691e-12,-6.836393407326143,0.6214903097569221,3.573316261109184e-10,9.74540798484323e-11
|
| 66 |
-
mean_test_acc,aol,ldlt-resnet,121,121,27,94,0,0.2231404958677686,-0.09206069528677686,-0.03569083780000004,1307.0,7.098533094861746e-10,-6.163876462224062,0.5603524056567329,2.4135012522529935e-08,7.80838640434792e-09
|
| 67 |
-
mean_test_acc,ldlt,sdp,121,121,86,35,0,0.7107438016528925,0.023459701026446286,0.010278406500000004,1511.0,1.7383406684454798e-08,5.636209320682431,0.5123826655165846,5.041187938491891e-07,1.7383406684454799e-07
|
| 68 |
-
mean_test_acc,ldlt,ldlt-resnet,121,121,87,34,0,0.71900826446281,0.02752283040909091,0.01248115980000003,1779.0,7.69296628945801e-07,4.942999546500287,0.44936359513638974,2.077100898153663e-05,6.923669660512209e-06
|
| 69 |
-
mean_test_acc,ldlt,ortho,121,121,78,43,0,0.6446280991735537,0.020921452971900834,0.010356299000000013,2002.0,1.264342847332638e-05,4.366186935893503,0.39692608508122756,0.00027815542641318036,0.00010114742778661104
|
| 70 |
-
mean_test_acc,ortho,sandwich,121,120,39,81,1,0.32644628099173556,-0.01266631395371901,-0.007894689300000035,2171.0,0.00013365710865816523,-3.8196205817909794,0.3486820589596543,0.0025394850645051393,0.0009355997606071565
|
| 71 |
-
mean_test_acc,sandwich,sdp,121,121,80,41,0,0.6611570247933884,0.015204562008264456,0.006305895000000006,2279.0,0.00026254907665535047,3.6496977289962866,0.33179070263602606,0.004463334303140958,0.001575294459932103
|
| 72 |
-
mean_test_acc,ldlt-resnet,sandwich,121,121,47,74,0,0.3884297520661157,-0.019267691390909086,-0.01009704999999994,2411.0,0.0009387558222226796,-3.308266049175231,0.3007514590159301,0.014081337333340193,0.004693779111113398
|
| 73 |
-
mean_test_acc,ldlt,sandwich,121,120,64,56,1,0.5330578512396694,0.008255139018181824,0.0008221223000000055,3145.0,0.2044973939148288,1.2688420787642989,0.11582890474182553,1.0,0.8179895756593152
|
| 74 |
-
mean_test_acc,ldlt-resnet,ortho,121,121,54,67,0,0.4462809917355372,-0.006601377437190076,-0.0023532391000000152,3206.0,0.2106004158723539,-1.2519161593438723,0.11381055994035204,1.0,0.8179895756593152
|
| 75 |
-
mean_test_acc,ortho,sdp,121,121,60,61,0,0.49586776859504134,0.002538248054545448,-6.572600000032125e-06,3382.0,0.42564043452591804,0.7966739195824637,0.07242490178022397,1.0,0.8512808690518361
|
| 76 |
-
mean_test_acc,ldlt-resnet,sdp,121,121,58,63,0,0.4793388429752066,-0.0040631293826446264,-0.000977559300000097,3627.0,0.8705530555843003,-0.16295602900550393,0.014814184455045813,1.0,0.8705530555843003
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
UCI_N6/wilcoxon_pairwise_all.json
DELETED
|
@@ -1,1427 +0,0 @@
|
|
| 1 |
-
[
|
| 2 |
-
{
|
| 3 |
-
"metric":"mean_cert_acc_108",
|
| 4 |
-
"alg_a":"aol",
|
| 5 |
-
"alg_b":"ldlt-resnet",
|
| 6 |
-
"n_common":121,
|
| 7 |
-
"n_nonzero":121,
|
| 8 |
-
"wins_a":1,
|
| 9 |
-
"wins_b":120,
|
| 10 |
-
"ties":0,
|
| 11 |
-
"win_rate_a_over_b":0.0082644628,
|
| 12 |
-
"mean_diff_a_minus_b":-0.2775693758,
|
| 13 |
-
"median_diff_a_minus_b":-0.2368026357,
|
| 14 |
-
"W_stat":43.0,
|
| 15 |
-
"p_two_sided":3.971911186e-21,
|
| 16 |
-
"z_equiv":-9.4333513461,
|
| 17 |
-
"effect_size_r":0.8575773951,
|
| 18 |
-
"p_holm_global":2.899495166e-19,
|
| 19 |
-
"p_holm_within_metric":5.957866779e-20
|
| 20 |
-
},
|
| 21 |
-
{
|
| 22 |
-
"metric":"mean_cert_acc_108",
|
| 23 |
-
"alg_a":"aol",
|
| 24 |
-
"alg_b":"sandwich",
|
| 25 |
-
"n_common":121,
|
| 26 |
-
"n_nonzero":119,
|
| 27 |
-
"wins_a":4,
|
| 28 |
-
"wins_b":115,
|
| 29 |
-
"ties":2,
|
| 30 |
-
"win_rate_a_over_b":0.041322314,
|
| 31 |
-
"mean_diff_a_minus_b":-0.3003505937,
|
| 32 |
-
"median_diff_a_minus_b":-0.2775541879,
|
| 33 |
-
"W_stat":82.0,
|
| 34 |
-
"p_two_sided":2.283244052e-20,
|
| 35 |
-
"z_equiv":-9.2481908387,
|
| 36 |
-
"effect_size_r":0.8477802642,
|
| 37 |
-
"p_holm_global":1.575438396e-18,
|
| 38 |
-
"p_holm_within_metric":3.196541672e-19
|
| 39 |
-
},
|
| 40 |
-
{
|
| 41 |
-
"metric":"mean_cert_acc_108",
|
| 42 |
-
"alg_a":"aol",
|
| 43 |
-
"alg_b":"ortho",
|
| 44 |
-
"n_common":121,
|
| 45 |
-
"n_nonzero":117,
|
| 46 |
-
"wins_a":3,
|
| 47 |
-
"wins_b":114,
|
| 48 |
-
"ties":4,
|
| 49 |
-
"win_rate_a_over_b":0.041322314,
|
| 50 |
-
"mean_diff_a_minus_b":-0.2492813069,
|
| 51 |
-
"median_diff_a_minus_b":-0.1929709499,
|
| 52 |
-
"W_stat":53.0,
|
| 53 |
-
"p_two_sided":2.421648858e-20,
|
| 54 |
-
"z_equiv":-9.241897121,
|
| 55 |
-
"effect_size_r":0.8544136911,
|
| 56 |
-
"p_holm_global":1.646721224e-18,
|
| 57 |
-
"p_holm_within_metric":3.196541672e-19
|
| 58 |
-
},
|
| 59 |
-
{
|
| 60 |
-
"metric":"mean_cert_acc_108",
|
| 61 |
-
"alg_a":"aol",
|
| 62 |
-
"alg_b":"sdp",
|
| 63 |
-
"n_common":121,
|
| 64 |
-
"n_nonzero":114,
|
| 65 |
-
"wins_a":1,
|
| 66 |
-
"wins_b":113,
|
| 67 |
-
"ties":7,
|
| 68 |
-
"win_rate_a_over_b":0.0371900826,
|
| 69 |
-
"mean_diff_a_minus_b":-0.2192274241,
|
| 70 |
-
"median_diff_a_minus_b":-0.1618937068,
|
| 71 |
-
"W_stat":31.0,
|
| 72 |
-
"p_two_sided":4.402939865e-20,
|
| 73 |
-
"z_equiv":-9.1777251884,
|
| 74 |
-
"effect_size_r":0.8595727194,
|
| 75 |
-
"p_holm_global":2.949969709e-18,
|
| 76 |
-
"p_holm_within_metric":5.283527837e-19
|
| 77 |
-
},
|
| 78 |
-
{
|
| 79 |
-
"metric":"mean_cert_acc_108",
|
| 80 |
-
"alg_a":"aol",
|
| 81 |
-
"alg_b":"ldlt",
|
| 82 |
-
"n_common":121,
|
| 83 |
-
"n_nonzero":96,
|
| 84 |
-
"wins_a":5,
|
| 85 |
-
"wins_b":91,
|
| 86 |
-
"ties":25,
|
| 87 |
-
"win_rate_a_over_b":0.1446280992,
|
| 88 |
-
"mean_diff_a_minus_b":-0.1485900419,
|
| 89 |
-
"median_diff_a_minus_b":-0.0715934783,
|
| 90 |
-
"W_stat":108.0,
|
| 91 |
-
"p_two_sided":5.031122992e-16,
|
| 92 |
-
"z_equiv":-8.1107428442,
|
| 93 |
-
"effect_size_r":0.8277992251,
|
| 94 |
-
"p_holm_global":0.0,
|
| 95 |
-
"p_holm_within_metric":0.0
|
| 96 |
-
},
|
| 97 |
-
{
|
| 98 |
-
"metric":"mean_cert_acc_108",
|
| 99 |
-
"alg_a":"ldlt",
|
| 100 |
-
"alg_b":"sandwich",
|
| 101 |
-
"n_common":121,
|
| 102 |
-
"n_nonzero":119,
|
| 103 |
-
"wins_a":16,
|
| 104 |
-
"wins_b":103,
|
| 105 |
-
"ties":2,
|
| 106 |
-
"win_rate_a_over_b":0.1404958678,
|
| 107 |
-
"mean_diff_a_minus_b":-0.1517605518,
|
| 108 |
-
"median_diff_a_minus_b":-0.0699183001,
|
| 109 |
-
"W_stat":532.0,
|
| 110 |
-
"p_two_sided":7.955949294e-16,
|
| 111 |
-
"z_equiv":-8.0548758918,
|
| 112 |
-
"effect_size_r":0.7383892624,
|
| 113 |
-
"p_holm_global":0.0,
|
| 114 |
-
"p_holm_within_metric":0.0
|
| 115 |
-
},
|
| 116 |
-
{
|
| 117 |
-
"metric":"mean_cert_acc_108",
|
| 118 |
-
"alg_a":"ldlt",
|
| 119 |
-
"alg_b":"ldlt-resnet",
|
| 120 |
-
"n_common":121,
|
| 121 |
-
"n_nonzero":120,
|
| 122 |
-
"wins_a":25,
|
| 123 |
-
"wins_b":95,
|
| 124 |
-
"ties":1,
|
| 125 |
-
"win_rate_a_over_b":0.2107438017,
|
| 126 |
-
"mean_diff_a_minus_b":-0.1289793339,
|
| 127 |
-
"median_diff_a_minus_b":-0.0750768315,
|
| 128 |
-
"W_stat":711.0,
|
| 129 |
-
"p_two_sided":0.0,
|
| 130 |
-
"z_equiv":-7.6431760198,
|
| 131 |
-
"effect_size_r":0.6977233195,
|
| 132 |
-
"p_holm_global":0.0,
|
| 133 |
-
"p_holm_within_metric":0.0
|
| 134 |
-
},
|
| 135 |
-
{
|
| 136 |
-
"metric":"mean_cert_acc_108",
|
| 137 |
-
"alg_a":"sandwich",
|
| 138 |
-
"alg_b":"sdp",
|
| 139 |
-
"n_common":121,
|
| 140 |
-
"n_nonzero":119,
|
| 141 |
-
"wins_a":92,
|
| 142 |
-
"wins_b":27,
|
| 143 |
-
"ties":2,
|
| 144 |
-
"win_rate_a_over_b":0.7685950413,
|
| 145 |
-
"mean_diff_a_minus_b":0.0811231695,
|
| 146 |
-
"median_diff_a_minus_b":0.0456349217,
|
| 147 |
-
"W_stat":1046.0,
|
| 148 |
-
"p_two_sided":0.0,
|
| 149 |
-
"z_equiv":6.6918450413,
|
| 150 |
-
"effect_size_r":0.6134404292,
|
| 151 |
-
"p_holm_global":0.0000000009,
|
| 152 |
-
"p_holm_within_metric":0.0000000002
|
| 153 |
-
},
|
| 154 |
-
{
|
| 155 |
-
"metric":"mean_cert_acc_108",
|
| 156 |
-
"alg_a":"ortho",
|
| 157 |
-
"alg_b":"sandwich",
|
| 158 |
-
"n_common":121,
|
| 159 |
-
"n_nonzero":117,
|
| 160 |
-
"wins_a":20,
|
| 161 |
-
"wins_b":97,
|
| 162 |
-
"ties":4,
|
| 163 |
-
"win_rate_a_over_b":0.1818181818,
|
| 164 |
-
"mean_diff_a_minus_b":-0.0510692867,
|
| 165 |
-
"median_diff_a_minus_b":-0.0322356224,
|
| 166 |
-
"W_stat":1001.5,
|
| 167 |
-
"p_two_sided":0.0,
|
| 168 |
-
"z_equiv":-6.6621652337,
|
| 169 |
-
"effect_size_r":0.6159173937,
|
| 170 |
-
"p_holm_global":0.0000000011,
|
| 171 |
-
"p_holm_within_metric":0.0000000002
|
| 172 |
-
},
|
| 173 |
-
{
|
| 174 |
-
"metric":"mean_cert_acc_108",
|
| 175 |
-
"alg_a":"ldlt",
|
| 176 |
-
"alg_b":"ortho",
|
| 177 |
-
"n_common":121,
|
| 178 |
-
"n_nonzero":117,
|
| 179 |
-
"wins_a":31,
|
| 180 |
-
"wins_b":86,
|
| 181 |
-
"ties":4,
|
| 182 |
-
"win_rate_a_over_b":0.2727272727,
|
| 183 |
-
"mean_diff_a_minus_b":-0.1006912651,
|
| 184 |
-
"median_diff_a_minus_b":-0.0379549302,
|
| 185 |
-
"W_stat":1169.0,
|
| 186 |
-
"p_two_sided":0.0000000005,
|
| 187 |
-
"z_equiv":-6.2065948293,
|
| 188 |
-
"effect_size_r":0.573799895,
|
| 189 |
-
"p_holm_global":0.0000000195,
|
| 190 |
-
"p_holm_within_metric":0.0000000032
|
| 191 |
-
},
|
| 192 |
-
{
|
| 193 |
-
"metric":"mean_cert_acc_108",
|
| 194 |
-
"alg_a":"ldlt",
|
| 195 |
-
"alg_b":"sdp",
|
| 196 |
-
"n_common":121,
|
| 197 |
-
"n_nonzero":114,
|
| 198 |
-
"wins_a":31,
|
| 199 |
-
"wins_b":83,
|
| 200 |
-
"ties":7,
|
| 201 |
-
"win_rate_a_over_b":0.2851239669,
|
| 202 |
-
"mean_diff_a_minus_b":-0.0706373823,
|
| 203 |
-
"median_diff_a_minus_b":-0.0307513103,
|
| 204 |
-
"W_stat":1220.0,
|
| 205 |
-
"p_two_sided":0.000000006,
|
| 206 |
-
"z_equiv":-5.8159521603,
|
| 207 |
-
"effect_size_r":0.5447138274,
|
| 208 |
-
"p_holm_global":0.0000001929,
|
| 209 |
-
"p_holm_within_metric":0.0000000301
|
| 210 |
-
},
|
| 211 |
-
{
|
| 212 |
-
"metric":"mean_cert_acc_108",
|
| 213 |
-
"alg_a":"ldlt-resnet",
|
| 214 |
-
"alg_b":"sdp",
|
| 215 |
-
"n_common":121,
|
| 216 |
-
"n_nonzero":121,
|
| 217 |
-
"wins_a":92,
|
| 218 |
-
"wins_b":29,
|
| 219 |
-
"ties":0,
|
| 220 |
-
"win_rate_a_over_b":0.7603305785,
|
| 221 |
-
"mean_diff_a_minus_b":0.0583419517,
|
| 222 |
-
"median_diff_a_minus_b":0.0294323415,
|
| 223 |
-
"W_stat":1470.0,
|
| 224 |
-
"p_two_sided":0.0000000093,
|
| 225 |
-
"z_equiv":5.7422624709,
|
| 226 |
-
"effect_size_r":0.522023861,
|
| 227 |
-
"p_holm_global":0.0000002896,
|
| 228 |
-
"p_holm_within_metric":0.0000000374
|
| 229 |
-
},
|
| 230 |
-
{
|
| 231 |
-
"metric":"mean_cert_acc_108",
|
| 232 |
-
"alg_a":"ldlt-resnet",
|
| 233 |
-
"alg_b":"ortho",
|
| 234 |
-
"n_common":121,
|
| 235 |
-
"n_nonzero":121,
|
| 236 |
-
"wins_a":84,
|
| 237 |
-
"wins_b":37,
|
| 238 |
-
"ties":0,
|
| 239 |
-
"win_rate_a_over_b":0.694214876,
|
| 240 |
-
"mean_diff_a_minus_b":0.0282880689,
|
| 241 |
-
"median_diff_a_minus_b":0.020693764,
|
| 242 |
-
"W_stat":2239.0,
|
| 243 |
-
"p_two_sided":0.0001746169,
|
| 244 |
-
"z_equiv":3.7531634438,
|
| 245 |
-
"effect_size_r":0.3411966767,
|
| 246 |
-
"p_holm_global":0.0031431046,
|
| 247 |
-
"p_holm_within_metric":0.0005238508
|
| 248 |
-
},
|
| 249 |
-
{
|
| 250 |
-
"metric":"mean_cert_acc_108",
|
| 251 |
-
"alg_a":"ortho",
|
| 252 |
-
"alg_b":"sdp",
|
| 253 |
-
"n_common":121,
|
| 254 |
-
"n_nonzero":119,
|
| 255 |
-
"wins_a":69,
|
| 256 |
-
"wins_b":50,
|
| 257 |
-
"ties":2,
|
| 258 |
-
"win_rate_a_over_b":0.5785123967,
|
| 259 |
-
"mean_diff_a_minus_b":0.0300538828,
|
| 260 |
-
"median_diff_a_minus_b":0.0077348054,
|
| 261 |
-
"W_stat":2707.5,
|
| 262 |
-
"p_two_sided":0.0222623284,
|
| 263 |
-
"z_equiv":2.2858620808,
|
| 264 |
-
"effect_size_r":0.2095446334,
|
| 265 |
-
"p_holm_global":0.2448856126,
|
| 266 |
-
"p_holm_within_metric":0.0445246568
|
| 267 |
-
},
|
| 268 |
-
{
|
| 269 |
-
"metric":"mean_cert_acc_108",
|
| 270 |
-
"alg_a":"ldlt-resnet",
|
| 271 |
-
"alg_b":"sandwich",
|
| 272 |
-
"n_common":121,
|
| 273 |
-
"n_nonzero":121,
|
| 274 |
-
"wins_a":59,
|
| 275 |
-
"wins_b":62,
|
| 276 |
-
"ties":0,
|
| 277 |
-
"win_rate_a_over_b":0.4876033058,
|
| 278 |
-
"mean_diff_a_minus_b":-0.0227812179,
|
| 279 |
-
"median_diff_a_minus_b":-0.0022764653,
|
| 280 |
-
"W_stat":3035.0,
|
| 281 |
-
"p_two_sided":0.0902224636,
|
| 282 |
-
"z_equiv":-1.6942253809,
|
| 283 |
-
"effect_size_r":0.1540204892,
|
| 284 |
-
"p_holm_global":0.721779709,
|
| 285 |
-
"p_holm_within_metric":0.0902224636
|
| 286 |
-
},
|
| 287 |
-
{
|
| 288 |
-
"metric":"mean_cert_acc_255",
|
| 289 |
-
"alg_a":"aol",
|
| 290 |
-
"alg_b":"ldlt-resnet",
|
| 291 |
-
"n_common":121,
|
| 292 |
-
"n_nonzero":107,
|
| 293 |
-
"wins_a":0,
|
| 294 |
-
"wins_b":107,
|
| 295 |
-
"ties":14,
|
| 296 |
-
"win_rate_a_over_b":0.0578512397,
|
| 297 |
-
"mean_diff_a_minus_b":-0.1301208865,
|
| 298 |
-
"median_diff_a_minus_b":-0.0753463618,
|
| 299 |
-
"W_stat":0.0,
|
| 300 |
-
"p_two_sided":2.769967503e-19,
|
| 301 |
-
"z_equiv":-8.9774967874,
|
| 302 |
-
"effect_size_r":0.8678873725,
|
| 303 |
-
"p_holm_global":1.745079527e-17,
|
| 304 |
-
"p_holm_within_metric":4.154951255e-18
|
| 305 |
-
},
|
| 306 |
-
{
|
| 307 |
-
"metric":"mean_cert_acc_255",
|
| 308 |
-
"alg_a":"aol",
|
| 309 |
-
"alg_b":"sandwich",
|
| 310 |
-
"n_common":121,
|
| 311 |
-
"n_nonzero":110,
|
| 312 |
-
"wins_a":3,
|
| 313 |
-
"wins_b":107,
|
| 314 |
-
"ties":11,
|
| 315 |
-
"win_rate_a_over_b":0.0702479339,
|
| 316 |
-
"mean_diff_a_minus_b":-0.1639136245,
|
| 317 |
-
"median_diff_a_minus_b":-0.0914320648,
|
| 318 |
-
"W_stat":67.0,
|
| 319 |
-
"p_two_sided":5.476425263e-19,
|
| 320 |
-
"z_equiv":-8.9021721316,
|
| 321 |
-
"effect_size_r":0.848788809,
|
| 322 |
-
"p_holm_global":3.395383663e-17,
|
| 323 |
-
"p_holm_within_metric":7.666995368e-18
|
| 324 |
-
},
|
| 325 |
-
{
|
| 326 |
-
"metric":"mean_cert_acc_255",
|
| 327 |
-
"alg_a":"aol",
|
| 328 |
-
"alg_b":"sdp",
|
| 329 |
-
"n_common":121,
|
| 330 |
-
"n_nonzero":100,
|
| 331 |
-
"wins_a":1,
|
| 332 |
-
"wins_b":99,
|
| 333 |
-
"ties":21,
|
| 334 |
-
"win_rate_a_over_b":0.0950413223,
|
| 335 |
-
"mean_diff_a_minus_b":-0.1044757497,
|
| 336 |
-
"median_diff_a_minus_b":-0.0434507839,
|
| 337 |
-
"W_stat":4.0,
|
| 338 |
-
"p_two_sided":4.463734493e-18,
|
| 339 |
-
"z_equiv":-8.6663041717,
|
| 340 |
-
"effect_size_r":0.8666304172,
|
| 341 |
-
"p_holm_global":2.722878041e-16,
|
| 342 |
-
"p_holm_within_metric":5.802854841e-17
|
| 343 |
-
},
|
| 344 |
-
{
|
| 345 |
-
"metric":"mean_cert_acc_255",
|
| 346 |
-
"alg_a":"aol",
|
| 347 |
-
"alg_b":"ortho",
|
| 348 |
-
"n_common":121,
|
| 349 |
-
"n_nonzero":99,
|
| 350 |
-
"wins_a":2,
|
| 351 |
-
"wins_b":97,
|
| 352 |
-
"ties":22,
|
| 353 |
-
"win_rate_a_over_b":0.1074380165,
|
| 354 |
-
"mean_diff_a_minus_b":-0.1145907674,
|
| 355 |
-
"median_diff_a_minus_b":-0.0517967492,
|
| 356 |
-
"W_stat":61.0,
|
| 357 |
-
"p_two_sided":3.644214628e-17,
|
| 358 |
-
"z_equiv":-8.4238143794,
|
| 359 |
-
"effect_size_r":0.8466252,
|
| 360 |
-
"p_holm_global":0.0,
|
| 361 |
-
"p_holm_within_metric":4.373057553e-16
|
| 362 |
-
},
|
| 363 |
-
{
|
| 364 |
-
"metric":"mean_cert_acc_255",
|
| 365 |
-
"alg_a":"ldlt",
|
| 366 |
-
"alg_b":"sandwich",
|
| 367 |
-
"n_common":121,
|
| 368 |
-
"n_nonzero":110,
|
| 369 |
-
"wins_a":12,
|
| 370 |
-
"wins_b":98,
|
| 371 |
-
"ties":11,
|
| 372 |
-
"win_rate_a_over_b":0.1446280992,
|
| 373 |
-
"mean_diff_a_minus_b":-0.0913878158,
|
| 374 |
-
"median_diff_a_minus_b":-0.0362588018,
|
| 375 |
-
"W_stat":385.0,
|
| 376 |
-
"p_two_sided":0.0,
|
| 377 |
-
"z_equiv":-7.9538000251,
|
| 378 |
-
"effect_size_r":0.7583650766,
|
| 379 |
-
"p_holm_global":0.0,
|
| 380 |
-
"p_holm_within_metric":0.0
|
| 381 |
-
},
|
| 382 |
-
{
|
| 383 |
-
"metric":"mean_cert_acc_255",
|
| 384 |
-
"alg_a":"ortho",
|
| 385 |
-
"alg_b":"sandwich",
|
| 386 |
-
"n_common":121,
|
| 387 |
-
"n_nonzero":109,
|
| 388 |
-
"wins_a":12,
|
| 389 |
-
"wins_b":97,
|
| 390 |
-
"ties":12,
|
| 391 |
-
"win_rate_a_over_b":0.1487603306,
|
| 392 |
-
"mean_diff_a_minus_b":-0.0493228571,
|
| 393 |
-
"median_diff_a_minus_b":-0.0258620679,
|
| 394 |
-
"W_stat":367.0,
|
| 395 |
-
"p_two_sided":0.0,
|
| 396 |
-
"z_equiv":-7.9511458585,
|
| 397 |
-
"effect_size_r":0.7615816501,
|
| 398 |
-
"p_holm_global":0.0,
|
| 399 |
-
"p_holm_within_metric":0.0
|
| 400 |
-
},
|
| 401 |
-
{
|
| 402 |
-
"metric":"mean_cert_acc_255",
|
| 403 |
-
"alg_a":"aol",
|
| 404 |
-
"alg_b":"ldlt",
|
| 405 |
-
"n_common":121,
|
| 406 |
-
"n_nonzero":81,
|
| 407 |
-
"wins_a":3,
|
| 408 |
-
"wins_b":78,
|
| 409 |
-
"ties":40,
|
| 410 |
-
"win_rate_a_over_b":0.1900826446,
|
| 411 |
-
"mean_diff_a_minus_b":-0.0725258087,
|
| 412 |
-
"median_diff_a_minus_b":-0.0180000011,
|
| 413 |
-
"W_stat":36.0,
|
| 414 |
-
"p_two_sided":0.0,
|
| 415 |
-
"z_equiv":-7.6462484933,
|
| 416 |
-
"effect_size_r":0.8495831659,
|
| 417 |
-
"p_holm_global":0.0,
|
| 418 |
-
"p_holm_within_metric":0.0
|
| 419 |
-
},
|
| 420 |
-
{
|
| 421 |
-
"metric":"mean_cert_acc_255",
|
| 422 |
-
"alg_a":"ldlt",
|
| 423 |
-
"alg_b":"ldlt-resnet",
|
| 424 |
-
"n_common":121,
|
| 425 |
-
"n_nonzero":108,
|
| 426 |
-
"wins_a":22,
|
| 427 |
-
"wins_b":86,
|
| 428 |
-
"ties":13,
|
| 429 |
-
"win_rate_a_over_b":0.2355371901,
|
| 430 |
-
"mean_diff_a_minus_b":-0.0575950778,
|
| 431 |
-
"median_diff_a_minus_b":-0.0305115729,
|
| 432 |
-
"W_stat":669.0,
|
| 433 |
-
"p_two_sided":0.0,
|
| 434 |
-
"z_equiv":-6.968604881,
|
| 435 |
-
"effect_size_r":0.6705543173,
|
| 436 |
-
"p_holm_global":0.0000000001,
|
| 437 |
-
"p_holm_within_metric":0.0
|
| 438 |
-
},
|
| 439 |
-
{
|
| 440 |
-
"metric":"mean_cert_acc_255",
|
| 441 |
-
"alg_a":"sandwich",
|
| 442 |
-
"alg_b":"sdp",
|
| 443 |
-
"n_common":121,
|
| 444 |
-
"n_nonzero":111,
|
| 445 |
-
"wins_a":83,
|
| 446 |
-
"wins_b":28,
|
| 447 |
-
"ties":10,
|
| 448 |
-
"win_rate_a_over_b":0.7272727273,
|
| 449 |
-
"mean_diff_a_minus_b":0.0594378748,
|
| 450 |
-
"median_diff_a_minus_b":0.0187265547,
|
| 451 |
-
"W_stat":1014.0,
|
| 452 |
-
"p_two_sided":0.0000000007,
|
| 453 |
-
"z_equiv":6.1596445847,
|
| 454 |
-
"effect_size_r":0.5846475909,
|
| 455 |
-
"p_holm_global":0.0000000241,
|
| 456 |
-
"p_holm_within_metric":0.0000000051
|
| 457 |
-
},
|
| 458 |
-
{
|
| 459 |
-
"metric":"mean_cert_acc_255",
|
| 460 |
-
"alg_a":"ldlt",
|
| 461 |
-
"alg_b":"sdp",
|
| 462 |
-
"n_common":121,
|
| 463 |
-
"n_nonzero":101,
|
| 464 |
-
"wins_a":24,
|
| 465 |
-
"wins_b":77,
|
| 466 |
-
"ties":20,
|
| 467 |
-
"win_rate_a_over_b":0.2809917355,
|
| 468 |
-
"mean_diff_a_minus_b":-0.0319499409,
|
| 469 |
-
"median_diff_a_minus_b":-0.0083265586,
|
| 470 |
-
"W_stat":1120.0,
|
| 471 |
-
"p_two_sided":0.0000008265,
|
| 472 |
-
"z_equiv":-4.9290149336,
|
| 473 |
-
"effect_size_r":0.490455317,
|
| 474 |
-
"p_holm_global":0.0000214878,
|
| 475 |
-
"p_holm_within_metric":0.0000049587
|
| 476 |
-
},
|
| 477 |
-
{
|
| 478 |
-
"metric":"mean_cert_acc_255",
|
| 479 |
-
"alg_a":"ldlt-resnet",
|
| 480 |
-
"alg_b":"sdp",
|
| 481 |
-
"n_common":121,
|
| 482 |
-
"n_nonzero":109,
|
| 483 |
-
"wins_a":80,
|
| 484 |
-
"wins_b":29,
|
| 485 |
-
"ties":12,
|
| 486 |
-
"win_rate_a_over_b":0.7107438017,
|
| 487 |
-
"mean_diff_a_minus_b":0.0256451368,
|
| 488 |
-
"median_diff_a_minus_b":0.015625,
|
| 489 |
-
"W_stat":1368.5,
|
| 490 |
-
"p_two_sided":0.0000008507,
|
| 491 |
-
"z_equiv":4.9233644211,
|
| 492 |
-
"effect_size_r":0.4715727854,
|
| 493 |
-
"p_holm_global":0.0000214878,
|
| 494 |
-
"p_holm_within_metric":0.0000049587
|
| 495 |
-
},
|
| 496 |
-
{
|
| 497 |
-
"metric":"mean_cert_acc_255",
|
| 498 |
-
"alg_a":"ldlt",
|
| 499 |
-
"alg_b":"ortho",
|
| 500 |
-
"n_common":121,
|
| 501 |
-
"n_nonzero":100,
|
| 502 |
-
"wins_a":30,
|
| 503 |
-
"wins_b":70,
|
| 504 |
-
"ties":21,
|
| 505 |
-
"win_rate_a_over_b":0.3347107438,
|
| 506 |
-
"mean_diff_a_minus_b":-0.0420649587,
|
| 507 |
-
"median_diff_a_minus_b":-0.0076755994,
|
| 508 |
-
"W_stat":1191.0,
|
| 509 |
-
"p_two_sided":0.0000045397,
|
| 510 |
-
"z_equiv":-4.5850061789,
|
| 511 |
-
"effect_size_r":0.4585006179,
|
| 512 |
-
"p_holm_global":0.0001089535,
|
| 513 |
-
"p_holm_within_metric":0.0000181589
|
| 514 |
-
},
|
| 515 |
-
{
|
| 516 |
-
"metric":"mean_cert_acc_255",
|
| 517 |
-
"alg_a":"ldlt-resnet",
|
| 518 |
-
"alg_b":"ortho",
|
| 519 |
-
"n_common":121,
|
| 520 |
-
"n_nonzero":110,
|
| 521 |
-
"wins_a":76,
|
| 522 |
-
"wins_b":34,
|
| 523 |
-
"ties":11,
|
| 524 |
-
"win_rate_a_over_b":0.673553719,
|
| 525 |
-
"mean_diff_a_minus_b":0.0155301191,
|
| 526 |
-
"median_diff_a_minus_b":0.0123031566,
|
| 527 |
-
"W_stat":1722.5,
|
| 528 |
-
"p_two_sided":0.0000734043,
|
| 529 |
-
"z_equiv":3.9649730077,
|
| 530 |
-
"effect_size_r":0.378045343,
|
| 531 |
-
"p_holm_global":0.0014680851,
|
| 532 |
-
"p_holm_within_metric":0.0002202128
|
| 533 |
-
},
|
| 534 |
-
{
|
| 535 |
-
"metric":"mean_cert_acc_255",
|
| 536 |
-
"alg_a":"ldlt-resnet",
|
| 537 |
-
"alg_b":"sandwich",
|
| 538 |
-
"n_common":121,
|
| 539 |
-
"n_nonzero":112,
|
| 540 |
-
"wins_a":44,
|
| 541 |
-
"wins_b":68,
|
| 542 |
-
"ties":9,
|
| 543 |
-
"win_rate_a_over_b":0.4008264463,
|
| 544 |
-
"mean_diff_a_minus_b":-0.033792738,
|
| 545 |
-
"median_diff_a_minus_b":-0.0069877119,
|
| 546 |
-
"W_stat":2043.0,
|
| 547 |
-
"p_two_sided":0.0011421178,
|
| 548 |
-
"z_equiv":-3.2529545065,
|
| 549 |
-
"effect_size_r":0.3073753089,
|
| 550 |
-
"p_holm_global":0.0159896493,
|
| 551 |
-
"p_holm_within_metric":0.0022842356
|
| 552 |
-
},
|
| 553 |
-
{
|
| 554 |
-
"metric":"mean_cert_acc_255",
|
| 555 |
-
"alg_a":"ortho",
|
| 556 |
-
"alg_b":"sdp",
|
| 557 |
-
"n_common":121,
|
| 558 |
-
"n_nonzero":104,
|
| 559 |
-
"wins_a":53,
|
| 560 |
-
"wins_b":51,
|
| 561 |
-
"ties":17,
|
| 562 |
-
"win_rate_a_over_b":0.5082644628,
|
| 563 |
-
"mean_diff_a_minus_b":0.0101150178,
|
| 564 |
-
"median_diff_a_minus_b":0.0,
|
| 565 |
-
"W_stat":2606.0,
|
| 566 |
-
"p_two_sided":0.6887980651,
|
| 567 |
-
"z_equiv":0.4004867169,
|
| 568 |
-
"effect_size_r":0.0392709535,
|
| 569 |
-
"p_holm_global":1.0,
|
| 570 |
-
"p_holm_within_metric":0.6887980651
|
| 571 |
-
},
|
| 572 |
-
{
|
| 573 |
-
"metric":"mean_cert_acc_36",
|
| 574 |
-
"alg_a":"aol",
|
| 575 |
-
"alg_b":"ldlt-resnet",
|
| 576 |
-
"n_common":121,
|
| 577 |
-
"n_nonzero":121,
|
| 578 |
-
"wins_a":6,
|
| 579 |
-
"wins_b":115,
|
| 580 |
-
"ties":0,
|
| 581 |
-
"win_rate_a_over_b":0.0495867769,
|
| 582 |
-
"mean_diff_a_minus_b":-0.3195985256,
|
| 583 |
-
"median_diff_a_minus_b":-0.2928244397,
|
| 584 |
-
"W_stat":93.0,
|
| 585 |
-
"p_two_sided":1.352422096e-20,
|
| 586 |
-
"z_equiv":-9.3040132751,
|
| 587 |
-
"effect_size_r":0.8458193886,
|
| 588 |
-
"p_holm_global":9.466954671e-19,
|
| 589 |
-
"p_holm_within_metric":2.028633144e-19
|
| 590 |
-
},
|
| 591 |
-
{
|
| 592 |
-
"metric":"mean_cert_acc_36",
|
| 593 |
-
"alg_a":"aol",
|
| 594 |
-
"alg_b":"sdp",
|
| 595 |
-
"n_common":121,
|
| 596 |
-
"n_nonzero":121,
|
| 597 |
-
"wins_a":7,
|
| 598 |
-
"wins_b":114,
|
| 599 |
-
"ties":0,
|
| 600 |
-
"win_rate_a_over_b":0.0578512397,
|
| 601 |
-
"mean_diff_a_minus_b":-0.2948710435,
|
| 602 |
-
"median_diff_a_minus_b":-0.2867985517,
|
| 603 |
-
"W_stat":156.0,
|
| 604 |
-
"p_two_sided":6.184471897e-20,
|
| 605 |
-
"z_equiv":-9.1410572461,
|
| 606 |
-
"effect_size_r":0.8310052042,
|
| 607 |
-
"p_holm_global":4.081751452e-18,
|
| 608 |
-
"p_holm_within_metric":8.658260655e-19
|
| 609 |
-
},
|
| 610 |
-
{
|
| 611 |
-
"metric":"mean_cert_acc_36",
|
| 612 |
-
"alg_a":"aol",
|
| 613 |
-
"alg_b":"sandwich",
|
| 614 |
-
"n_common":121,
|
| 615 |
-
"n_nonzero":121,
|
| 616 |
-
"wins_a":9,
|
| 617 |
-
"wins_b":112,
|
| 618 |
-
"ties":0,
|
| 619 |
-
"win_rate_a_over_b":0.0743801653,
|
| 620 |
-
"mean_diff_a_minus_b":-0.336626744,
|
| 621 |
-
"median_diff_a_minus_b":-0.3562658951,
|
| 622 |
-
"W_stat":174.0,
|
| 623 |
-
"p_two_sided":9.50240905e-20,
|
| 624 |
-
"z_equiv":-9.0944983807,
|
| 625 |
-
"effect_size_r":0.8267725801,
|
| 626 |
-
"p_holm_global":6.176565882e-18,
|
| 627 |
-
"p_holm_within_metric":1.235313176e-18
|
| 628 |
-
},
|
| 629 |
-
{
|
| 630 |
-
"metric":"mean_cert_acc_36",
|
| 631 |
-
"alg_a":"aol",
|
| 632 |
-
"alg_b":"ortho",
|
| 633 |
-
"n_common":121,
|
| 634 |
-
"n_nonzero":121,
|
| 635 |
-
"wins_a":9,
|
| 636 |
-
"wins_b":112,
|
| 637 |
-
"ties":0,
|
| 638 |
-
"win_rate_a_over_b":0.0743801653,
|
| 639 |
-
"mean_diff_a_minus_b":-0.3153361513,
|
| 640 |
-
"median_diff_a_minus_b":-0.2984701917,
|
| 641 |
-
"W_stat":183.5,
|
| 642 |
-
"p_two_sided":1.190941154e-19,
|
| 643 |
-
"z_equiv":-9.0699294388,
|
| 644 |
-
"effect_size_r":0.8245390399,
|
| 645 |
-
"p_holm_global":7.622023388e-18,
|
| 646 |
-
"p_holm_within_metric":1.429129385e-18
|
| 647 |
-
},
|
| 648 |
-
{
|
| 649 |
-
"metric":"mean_cert_acc_36",
|
| 650 |
-
"alg_a":"ldlt",
|
| 651 |
-
"alg_b":"sandwich",
|
| 652 |
-
"n_common":121,
|
| 653 |
-
"n_nonzero":121,
|
| 654 |
-
"wins_a":31,
|
| 655 |
-
"wins_b":90,
|
| 656 |
-
"ties":0,
|
| 657 |
-
"win_rate_a_over_b":0.2561983471,
|
| 658 |
-
"mean_diff_a_minus_b":-0.1618678471,
|
| 659 |
-
"median_diff_a_minus_b":-0.0772041827,
|
| 660 |
-
"W_stat":975.0,
|
| 661 |
-
"p_two_sided":0.0,
|
| 662 |
-
"z_equiv":-7.022628869,
|
| 663 |
-
"effect_size_r":0.6384208063,
|
| 664 |
-
"p_holm_global":0.0000000001,
|
| 665 |
-
"p_holm_within_metric":0.0
|
| 666 |
-
},
|
| 667 |
-
{
|
| 668 |
-
"metric":"mean_cert_acc_36",
|
| 669 |
-
"alg_a":"aol",
|
| 670 |
-
"alg_b":"ldlt",
|
| 671 |
-
"n_common":121,
|
| 672 |
-
"n_nonzero":114,
|
| 673 |
-
"wins_a":21,
|
| 674 |
-
"wins_b":93,
|
| 675 |
-
"ties":7,
|
| 676 |
-
"win_rate_a_over_b":0.2024793388,
|
| 677 |
-
"mean_diff_a_minus_b":-0.1747588969,
|
| 678 |
-
"median_diff_a_minus_b":-0.1185294129,
|
| 679 |
-
"W_stat":843.0,
|
| 680 |
-
"p_two_sided":0.0,
|
| 681 |
-
"z_equiv":-6.881883632,
|
| 682 |
-
"effect_size_r":0.6445474567,
|
| 683 |
-
"p_holm_global":0.0000000003,
|
| 684 |
-
"p_holm_within_metric":0.0000000001
|
| 685 |
-
},
|
| 686 |
-
{
|
| 687 |
-
"metric":"mean_cert_acc_36",
|
| 688 |
-
"alg_a":"ldlt",
|
| 689 |
-
"alg_b":"ldlt-resnet",
|
| 690 |
-
"n_common":121,
|
| 691 |
-
"n_nonzero":121,
|
| 692 |
-
"wins_a":36,
|
| 693 |
-
"wins_b":85,
|
| 694 |
-
"ties":0,
|
| 695 |
-
"win_rate_a_over_b":0.2975206612,
|
| 696 |
-
"mean_diff_a_minus_b":-0.1448396288,
|
| 697 |
-
"median_diff_a_minus_b":-0.0605440549,
|
| 698 |
-
"W_stat":1205.0,
|
| 699 |
-
"p_two_sided":0.0000000001,
|
| 700 |
-
"z_equiv":-6.427710033,
|
| 701 |
-
"effect_size_r":0.5843372757,
|
| 702 |
-
"p_holm_global":0.0000000051,
|
| 703 |
-
"p_holm_within_metric":0.0000000012
|
| 704 |
-
},
|
| 705 |
-
{
|
| 706 |
-
"metric":"mean_cert_acc_36",
|
| 707 |
-
"alg_a":"ldlt",
|
| 708 |
-
"alg_b":"sdp",
|
| 709 |
-
"n_common":121,
|
| 710 |
-
"n_nonzero":121,
|
| 711 |
-
"wins_a":36,
|
| 712 |
-
"wins_b":85,
|
| 713 |
-
"ties":0,
|
| 714 |
-
"win_rate_a_over_b":0.2975206612,
|
| 715 |
-
"mean_diff_a_minus_b":-0.1201121466,
|
| 716 |
-
"median_diff_a_minus_b":-0.048914969,
|
| 717 |
-
"W_stat":1305.0,
|
| 718 |
-
"p_two_sided":0.0000000007,
|
| 719 |
-
"z_equiv":-6.1690496695,
|
| 720 |
-
"effect_size_r":0.5608226972,
|
| 721 |
-
"p_holm_global":0.000000024,
|
| 722 |
-
"p_holm_within_metric":0.0000000055
|
| 723 |
-
},
|
| 724 |
-
{
|
| 725 |
-
"metric":"mean_cert_acc_36",
|
| 726 |
-
"alg_a":"ldlt",
|
| 727 |
-
"alg_b":"ortho",
|
| 728 |
-
"n_common":121,
|
| 729 |
-
"n_nonzero":121,
|
| 730 |
-
"wins_a":42,
|
| 731 |
-
"wins_b":79,
|
| 732 |
-
"ties":0,
|
| 733 |
-
"win_rate_a_over_b":0.347107438,
|
| 734 |
-
"mean_diff_a_minus_b":-0.1405772544,
|
| 735 |
-
"median_diff_a_minus_b":-0.053137362,
|
| 736 |
-
"W_stat":1489.0,
|
| 737 |
-
"p_two_sided":0.0000000125,
|
| 738 |
-
"z_equiv":-5.6931146007,
|
| 739 |
-
"effect_size_r":0.5175558728,
|
| 740 |
-
"p_holm_global":0.0000003742,
|
| 741 |
-
"p_holm_within_metric":0.0000000873
|
| 742 |
-
},
|
| 743 |
-
{
|
| 744 |
-
"metric":"mean_cert_acc_36",
|
| 745 |
-
"alg_a":"sandwich",
|
| 746 |
-
"alg_b":"sdp",
|
| 747 |
-
"n_common":121,
|
| 748 |
-
"n_nonzero":119,
|
| 749 |
-
"wins_a":84,
|
| 750 |
-
"wins_b":35,
|
| 751 |
-
"ties":2,
|
| 752 |
-
"win_rate_a_over_b":0.7024793388,
|
| 753 |
-
"mean_diff_a_minus_b":0.0417557005,
|
| 754 |
-
"median_diff_a_minus_b":0.0174162686,
|
| 755 |
-
"W_stat":1683.0,
|
| 756 |
-
"p_two_sided":0.0000005655,
|
| 757 |
-
"z_equiv":5.0026414386,
|
| 758 |
-
"effect_size_r":0.4585913888,
|
| 759 |
-
"p_holm_global":0.000015834,
|
| 760 |
-
"p_holm_within_metric":0.000003393
|
| 761 |
-
},
|
| 762 |
-
{
|
| 763 |
-
"metric":"mean_cert_acc_36",
|
| 764 |
-
"alg_a":"ortho",
|
| 765 |
-
"alg_b":"sandwich",
|
| 766 |
-
"n_common":121,
|
| 767 |
-
"n_nonzero":120,
|
| 768 |
-
"wins_a":38,
|
| 769 |
-
"wins_b":82,
|
| 770 |
-
"ties":1,
|
| 771 |
-
"win_rate_a_over_b":0.3181818182,
|
| 772 |
-
"mean_diff_a_minus_b":-0.0212905927,
|
| 773 |
-
"median_diff_a_minus_b":-0.0130420029,
|
| 774 |
-
"W_stat":2067.0,
|
| 775 |
-
"p_two_sided":0.00004277,
|
| 776 |
-
"z_equiv":-4.0919829682,
|
| 777 |
-
"effect_size_r":0.3735452294,
|
| 778 |
-
"p_holm_global":0.0008981702,
|
| 779 |
-
"p_holm_within_metric":0.00021385
|
| 780 |
-
},
|
| 781 |
-
{
|
| 782 |
-
"metric":"mean_cert_acc_36",
|
| 783 |
-
"alg_a":"ldlt-resnet",
|
| 784 |
-
"alg_b":"sdp",
|
| 785 |
-
"n_common":121,
|
| 786 |
-
"n_nonzero":120,
|
| 787 |
-
"wins_a":71,
|
| 788 |
-
"wins_b":49,
|
| 789 |
-
"ties":1,
|
| 790 |
-
"win_rate_a_over_b":0.5909090909,
|
| 791 |
-
"mean_diff_a_minus_b":0.0247274822,
|
| 792 |
-
"median_diff_a_minus_b":0.0080744923,
|
| 793 |
-
"W_stat":2331.0,
|
| 794 |
-
"p_two_sided":0.0006723776,
|
| 795 |
-
"z_equiv":3.4006015259,
|
| 796 |
-
"effect_size_r":0.3104310275,
|
| 797 |
-
"p_holm_global":0.010758042,
|
| 798 |
-
"p_holm_within_metric":0.0026895105
|
| 799 |
-
},
|
| 800 |
-
{
|
| 801 |
-
"metric":"mean_cert_acc_36",
|
| 802 |
-
"alg_a":"ldlt-resnet",
|
| 803 |
-
"alg_b":"sandwich",
|
| 804 |
-
"n_common":121,
|
| 805 |
-
"n_nonzero":120,
|
| 806 |
-
"wins_a":52,
|
| 807 |
-
"wins_b":68,
|
| 808 |
-
"ties":1,
|
| 809 |
-
"win_rate_a_over_b":0.4338842975,
|
| 810 |
-
"mean_diff_a_minus_b":-0.0170282183,
|
| 811 |
-
"median_diff_a_minus_b":-0.0088294149,
|
| 812 |
-
"W_stat":2802.0,
|
| 813 |
-
"p_two_sided":0.030226149,
|
| 814 |
-
"z_equiv":-2.1671141799,
|
| 815 |
-
"effect_size_r":0.1978295535,
|
| 816 |
-
"p_holm_global":0.3022614896,
|
| 817 |
-
"p_holm_within_metric":0.0906784469
|
| 818 |
-
},
|
| 819 |
-
{
|
| 820 |
-
"metric":"mean_cert_acc_36",
|
| 821 |
-
"alg_a":"ortho",
|
| 822 |
-
"alg_b":"sdp",
|
| 823 |
-
"n_common":121,
|
| 824 |
-
"n_nonzero":121,
|
| 825 |
-
"wins_a":58,
|
| 826 |
-
"wins_b":63,
|
| 827 |
-
"ties":0,
|
| 828 |
-
"win_rate_a_over_b":0.479338843,
|
| 829 |
-
"mean_diff_a_minus_b":0.0204651078,
|
| 830 |
-
"median_diff_a_minus_b":-0.0016042888,
|
| 831 |
-
"W_stat":3123.0,
|
| 832 |
-
"p_two_sided":0.1424837402,
|
| 833 |
-
"z_equiv":1.466604261,
|
| 834 |
-
"effect_size_r":0.1333276601,
|
| 835 |
-
"p_holm_global":0.9973861816,
|
| 836 |
-
"p_holm_within_metric":0.2849674805
|
| 837 |
-
},
|
| 838 |
-
{
|
| 839 |
-
"metric":"mean_cert_acc_36",
|
| 840 |
-
"alg_a":"ldlt-resnet",
|
| 841 |
-
"alg_b":"ortho",
|
| 842 |
-
"n_common":121,
|
| 843 |
-
"n_nonzero":121,
|
| 844 |
-
"wins_a":76,
|
| 845 |
-
"wins_b":45,
|
| 846 |
-
"ties":0,
|
| 847 |
-
"win_rate_a_over_b":0.6280991736,
|
| 848 |
-
"mean_diff_a_minus_b":0.0042623743,
|
| 849 |
-
"median_diff_a_minus_b":0.0059870929,
|
| 850 |
-
"W_stat":3225.0,
|
| 851 |
-
"p_two_sided":0.2290650699,
|
| 852 |
-
"z_equiv":1.2027706903,
|
| 853 |
-
"effect_size_r":0.10934279,
|
| 854 |
-
"p_holm_global":1.0,
|
| 855 |
-
"p_holm_within_metric":0.2849674805
|
| 856 |
-
},
|
| 857 |
-
{
|
| 858 |
-
"metric":"mean_cert_acc_72",
|
| 859 |
-
"alg_a":"aol",
|
| 860 |
-
"alg_b":"ldlt-resnet",
|
| 861 |
-
"n_common":121,
|
| 862 |
-
"n_nonzero":121,
|
| 863 |
-
"wins_a":1,
|
| 864 |
-
"wins_b":120,
|
| 865 |
-
"ties":0,
|
| 866 |
-
"win_rate_a_over_b":0.0082644628,
|
| 867 |
-
"mean_diff_a_minus_b":-0.3092410628,
|
| 868 |
-
"median_diff_a_minus_b":-0.2919858993,
|
| 869 |
-
"W_stat":21.0,
|
| 870 |
-
"p_two_sided":2.304748555e-21,
|
| 871 |
-
"z_equiv":-9.4902527053,
|
| 872 |
-
"effect_size_r":0.8627502459,
|
| 873 |
-
"p_holm_global":1.728561416e-19,
|
| 874 |
-
"p_holm_within_metric":3.457122833e-20
|
| 875 |
-
},
|
| 876 |
-
{
|
| 877 |
-
"metric":"mean_cert_acc_72",
|
| 878 |
-
"alg_a":"aol",
|
| 879 |
-
"alg_b":"sdp",
|
| 880 |
-
"n_common":121,
|
| 881 |
-
"n_nonzero":119,
|
| 882 |
-
"wins_a":1,
|
| 883 |
-
"wins_b":118,
|
| 884 |
-
"ties":2,
|
| 885 |
-
"win_rate_a_over_b":0.0165289256,
|
| 886 |
-
"mean_diff_a_minus_b":-0.2649477861,
|
| 887 |
-
"median_diff_a_minus_b":-0.2343178242,
|
| 888 |
-
"W_stat":2.0,
|
| 889 |
-
"p_two_sided":3.069560827e-21,
|
| 890 |
-
"z_equiv":-9.4603357182,
|
| 891 |
-
"effect_size_r":0.8672275534,
|
| 892 |
-
"p_holm_global":2.271475012e-19,
|
| 893 |
-
"p_holm_within_metric":4.297385158e-20
|
| 894 |
-
},
|
| 895 |
-
{
|
| 896 |
-
"metric":"mean_cert_acc_72",
|
| 897 |
-
"alg_a":"aol",
|
| 898 |
-
"alg_b":"ortho",
|
| 899 |
-
"n_common":121,
|
| 900 |
-
"n_nonzero":121,
|
| 901 |
-
"wins_a":6,
|
| 902 |
-
"wins_b":115,
|
| 903 |
-
"ties":0,
|
| 904 |
-
"win_rate_a_over_b":0.0495867769,
|
| 905 |
-
"mean_diff_a_minus_b":-0.2907397669,
|
| 906 |
-
"median_diff_a_minus_b":-0.2589285746,
|
| 907 |
-
"W_stat":86.5,
|
| 908 |
-
"p_two_sided":1.154336109e-20,
|
| 909 |
-
"z_equiv":-9.3208300963,
|
| 910 |
-
"effect_size_r":0.8473481906,
|
| 911 |
-
"p_holm_global":8.311219988e-19,
|
| 912 |
-
"p_holm_within_metric":1.500636942e-19
|
| 913 |
-
},
|
| 914 |
-
{
|
| 915 |
-
"metric":"mean_cert_acc_72",
|
| 916 |
-
"alg_a":"aol",
|
| 917 |
-
"alg_b":"sandwich",
|
| 918 |
-
"n_common":121,
|
| 919 |
-
"n_nonzero":121,
|
| 920 |
-
"wins_a":7,
|
| 921 |
-
"wins_b":114,
|
| 922 |
-
"ties":0,
|
| 923 |
-
"win_rate_a_over_b":0.0578512397,
|
| 924 |
-
"mean_diff_a_minus_b":-0.3364568783,
|
| 925 |
-
"median_diff_a_minus_b":-0.3205493689,
|
| 926 |
-
"W_stat":90.0,
|
| 927 |
-
"p_two_sided":1.257158705e-20,
|
| 928 |
-
"z_equiv":-9.311773086,
|
| 929 |
-
"effect_size_r":0.846524826,
|
| 930 |
-
"p_holm_global":8.925826805e-19,
|
| 931 |
-
"p_holm_within_metric":1.508590446e-19
|
| 932 |
-
},
|
| 933 |
-
{
|
| 934 |
-
"metric":"mean_cert_acc_72",
|
| 935 |
-
"alg_a":"ldlt",
|
| 936 |
-
"alg_b":"sandwich",
|
| 937 |
-
"n_common":121,
|
| 938 |
-
"n_nonzero":120,
|
| 939 |
-
"wins_a":21,
|
| 940 |
-
"wins_b":99,
|
| 941 |
-
"ties":1,
|
| 942 |
-
"win_rate_a_over_b":0.1776859504,
|
| 943 |
-
"mean_diff_a_minus_b":-0.1661887829,
|
| 944 |
-
"median_diff_a_minus_b":-0.0915510654,
|
| 945 |
-
"W_stat":608.0,
|
| 946 |
-
"p_two_sided":0.0,
|
| 947 |
-
"z_equiv":-7.9129129845,
|
| 948 |
-
"effect_size_r":0.7223468229,
|
| 949 |
-
"p_holm_global":0.0,
|
| 950 |
-
"p_holm_within_metric":0.0
|
| 951 |
-
},
|
| 952 |
-
{
|
| 953 |
-
"metric":"mean_cert_acc_72",
|
| 954 |
-
"alg_a":"aol",
|
| 955 |
-
"alg_b":"ldlt",
|
| 956 |
-
"n_common":121,
|
| 957 |
-
"n_nonzero":103,
|
| 958 |
-
"wins_a":10,
|
| 959 |
-
"wins_b":93,
|
| 960 |
-
"ties":18,
|
| 961 |
-
"win_rate_a_over_b":0.1570247934,
|
| 962 |
-
"mean_diff_a_minus_b":-0.1702680954,
|
| 963 |
-
"median_diff_a_minus_b":-0.1040100288,
|
| 964 |
-
"W_stat":284.0,
|
| 965 |
-
"p_two_sided":0.0,
|
| 966 |
-
"z_equiv":-7.8744204133,
|
| 967 |
-
"effect_size_r":0.7758896982,
|
| 968 |
-
"p_holm_global":0.0,
|
| 969 |
-
"p_holm_within_metric":0.0
|
| 970 |
-
},
|
| 971 |
-
{
|
| 972 |
-
"metric":"mean_cert_acc_72",
|
| 973 |
-
"alg_a":"ldlt",
|
| 974 |
-
"alg_b":"ldlt-resnet",
|
| 975 |
-
"n_common":121,
|
| 976 |
-
"n_nonzero":121,
|
| 977 |
-
"wins_a":30,
|
| 978 |
-
"wins_b":91,
|
| 979 |
-
"ties":0,
|
| 980 |
-
"win_rate_a_over_b":0.2479338843,
|
| 981 |
-
"mean_diff_a_minus_b":-0.1389729674,
|
| 982 |
-
"median_diff_a_minus_b":-0.0703703724,
|
| 983 |
-
"W_stat":922.0,
|
| 984 |
-
"p_two_sided":0.0,
|
| 985 |
-
"z_equiv":-7.1597188617,
|
| 986 |
-
"effect_size_r":0.6508835329,
|
| 987 |
-
"p_holm_global":0.0,
|
| 988 |
-
"p_holm_within_metric":0.0
|
| 989 |
-
},
|
| 990 |
-
{
|
| 991 |
-
"metric":"mean_cert_acc_72",
|
| 992 |
-
"alg_a":"sandwich",
|
| 993 |
-
"alg_b":"sdp",
|
| 994 |
-
"n_common":121,
|
| 995 |
-
"n_nonzero":121,
|
| 996 |
-
"wins_a":93,
|
| 997 |
-
"wins_b":28,
|
| 998 |
-
"ties":0,
|
| 999 |
-
"win_rate_a_over_b":0.7685950413,
|
| 1000 |
-
"mean_diff_a_minus_b":0.0715090921,
|
| 1001 |
-
"median_diff_a_minus_b":0.0368270464,
|
| 1002 |
-
"W_stat":1188.0,
|
| 1003 |
-
"p_two_sided":0.0000000001,
|
| 1004 |
-
"z_equiv":6.4716822948,
|
| 1005 |
-
"effect_size_r":0.5883347541,
|
| 1006 |
-
"p_holm_global":0.000000004,
|
| 1007 |
-
"p_holm_within_metric":0.0000000008
|
| 1008 |
-
},
|
| 1009 |
-
{
|
| 1010 |
-
"metric":"mean_cert_acc_72",
|
| 1011 |
-
"alg_a":"ldlt",
|
| 1012 |
-
"alg_b":"sdp",
|
| 1013 |
-
"n_common":121,
|
| 1014 |
-
"n_nonzero":120,
|
| 1015 |
-
"wins_a":34,
|
| 1016 |
-
"wins_b":86,
|
| 1017 |
-
"ties":1,
|
| 1018 |
-
"win_rate_a_over_b":0.2851239669,
|
| 1019 |
-
"mean_diff_a_minus_b":-0.0946796908,
|
| 1020 |
-
"median_diff_a_minus_b":-0.048577195,
|
| 1021 |
-
"W_stat":1161.0,
|
| 1022 |
-
"p_two_sided":0.0000000001,
|
| 1023 |
-
"z_equiv":-6.4646783724,
|
| 1024 |
-
"effect_size_r":0.5901416953,
|
| 1025 |
-
"p_holm_global":0.0000000041,
|
| 1026 |
-
"p_holm_within_metric":0.0000000008
|
| 1027 |
-
},
|
| 1028 |
-
{
|
| 1029 |
-
"metric":"mean_cert_acc_72",
|
| 1030 |
-
"alg_a":"ortho",
|
| 1031 |
-
"alg_b":"sandwich",
|
| 1032 |
-
"n_common":121,
|
| 1033 |
-
"n_nonzero":118,
|
| 1034 |
-
"wins_a":19,
|
| 1035 |
-
"wins_b":99,
|
| 1036 |
-
"ties":3,
|
| 1037 |
-
"win_rate_a_over_b":0.1694214876,
|
| 1038 |
-
"mean_diff_a_minus_b":-0.0457171114,
|
| 1039 |
-
"median_diff_a_minus_b":-0.0301288068,
|
| 1040 |
-
"W_stat":1121.5,
|
| 1041 |
-
"p_two_sided":0.0000000001,
|
| 1042 |
-
"z_equiv":-6.4141986325,
|
| 1043 |
-
"effect_size_r":0.5904748455,
|
| 1044 |
-
"p_holm_global":0.0000000054,
|
| 1045 |
-
"p_holm_within_metric":0.0000000008
|
| 1046 |
-
},
|
| 1047 |
-
{
|
| 1048 |
-
"metric":"mean_cert_acc_72",
|
| 1049 |
-
"alg_a":"ldlt",
|
| 1050 |
-
"alg_b":"ortho",
|
| 1051 |
-
"n_common":121,
|
| 1052 |
-
"n_nonzero":120,
|
| 1053 |
-
"wins_a":35,
|
| 1054 |
-
"wins_b":85,
|
| 1055 |
-
"ties":1,
|
| 1056 |
-
"win_rate_a_over_b":0.2933884298,
|
| 1057 |
-
"mean_diff_a_minus_b":-0.1204716715,
|
| 1058 |
-
"median_diff_a_minus_b":-0.047722198,
|
| 1059 |
-
"W_stat":1257.0,
|
| 1060 |
-
"p_two_sided":0.0000000005,
|
| 1061 |
-
"z_equiv":-6.2132669388,
|
| 1062 |
-
"effect_size_r":0.5671910764,
|
| 1063 |
-
"p_holm_global":0.0000000192,
|
| 1064 |
-
"p_holm_within_metric":0.0000000026
|
| 1065 |
-
},
|
| 1066 |
-
{
|
| 1067 |
-
"metric":"mean_cert_acc_72",
|
| 1068 |
-
"alg_a":"ldlt-resnet",
|
| 1069 |
-
"alg_b":"sdp",
|
| 1070 |
-
"n_common":121,
|
| 1071 |
-
"n_nonzero":121,
|
| 1072 |
-
"wins_a":82,
|
| 1073 |
-
"wins_b":39,
|
| 1074 |
-
"ties":0,
|
| 1075 |
-
"win_rate_a_over_b":0.6776859504,
|
| 1076 |
-
"mean_diff_a_minus_b":0.0442932766,
|
| 1077 |
-
"median_diff_a_minus_b":0.0152180791,
|
| 1078 |
-
"W_stat":1961.0,
|
| 1079 |
-
"p_two_sided":0.0000077405,
|
| 1080 |
-
"z_equiv":4.472239555,
|
| 1081 |
-
"effect_size_r":0.4065672323,
|
| 1082 |
-
"p_holm_global":0.0001780307,
|
| 1083 |
-
"p_holm_within_metric":0.0000309619
|
| 1084 |
-
},
|
| 1085 |
-
{
|
| 1086 |
-
"metric":"mean_cert_acc_72",
|
| 1087 |
-
"alg_a":"ldlt-resnet",
|
| 1088 |
-
"alg_b":"sandwich",
|
| 1089 |
-
"n_common":121,
|
| 1090 |
-
"n_nonzero":121,
|
| 1091 |
-
"wins_a":49,
|
| 1092 |
-
"wins_b":72,
|
| 1093 |
-
"ties":0,
|
| 1094 |
-
"win_rate_a_over_b":0.4049586777,
|
| 1095 |
-
"mean_diff_a_minus_b":-0.0272158155,
|
| 1096 |
-
"median_diff_a_minus_b":-0.0105392188,
|
| 1097 |
-
"W_stat":2635.0,
|
| 1098 |
-
"p_two_sided":0.0063552362,
|
| 1099 |
-
"z_equiv":-2.7288668349,
|
| 1100 |
-
"effect_size_r":0.2480788032,
|
| 1101 |
-
"p_holm_global":0.0826180701,
|
| 1102 |
-
"p_holm_within_metric":0.0190657085
|
| 1103 |
-
},
|
| 1104 |
-
{
|
| 1105 |
-
"metric":"mean_cert_acc_72",
|
| 1106 |
-
"alg_a":"ldlt-resnet",
|
| 1107 |
-
"alg_b":"ortho",
|
| 1108 |
-
"n_common":121,
|
| 1109 |
-
"n_nonzero":121,
|
| 1110 |
-
"wins_a":74,
|
| 1111 |
-
"wins_b":47,
|
| 1112 |
-
"ties":0,
|
| 1113 |
-
"win_rate_a_over_b":0.6115702479,
|
| 1114 |
-
"mean_diff_a_minus_b":0.0185012959,
|
| 1115 |
-
"median_diff_a_minus_b":0.011391893,
|
| 1116 |
-
"W_stat":2675.0,
|
| 1117 |
-
"p_two_sided":0.0086546544,
|
| 1118 |
-
"z_equiv":2.6254026895,
|
| 1119 |
-
"effect_size_r":0.2386729718,
|
| 1120 |
-
"p_holm_global":0.1038558522,
|
| 1121 |
-
"p_holm_within_metric":0.0190657085
|
| 1122 |
-
},
|
| 1123 |
-
{
|
| 1124 |
-
"metric":"mean_cert_acc_72",
|
| 1125 |
-
"alg_a":"ortho",
|
| 1126 |
-
"alg_b":"sdp",
|
| 1127 |
-
"n_common":121,
|
| 1128 |
-
"n_nonzero":121,
|
| 1129 |
-
"wins_a":62,
|
| 1130 |
-
"wins_b":59,
|
| 1131 |
-
"ties":0,
|
| 1132 |
-
"win_rate_a_over_b":0.5123966942,
|
| 1133 |
-
"mean_diff_a_minus_b":0.0257919807,
|
| 1134 |
-
"median_diff_a_minus_b":0.0024819822,
|
| 1135 |
-
"W_stat":2935.5,
|
| 1136 |
-
"p_two_sided":0.0509865142,
|
| 1137 |
-
"z_equiv":1.9515932587,
|
| 1138 |
-
"effect_size_r":0.177417569,
|
| 1139 |
-
"p_holm_global":0.4588786282,
|
| 1140 |
-
"p_holm_within_metric":0.0509865142
|
| 1141 |
-
},
|
| 1142 |
-
{
|
| 1143 |
-
"metric":"mean_test_acc",
|
| 1144 |
-
"alg_a":"aol",
|
| 1145 |
-
"alg_b":"ldlt",
|
| 1146 |
-
"n_common":121,
|
| 1147 |
-
"n_nonzero":121,
|
| 1148 |
-
"wins_a":16,
|
| 1149 |
-
"wins_b":105,
|
| 1150 |
-
"ties":0,
|
| 1151 |
-
"win_rate_a_over_b":0.132231405,
|
| 1152 |
-
"mean_diff_a_minus_b":-0.1195835257,
|
| 1153 |
-
"median_diff_a_minus_b":-0.0631501061,
|
| 1154 |
-
"W_stat":409.0,
|
| 1155 |
-
"p_two_sided":2.126854418e-17,
|
| 1156 |
-
"z_equiv":-8.4866465265,
|
| 1157 |
-
"effect_size_r":0.7715133206,
|
| 1158 |
-
"p_holm_global":0.0,
|
| 1159 |
-
"p_holm_within_metric":3.190281628e-16
|
| 1160 |
-
},
|
| 1161 |
-
{
|
| 1162 |
-
"metric":"mean_test_acc",
|
| 1163 |
-
"alg_a":"aol",
|
| 1164 |
-
"alg_b":"sandwich",
|
| 1165 |
-
"n_common":121,
|
| 1166 |
-
"n_nonzero":121,
|
| 1167 |
-
"wins_a":23,
|
| 1168 |
-
"wins_b":98,
|
| 1169 |
-
"ties":0,
|
| 1170 |
-
"win_rate_a_over_b":0.1900826446,
|
| 1171 |
-
"mean_diff_a_minus_b":-0.1113283867,
|
| 1172 |
-
"median_diff_a_minus_b":-0.0656148695,
|
| 1173 |
-
"W_stat":698.0,
|
| 1174 |
-
"p_two_sided":0.0,
|
| 1175 |
-
"z_equiv":-7.7391180759,
|
| 1176 |
-
"effect_size_r":0.7035561887,
|
| 1177 |
-
"p_holm_global":0.0,
|
| 1178 |
-
"p_holm_within_metric":0.0
|
| 1179 |
-
},
|
| 1180 |
-
{
|
| 1181 |
-
"metric":"mean_test_acc",
|
| 1182 |
-
"alg_a":"aol",
|
| 1183 |
-
"alg_b":"ortho",
|
| 1184 |
-
"n_common":121,
|
| 1185 |
-
"n_nonzero":121,
|
| 1186 |
-
"wins_a":25,
|
| 1187 |
-
"wins_b":96,
|
| 1188 |
-
"ties":0,
|
| 1189 |
-
"win_rate_a_over_b":0.2066115702,
|
| 1190 |
-
"mean_diff_a_minus_b":-0.0986620727,
|
| 1191 |
-
"median_diff_a_minus_b":-0.0525094743,
|
| 1192 |
-
"W_stat":908.0,
|
| 1193 |
-
"p_two_sided":0.0,
|
| 1194 |
-
"z_equiv":-7.1959313126,
|
| 1195 |
-
"effect_size_r":0.6541755739,
|
| 1196 |
-
"p_holm_global":0.0,
|
| 1197 |
-
"p_holm_within_metric":0.0
|
| 1198 |
-
},
|
| 1199 |
-
{
|
| 1200 |
-
"metric":"mean_test_acc",
|
| 1201 |
-
"alg_a":"aol",
|
| 1202 |
-
"alg_b":"sdp",
|
| 1203 |
-
"n_common":121,
|
| 1204 |
-
"n_nonzero":121,
|
| 1205 |
-
"wins_a":24,
|
| 1206 |
-
"wins_b":97,
|
| 1207 |
-
"ties":0,
|
| 1208 |
-
"win_rate_a_over_b":0.1983471074,
|
| 1209 |
-
"mean_diff_a_minus_b":-0.0961238247,
|
| 1210 |
-
"median_diff_a_minus_b":-0.0445100629,
|
| 1211 |
-
"W_stat":1047.0,
|
| 1212 |
-
"p_two_sided":0.0,
|
| 1213 |
-
"z_equiv":-6.8363934073,
|
| 1214 |
-
"effect_size_r":0.6214903098,
|
| 1215 |
-
"p_holm_global":0.0000000004,
|
| 1216 |
-
"p_holm_within_metric":0.0000000001
|
| 1217 |
-
},
|
| 1218 |
-
{
|
| 1219 |
-
"metric":"mean_test_acc",
|
| 1220 |
-
"alg_a":"aol",
|
| 1221 |
-
"alg_b":"ldlt-resnet",
|
| 1222 |
-
"n_common":121,
|
| 1223 |
-
"n_nonzero":121,
|
| 1224 |
-
"wins_a":27,
|
| 1225 |
-
"wins_b":94,
|
| 1226 |
-
"ties":0,
|
| 1227 |
-
"win_rate_a_over_b":0.2231404959,
|
| 1228 |
-
"mean_diff_a_minus_b":-0.0920606953,
|
| 1229 |
-
"median_diff_a_minus_b":-0.0356908378,
|
| 1230 |
-
"W_stat":1307.0,
|
| 1231 |
-
"p_two_sided":0.0000000007,
|
| 1232 |
-
"z_equiv":-6.1638764622,
|
| 1233 |
-
"effect_size_r":0.5603524057,
|
| 1234 |
-
"p_holm_global":0.0000000241,
|
| 1235 |
-
"p_holm_within_metric":0.0000000078
|
| 1236 |
-
},
|
| 1237 |
-
{
|
| 1238 |
-
"metric":"mean_test_acc",
|
| 1239 |
-
"alg_a":"ldlt",
|
| 1240 |
-
"alg_b":"sdp",
|
| 1241 |
-
"n_common":121,
|
| 1242 |
-
"n_nonzero":121,
|
| 1243 |
-
"wins_a":86,
|
| 1244 |
-
"wins_b":35,
|
| 1245 |
-
"ties":0,
|
| 1246 |
-
"win_rate_a_over_b":0.7107438017,
|
| 1247 |
-
"mean_diff_a_minus_b":0.023459701,
|
| 1248 |
-
"median_diff_a_minus_b":0.0102784065,
|
| 1249 |
-
"W_stat":1511.0,
|
| 1250 |
-
"p_two_sided":0.0000000174,
|
| 1251 |
-
"z_equiv":5.6362093207,
|
| 1252 |
-
"effect_size_r":0.5123826655,
|
| 1253 |
-
"p_holm_global":0.0000005041,
|
| 1254 |
-
"p_holm_within_metric":0.0000001738
|
| 1255 |
-
},
|
| 1256 |
-
{
|
| 1257 |
-
"metric":"mean_test_acc",
|
| 1258 |
-
"alg_a":"ldlt",
|
| 1259 |
-
"alg_b":"ldlt-resnet",
|
| 1260 |
-
"n_common":121,
|
| 1261 |
-
"n_nonzero":121,
|
| 1262 |
-
"wins_a":87,
|
| 1263 |
-
"wins_b":34,
|
| 1264 |
-
"ties":0,
|
| 1265 |
-
"win_rate_a_over_b":0.7190082645,
|
| 1266 |
-
"mean_diff_a_minus_b":0.0275228304,
|
| 1267 |
-
"median_diff_a_minus_b":0.0124811598,
|
| 1268 |
-
"W_stat":1779.0,
|
| 1269 |
-
"p_two_sided":0.0000007693,
|
| 1270 |
-
"z_equiv":4.9429995465,
|
| 1271 |
-
"effect_size_r":0.4493635951,
|
| 1272 |
-
"p_holm_global":0.000020771,
|
| 1273 |
-
"p_holm_within_metric":0.0000069237
|
| 1274 |
-
},
|
| 1275 |
-
{
|
| 1276 |
-
"metric":"mean_test_acc",
|
| 1277 |
-
"alg_a":"ldlt",
|
| 1278 |
-
"alg_b":"ortho",
|
| 1279 |
-
"n_common":121,
|
| 1280 |
-
"n_nonzero":121,
|
| 1281 |
-
"wins_a":78,
|
| 1282 |
-
"wins_b":43,
|
| 1283 |
-
"ties":0,
|
| 1284 |
-
"win_rate_a_over_b":0.6446280992,
|
| 1285 |
-
"mean_diff_a_minus_b":0.020921453,
|
| 1286 |
-
"median_diff_a_minus_b":0.010356299,
|
| 1287 |
-
"W_stat":2002.0,
|
| 1288 |
-
"p_two_sided":0.0000126434,
|
| 1289 |
-
"z_equiv":4.3661869359,
|
| 1290 |
-
"effect_size_r":0.3969260851,
|
| 1291 |
-
"p_holm_global":0.0002781554,
|
| 1292 |
-
"p_holm_within_metric":0.0001011474
|
| 1293 |
-
},
|
| 1294 |
-
{
|
| 1295 |
-
"metric":"mean_test_acc",
|
| 1296 |
-
"alg_a":"ortho",
|
| 1297 |
-
"alg_b":"sandwich",
|
| 1298 |
-
"n_common":121,
|
| 1299 |
-
"n_nonzero":120,
|
| 1300 |
-
"wins_a":39,
|
| 1301 |
-
"wins_b":81,
|
| 1302 |
-
"ties":1,
|
| 1303 |
-
"win_rate_a_over_b":0.326446281,
|
| 1304 |
-
"mean_diff_a_minus_b":-0.012666314,
|
| 1305 |
-
"median_diff_a_minus_b":-0.0078946893,
|
| 1306 |
-
"W_stat":2171.0,
|
| 1307 |
-
"p_two_sided":0.0001336571,
|
| 1308 |
-
"z_equiv":-3.8196205818,
|
| 1309 |
-
"effect_size_r":0.348682059,
|
| 1310 |
-
"p_holm_global":0.0025394851,
|
| 1311 |
-
"p_holm_within_metric":0.0009355998
|
| 1312 |
-
},
|
| 1313 |
-
{
|
| 1314 |
-
"metric":"mean_test_acc",
|
| 1315 |
-
"alg_a":"sandwich",
|
| 1316 |
-
"alg_b":"sdp",
|
| 1317 |
-
"n_common":121,
|
| 1318 |
-
"n_nonzero":121,
|
| 1319 |
-
"wins_a":80,
|
| 1320 |
-
"wins_b":41,
|
| 1321 |
-
"ties":0,
|
| 1322 |
-
"win_rate_a_over_b":0.6611570248,
|
| 1323 |
-
"mean_diff_a_minus_b":0.015204562,
|
| 1324 |
-
"median_diff_a_minus_b":0.006305895,
|
| 1325 |
-
"W_stat":2279.0,
|
| 1326 |
-
"p_two_sided":0.0002625491,
|
| 1327 |
-
"z_equiv":3.649697729,
|
| 1328 |
-
"effect_size_r":0.3317907026,
|
| 1329 |
-
"p_holm_global":0.0044633343,
|
| 1330 |
-
"p_holm_within_metric":0.0015752945
|
| 1331 |
-
},
|
| 1332 |
-
{
|
| 1333 |
-
"metric":"mean_test_acc",
|
| 1334 |
-
"alg_a":"ldlt-resnet",
|
| 1335 |
-
"alg_b":"sandwich",
|
| 1336 |
-
"n_common":121,
|
| 1337 |
-
"n_nonzero":121,
|
| 1338 |
-
"wins_a":47,
|
| 1339 |
-
"wins_b":74,
|
| 1340 |
-
"ties":0,
|
| 1341 |
-
"win_rate_a_over_b":0.3884297521,
|
| 1342 |
-
"mean_diff_a_minus_b":-0.0192676914,
|
| 1343 |
-
"median_diff_a_minus_b":-0.01009705,
|
| 1344 |
-
"W_stat":2411.0,
|
| 1345 |
-
"p_two_sided":0.0009387558,
|
| 1346 |
-
"z_equiv":-3.3082660492,
|
| 1347 |
-
"effect_size_r":0.300751459,
|
| 1348 |
-
"p_holm_global":0.0140813373,
|
| 1349 |
-
"p_holm_within_metric":0.0046937791
|
| 1350 |
-
},
|
| 1351 |
-
{
|
| 1352 |
-
"metric":"mean_test_acc",
|
| 1353 |
-
"alg_a":"ldlt",
|
| 1354 |
-
"alg_b":"sandwich",
|
| 1355 |
-
"n_common":121,
|
| 1356 |
-
"n_nonzero":120,
|
| 1357 |
-
"wins_a":64,
|
| 1358 |
-
"wins_b":56,
|
| 1359 |
-
"ties":1,
|
| 1360 |
-
"win_rate_a_over_b":0.5330578512,
|
| 1361 |
-
"mean_diff_a_minus_b":0.008255139,
|
| 1362 |
-
"median_diff_a_minus_b":0.0008221223,
|
| 1363 |
-
"W_stat":3145.0,
|
| 1364 |
-
"p_two_sided":0.2044973939,
|
| 1365 |
-
"z_equiv":1.2688420788,
|
| 1366 |
-
"effect_size_r":0.1158289047,
|
| 1367 |
-
"p_holm_global":1.0,
|
| 1368 |
-
"p_holm_within_metric":0.8179895757
|
| 1369 |
-
},
|
| 1370 |
-
{
|
| 1371 |
-
"metric":"mean_test_acc",
|
| 1372 |
-
"alg_a":"ldlt-resnet",
|
| 1373 |
-
"alg_b":"ortho",
|
| 1374 |
-
"n_common":121,
|
| 1375 |
-
"n_nonzero":121,
|
| 1376 |
-
"wins_a":54,
|
| 1377 |
-
"wins_b":67,
|
| 1378 |
-
"ties":0,
|
| 1379 |
-
"win_rate_a_over_b":0.4462809917,
|
| 1380 |
-
"mean_diff_a_minus_b":-0.0066013774,
|
| 1381 |
-
"median_diff_a_minus_b":-0.0023532391,
|
| 1382 |
-
"W_stat":3206.0,
|
| 1383 |
-
"p_two_sided":0.2106004159,
|
| 1384 |
-
"z_equiv":-1.2519161593,
|
| 1385 |
-
"effect_size_r":0.1138105599,
|
| 1386 |
-
"p_holm_global":1.0,
|
| 1387 |
-
"p_holm_within_metric":0.8179895757
|
| 1388 |
-
},
|
| 1389 |
-
{
|
| 1390 |
-
"metric":"mean_test_acc",
|
| 1391 |
-
"alg_a":"ortho",
|
| 1392 |
-
"alg_b":"sdp",
|
| 1393 |
-
"n_common":121,
|
| 1394 |
-
"n_nonzero":121,
|
| 1395 |
-
"wins_a":60,
|
| 1396 |
-
"wins_b":61,
|
| 1397 |
-
"ties":0,
|
| 1398 |
-
"win_rate_a_over_b":0.4958677686,
|
| 1399 |
-
"mean_diff_a_minus_b":0.0025382481,
|
| 1400 |
-
"median_diff_a_minus_b":-0.0000065726,
|
| 1401 |
-
"W_stat":3382.0,
|
| 1402 |
-
"p_two_sided":0.4256404345,
|
| 1403 |
-
"z_equiv":0.7966739196,
|
| 1404 |
-
"effect_size_r":0.0724249018,
|
| 1405 |
-
"p_holm_global":1.0,
|
| 1406 |
-
"p_holm_within_metric":0.8512808691
|
| 1407 |
-
},
|
| 1408 |
-
{
|
| 1409 |
-
"metric":"mean_test_acc",
|
| 1410 |
-
"alg_a":"ldlt-resnet",
|
| 1411 |
-
"alg_b":"sdp",
|
| 1412 |
-
"n_common":121,
|
| 1413 |
-
"n_nonzero":121,
|
| 1414 |
-
"wins_a":58,
|
| 1415 |
-
"wins_b":63,
|
| 1416 |
-
"ties":0,
|
| 1417 |
-
"win_rate_a_over_b":0.479338843,
|
| 1418 |
-
"mean_diff_a_minus_b":-0.0040631294,
|
| 1419 |
-
"median_diff_a_minus_b":-0.0009775593,
|
| 1420 |
-
"W_stat":3627.0,
|
| 1421 |
-
"p_two_sided":0.8705530556,
|
| 1422 |
-
"z_equiv":-0.162956029,
|
| 1423 |
-
"effect_size_r":0.0148141845,
|
| 1424 |
-
"p_holm_global":1.0,
|
| 1425 |
-
"p_holm_within_metric":0.8705530556
|
| 1426 |
-
}
|
| 1427 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
UCI_N6/wilcoxon_prep_all.json
DELETED
|
The diff for this file is too large to render.
See raw diff
|
|
|